求函数值域的方法!
在函数的三要素中,对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用.本文就函数值域求法归纳如下.1,直接观察法对于一些比较简单的函数,其值域可通过观察得到.例1 求函数y=3-的值域.解: 0 - 0 3- 3故函数的值域是:[-∞,3] 2,配方法配方法是求二次函数值域最基本的方法之一.例2,求函数y=-2x+5,x[-1,2]的值域.解:将函数配方得:y=(x-1)+4,x[-1,2],由二次函数的性质可知:当x=1时,y =4当x=-1,时=8故函数的值域是:[4,8] 3,判别式法例3 求函数y=的值域.解:原函数化为关x的一元二次方程(y-1)-x+(y-1)=0(1)当y≠1时,xR,△=(-1)-4(y-1)(y-1) 0解得:y(2)当y=1,时,x=0,而1[,]故函数的值域为[,]例4求函数y=x+的值域. 解:两边平方整理得:2-2(y+1)x+y=0(1)xR,△=4(y+1)-8y0解得:1-y1+但此时的函数的定义域由x(2-x)0,得:0x2.由△0,仅保证关于x的方程:2-2(y+1)x+y=0在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由△0求出的范围可能比y的实际范围大,故不能确定此函数的值域为[,].可以采取如下方法进一步确定原函数的值域.0x2,y=x+0,=0,y=1+代入方程(1),解得:=[0,2],即当=时,原函数的值域为:[0,1+].注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除.4,反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域.例5 求函数y=值域.解:由原函数式可得:x=则其反函数为:y=其定义域为:x≠故所求函数的值域为:(-∞,)5,函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域.例6 求函数y=的值域.解:由原函数式可得:=>0,>0 解得:-1 7,换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型.换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用.例9 求函数y=x+的值域.解:令x-1=t,(t0)则x=+1∵y=+t+1=+,又t0,由二次函数的性质可知当t=0时,y=1,当t→0时,y→+∞.故函数的值域为[1,+∞) 8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目.例10 求函数y=+的值域.解:原函数可化简得:y=∣x-2∣+∣x+8∣ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和.由上图可知:当点P在线段AB上时,y=∣x-2∣+∣x+8∣=∣AB∣=10当点P在线段AB的延长线或反向延长线上时,y=∣x-2∣+∣x+8∣>∣AB∣=10故所求函数的值域为:[10,+∞]例11 求函数y=+ 的值域解:原函数可变形为:y=+上式可看成x轴上的点P(x,0)到两定点A(3,2),B(-2,-1)的距离之和,由图可知当点P为线段与x轴的交点时, y=∣AB∣==,故所求函数的值域为[,+∞].例12 求函数y=-的值域解:将函数变形为:y=-上式可看成定点A(3,2)到点P(x,0)的距离与定点B(-2,1)到点P(x,0)的距离之差.即:y=∣AP∣-∣BP∣由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P ,则构成△ABP ,根据三角形两边之差小于第三边,有 ∣∣AP ∣-∣BP ∣∣<∣AB∣== 即:-(2)当点P恰好为直线AB与x轴的交点时, 有 ∣∣AP∣-∣BP∣∣=∣AB∣= .综上所述,可知函数的值域为:(-,-). 注:由例11,例12可知,求两距离之和时,要将函数式变形,使A,B两点在x轴的两侧,而求两距离之差时,则要使两点A,B在x轴的同侧.如:例17的A,B两点坐标分别为:(3,2),(-2,-1),在x轴的同侧;例18的A,B两点坐标分别为:(3,2),(2,-1),在x轴的同侧.总之,在具体求某个函数的值域时,首先要仔细,认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法然后才考虑用其他各种特殊方法.u投在线2023-08-12 08:46:501
什么是值域?如何求值域
1直观的理解是在自变量x取完定义域的的每一个x,(在对应法则f的作用下)对应的得到每一个y, 把这里的每一y集起来,就是函数的值域. 2一般实际操作是由自变量x的范围出发,对x进行变形,一直变到f(x)的形式,对应求的f(x)的范围, 即为y的范围,即求得函数的值域.u投在线2023-08-12 08:46:501
值域是怎么求得?知道了定义域怎么求值域?谁能教一下!
1)直接法--从自变量x的范围出发,推出y=f(x)的取值范围2)配方法--配方是求“二次函数类”值域的基本方法,形如f(x)=af(x)方bf(x)方+c的函数的值域问题,均可使用配方法3)反函数法--利用函数与他的范函数的定义域与值域的互逆关系,通过求范函数的定义域,得到原函数的值域。一次分数式型均可使用反函数,此外,此种类型也可使用“分离常数法”求得4)判别式法--把函数转化成关于x的二次方程f(x,y)=0,通过方程有实根,判别式“的塔”>=0,从而求得原函数的值域。通常用于球二次分式型5)换元法运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求的函数的值域形如:y=ax+b-根号cx+d(a,b,c,d均为常数,且a不为0)的函数常用此方法求解6)不等式法利用均值不等式求函数的值域,“一正、二定、三相等”7)单调性法确定函数在定义域(或某个定义域上的子集)上的单调性求出函数的值域分母中含根号的分式的值域均可使用此方法求解8)求导法当一个函数在定义域上可导时,可据其导数求最值9)数形结合当一个函数图像可作时,通过图像可求其值域和最值;或利用函数所表示的几何意义,借助于几何方法求出函数的值域肖振2023-08-12 08:46:501
函数的值域怎么求?请详解,谢谢!
这个是具体问题具体对待的,看看隐藏的限制条件和明显的限制条件综合得出CarieVinne 2023-08-12 08:46:503
如何求函数值域方法
1、配方法。将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域;2、常数分离法。一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域;3、逆求法。对于y等于某x的形式,可用逆求法,表示为x等于某y,此时可看y的限制范围,就是原式的值域;4、求导法。出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就是值域。北境漫步2023-08-12 08:46:501
怎么求值域!举例说明
一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1:求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的值域为 . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5.y,x∈N)的值域。 (答案:值域为:{0,1,2,3,4,5})二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2:求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。 (答案:函数的值域为{y∣y<-1或y>1})三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域. (答案:值域为{y∣y≤2.5})四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域,但只适用于定义域为R或R除去一两个点。 例4:求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)+(y-3)≥0,解得:2<y≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。 (答案:值域为y≤-8或y>0)。五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。 例5:已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。 ∴函数z的值域为{z∣-5≤z≤15/4}。 点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。 练习:若√x为实数,则函数y=x2+3x-5的值域为 ( ) A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞) (答案:D)。六.图象法 通过观察函数的图象,运用数形结合的方法得到函数的值域。 例6:求函数y=∣x+1∣+√(x-2)2 的值域。 点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。 解:原函数化为 -2x+1 (x≤1) y= 3 (-1<x≤2) 2x-1(x>2) 它的图象如图所示。 显然函数值y≥3,所以,函数值域[3,+∞]。 点评:分段函数应注意函数的端点。利用函数的图象 求函数的值域,体现数形结合的思想。是解决问题的重要方法。 求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。七.单调法 利用函数在给定的区间上的单调递增或单调递减求值域。 例1:求函数y=4x-√1-3x(x≤1/3)的值域。 点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。 解:设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x 在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。 点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。 练习:求函数y=3+√4-x 的值域。(答案:{y|y≥3})八.换元法 以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。 例2:求函数y=x-3+√2x+1 的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。 解:设t=√2x+1 (t≥0),则 x=1/2(t2-1)。 于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2. 所以,原函数的值域为{y|y≥-7/2}。 点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。 练习:求函数y=√x-1 –x的值域。(答案:{y|y≤-3/4}九.构造法 根据函数的结构特征,赋予几何图形,数形结合。 例3:求函数y=√x2+4x+5+√x2-4x+8 的值域。 点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。 解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22 作一个长为4、宽为3的矩形ABCD,再切割成12个单位 正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 , KC=√(x+2)2+1 。 由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共 线时取等号。 ∴原函数的知域为{y|y≥5}。 点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。 练习:求函数y=√x2+9 +√(5-x)2+4的值域。(答案:{y|y≥5√2})十.比例法 对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。 例4:已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。 点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。 解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数) ∴x=3+4k,y=1+3k, ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。 当k=-3/5时,x=3/5,y=-4/5时,zmin=1。 函数的值域为{z|z≥1}. 点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。 练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})十一.利用多项式的除法 例5:求函数y=(3x+2)/(x+1)的值域。 点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。 解:y=(3x+2)/(x+1)=3-1/(x+1)。 ∵1/(x+1)≠0,故y≠3。 ∴函数y的值域为y≠3的一切实数。 点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。 练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)十二.不等式法 例6:求函数Y=3x/(3x+1)的值域。 点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。 解:易求得原函数的反函数为y=log3[x/(1-x)], 由对数函数的定义知 x/(1-x)>0 1-x≠0 解得,0<x<1。 ∴函数的值域(0,1)。 点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。 以下供练习选用:求下列函数的值域 1.Y=√(15-4x)+2x-5;({y|y≤3}) 2.Y=2x/(2x-1)。 (y>1或y<0) 注意变量哦~小菜G的建站之路2023-08-12 08:46:491
一次函数比一次函数如何求值域
反解xy(x-1)=2x+3yx-2x=y+3x=(y+3)/(y-2)显然y≠2所以,值域为(-∞,2)U(2,+∞)祝你开心!希望能帮到你,如果不懂,请追问,祝学习进步!O(∩_∩)O小菜G的建站之路2023-08-12 08:46:492
如何求函数的值域
函数值域的几种常见方法1.直接法:利用常见函数的值域来求一次函数y=ax+b(a 0)的定义域为R,值域为R;反比例函数 的定义域为{x|x 0},值域为{y|y 0};二次函数 的定义域为R,当a>0时,值域为{ };当a<0时,值域为{ }.例1.求下列函数的值域① y=3x+2(-1 x 1) ② ③ ④ 解:①∵-1 x 1,∴-3 3x 3,∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5]②∵ ∴ 即函数 的值域是 { y| y 2} ③ ④当x>0,∴ = ,当x<0时, =- ∴值域是 [2,+ ).(此法也称为配方法)函数 的图像为:2.二次函数比区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:① ; 解:∵ ,∴顶点为(2,-3),顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y -3 }.②∵顶点横坐标2 [3,4],当x=3时,y= -2;x=4时,y=1; ∴在[3,4]上, =-2, =1;值域为[-2,1].③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,∴在[0,1]上, =-2, =1;值域为[-2,1].④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,∴在[0,1]上, =-3, =6;值域为[-3,6].注:对于二次函数 ,⑴若定义域为R时,①当a>0时,则当 时,其最小值 ;②当a<0时,则当 时,其最大值 .⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,再比较 的大小决定函数的最大(小)值.②若 [a,b],则[a,b]是在 的单调区间内,只需比较 的大小即可决定函数的最大(小)值.注:①若给定区间不是闭区间,则可能得不到最大(小)值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.3.判别式法(△法):判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论 例3.求函数 的值域方法一:去分母得 (y-1) +(y+5)x-6y-6=0 ①当 y11时 ∵x?R ∴△=(y+5) +4(y-1)×6(y+1) 0由此得 (5y+1) 0 检验 时 (代入①求根)∵2 ? 定义域 { x| x12且 x13} ∴ 再检验 y=1 代入①求得 x=2 ∴y11综上所述,函数 的值域为 { y| y11且 y1 }方法二:把已知函数化为函数 (x12)∵ x=2时 即 说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.4.换元法例4.求函数 的值域解:设 则 t 0 x=1- 代入得 5.分段函数例5.求函数y=|x+1|+|x-2|的值域. 解法1:将函数化为分段函数形式: ,画出它的图象(下图),由图象可知,函数的值域是{y|y 3}.解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3,+ ]. 如图两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.meira2023-08-12 08:46:491
高中数学值域怎么求
一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。例1求函数y=3+√(2-3x) 的值域。点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。∴函数的知域为[3,+∞]。点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})二、反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。例2:求函数y=(x+1)/(x+2)的值域。点拨:先求出原函数的反函数,再求出其定义域。解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。练习:求函数y=(10∧x+10∧-x)/(10∧x-10∧-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})wpBeta2023-08-12 08:46:491
定义域怎么求值域怎么求
定义域和值域是函数的重要概念。定义域指的是函数的实际定义范围,即对于任意输入的 x,函数 f(x) 都有且仅有一个对应的输出 y。值域指的是函数的输出值 y 的集合。要求定义域,需要考虑函数的定义以及对 x 的限制;要求值域,则需要考虑函数的性质(例如单调性)和函数的定义关系,以及 x 的限制。具体地,我们可以按以下步骤求定义域和值域:1、确定函数的定义关系,即找到函数的表达式。2、确定对 x 的限制,即对 x 的取值范围作出限制。3、分析函数的性质(例如单调性),确定函数的取值范围。4、综合第二和第三步的结果,确定函数的定义域和值域。在确定定义域和值域时,我们可以使用不等式、数轴图像等方法进行分析。如果函数是复杂的,可以使用计算机辅助工具(例如数学软件)进行解决。墨然殇2023-08-12 08:46:491
怎样求函数y=/的值域
题目表述不清,下面的解题过程基于“y=(2x+3)/(x+1)的值域”解:y=(2x+3)/(x+1)的定义域:x+1≠0 所以x≠-1定义域是(-∞,-1)∪(-1,+∞)y=(2x+3)/(x+1)=(2x+2+1)/(x+1)=2+2/(x+1)因为2/(x+1)≠0所以2+2/(x+1)≠2所以,y=(2x+3)/(x+1)的值域是:(-∞,2)∪(2,+∞)左迁2023-08-12 08:46:491
高中数学值域怎么求
这个题目的范围有点广,没有具体的题目,所以解答起来比较宽泛,我就举一个具体的例子来进行解答。比如说函数y=2x,x的取值范围是【5,10】值域代表的意思是指函数的取值范围,每一个x就对应一个y的值,也就是函数的取值,因为x有个定义域,所以对应的y有一个值域。我举例的函数,是一个一次函数,并且是在x的取值范围内单调递增,也就是当x=5,y=10,这是y的最小值,当x=10,y=20,这是y的最大值,所以函数y=2x的值域是【10,20】这是一次函数的求解,另外还有二次函数,三次函数等,很多很多的函数,只要有一个x的定义域范围,也就会对应一个y的值域范围。瑞瑞爱吃桃2023-08-12 08:46:491
函数的值域怎么求呢?
值域:函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。f:A→B中,值域是集合B的子集。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。在实数分析中,函数的值域是实数,而在复数域中,值域是复数。扩展资料函数经典定义中,因变量的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。即{y∣y=f(x),x∈D}常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为x≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为RwpBeta2023-08-12 08:46:491
怎样求三角函数求定义域值域?
三角函数定义域和值域 sin(x),cos(x)的定义域为R,值域为〔-1,1〕 tan(x)的定义域为x不等于π/2+kπ,值域为R cot(x)的定义域为x不等于kπ,值域为RNtou1232023-08-12 08:46:491
二元一次方程值域怎么求
都是二元一次方程了哪有什么值域呢?如果指的是二元一次函数值域怎么求那没什么要去求的在没有给出定义域的情况下必然什么值都可以取到无尘剑 2023-08-12 08:46:491
怎样求分式函数的值域
将一个分式化为几个式子的和,其中只有一个式子分母含有x。适合简单的分式函数或分子分母x都是一次的分式函数。例:求y=2x/(5x+1)的值域解:y=2[x+(1/5)-(1/5)]/5[x+(1/5)]=(2/5)-[2/5(5x+1)]∵x≠-1/5 ∴y≠2/5∴值域为{y|y∈R且y≠2/5}形如f(x)=p(x)/q(x) 的函数叫做分式函数,其中p(x)、q(x)是既约整式且 q(x)的次数不低于一次。扩展资料:p(x)、q(x) 至少有一个的次数是二次的分式函数叫做二次分式函数,即形如f(x)=(ax;+bx+c)/(dx;+ex+f),(其中x∈A,ad≠0) 的函数。函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标;从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。参考资料:百度百科——分式函数人类地板流精华2023-08-12 08:46:481
如何去求值域?出例题,
函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如:; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域. ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域.再也不做站长了2023-08-12 08:46:481
已知一个函数的定义域 怎样求值域
看函数增减单调性,与定义域相比较,得到捌点,从而得值域y=2x,x<3则y<6其他的一样Chen2023-08-12 08:46:482
分数式的函数怎样求值域的?
1)直接法——从自变量x的范围出发,推出y=f(x)的取值范围2)配方法——配方是求“二次函数类”值域的基本方法,形如f(x)=af(x)方bf(x)方+c的函数的值域问题,均可使用配方法3)反函数法——利用函数与他的范函数的定义域与值域的互逆关系,通过求范函数的定义域,得到原函数的值域。一次分数式型均可使用反函数,此外,此种类型也可使用“分离常数法”求得4)判别式法——把函数转化成关于x的二次方程f(x,y)=0,通过方程有实根,判别式“的塔”>=0,从而求得原函数的值域。通常用于球二次分式型5)换元法运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求的函数的值域 形如:y=ax+b-根号cx+d(a,b,c,d均为常数,且a不为0)的函数常用此方法求解6)不等式法利用均值不等式求函数的值域,“一正、二定、三相等”7)单调性法确定函数在定义域(或某个定义域上的子集)上的单调性求出函数的值域分母中含根号的分式的值域均可使用此方法求解8)求导法当一个函数在定义域上可导时,可据其导数求最值9)数形结合当一个函数图像可作时,通过图像可求其值域和最值;或利用函数所表示的几何意义,借助于几何方法求出函数的值域小菜G的建站之路2023-08-12 08:46:472
值域的求法
在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。确定函数的值域是研究函数不可缺少的重要一环。对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。本文就函数值域求法归纳如下,供参考。 1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到2. 配方法 配方法是求二次函数值域最基本的方法之一3. 判别式法4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域6. 函数单调性法 7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用8. 数形结合法 其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目9. 不等式法 利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧10. 一一映射法 原理:因为在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围11. 多种方法综合运用Jm-R2023-08-12 08:46:471
怎样根据值域求定义域,举下例子(最好例子是不同的)
很好求的先说自变量,分式函数中的自变量满足分母≠0偶次根式函数中的自变量满足被看方数≥0整式函数中的自变量可以取全体实数实际问题中的自变量要使得实际问题有意义求值域,可以先求函数的反函数,利用反函数的自变量的取值范围就是原函数的值域范围,便可以得出函数值域的范围了.(希望能帮到你,同意请采纳)黑桃花2023-08-12 08:46:472
怎样求分段函数的值域和定义%
定义域是函数y=f(x)中的自变量x的范围。求函数的定义域需要从这几个方面入手:(1),分母不为零(2)偶次根式的被开方数非负。(3),对数中的真数部分大于0。(4),指数、对数的底数大于0,且不等于1(5)。y=tanx中x≠kπ+π/2,y=cotx中x≠kπ等等。值域是函数y=f(x)中y的取值范围。常用的求值域的方法:(1)化归法;(2)图象法(数形结合),(3)函数单调性法,(4)配方法,(5)换元法,(6)反函数法(逆求法),(7)判别式法,(8)复合函数法,(9)三角代换法,(10)基本不等式法等Jm-R2023-08-12 08:46:461
怎么求正弦函数的值域
瑞瑞爱吃桃2023-08-12 08:46:463
sin(2x+1)的值域该如何求,图象怎么画? 怎么求
sin和cos的自身值域就是[-1,1],这里没有限制x的范围,所以sin(2x+1)的值域就是[-1,1]. 图像如图所示(你可以利用描点法画出图像):CarieVinne 2023-08-12 08:46:461
求下列函数的值域,要有过程,谢谢!
y= (1/2)^(x^2+1) +3max y=y(0) = 7/2lim(x->∞) [(1/2)^(x^2+1) +3] =3lim(x->-∞) [(1/2)^(x^2+1) +3] =3值域 =(3, 7/2]肖振2023-08-12 08:46:463
请问如何求值域,详细方法
第二题?就是把x的取值范围最大和最小的2和0代进去求出来就是y的取值范围了。u投在线2023-08-12 08:46:462
如何求值域
求值域的方法:1、观察法用于简单的解析式。y=1-√x≤1,值域(-∞,1]y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞)。2、配方法、多用于二次(型)函数。y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,+∞)y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)3、换元法多用于复合型函数。通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。特别注意中间变量(新量)的变化范围。y=-x+2√(x-1)+2令t=√(x-1),则t≥0,x=t^2+1。y=-t^2+2t+1=-(t-1)^2+2≤2,值域(-∞,2]。豆豆staR2023-08-12 08:46:461
怎样求一个函数的值域?
1.直接法:从自变量的范围出发,推出值域。2.观察法:对于一些比较简单的函数,可以根据定义域与对应关系,直接得到函数的值域。3.配方法:(或者说是最值法)求出最大值还有最小值,那么值域就出来了。例题:y=x^2+2x+3x∈【-1,2】先配方,得y=(x+1)^2+1∴ymin=(-1+1)^2+2=2ymax=(2+1)^2+2=114.拆分法:对于形如y=cx+d,ax+b的分式函数,可以将其拆分成一个常数与一个分式,再易观察出函数的值域。5.单调性法:y≠ca.一些函数的单调性,很容易看出来。或者先证明出函数的单调性,再利用函数的单调性求函数的值域。6.数形结合法,其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。7.判别式法:运用方程思想,根据二次方程有实根求值域。8.换元法:适用于有根号的函数例题:y=x-√(1-2x)设√(1-2x)=t(t≥0)∴x=(1-t^2)/2∴y=(1-t^2)/2-t=-t^2/2-t+1/2=-1/2(t+1)^2+1∵t≥0,∴y∈(-∝,1/2)9:图像法,直接画图看值域这是一个分段函数,你画出图后就可以一眼看出值域。10:反函数法。求反函数的定义域,就是原函数的值域。例题:y=(3x-1)/(3x-2)先求反函数y=(2x-1)/(3x-3)明显定义域为x≠1所以原函数的值域为y≠1善士六合2023-08-12 08:46:461
怎样求幂函数的值域?举一些例子。谢谢!
1.直接法:利用常见函数的值域来求一次函数y=ax+b(a 0)的定义域为R,值域为R;反比例函数 的定义域为{x|x 0},值域为{y|y 0};二次函数 的定义域为R,当a>0时,值域为{ };当a<0时,值域为{ }.例1.求下列函数的值域① y=3x+2(-1 x 1) ② ③ ④解:①∵-1 x 1,∴-3 3x 3,∴-1 3x+2 5,即-1 y 5,∴值域是[-1,5]②∵ ∴即函数 的值域是 { y| y 2}③④当x>0,∴ = ,当x<0时, =-∴值域是 [2,+ ).(此法也称为配方法)函数 的图像为:2.二次函数比区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:① ;解:∵ ,∴顶点为(2,-3),顶点横坐标为2.①∵抛物线的开口向上,函数的定义域R,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y -3 }.②∵顶点横坐标2 [3,4],当x=3时,y= -2;x=4时,y=1;∴在[3,4]上, =-2, =1;值域为[-2,1].③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,∴在[0,1]上, =-2, =1;值域为[-2,1].④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,∴在[0,1]上, =-3, =6;值域为[-3,6].FinCloud2023-08-12 08:46:461
高中函数值域的求法
1.观察法用于简单的解析式。y=1-√x≤1,值域(-∞, 1]y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).2.配方法多用于二次(型)函数。y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1, +∞)y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)3. 换元法多用于复合型函数。通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。特别注意中间变量(新量)的变化范围。y=-x+2√( x-1)+2令t=√(x-1),则t≤0, x=t^2+1.y=-t^2+2t+1=-(t-1)^2+2≤1,值域(-∞, 1].4. 不等式法用不等式的基本性质,也是求值域的常用方法。y=(e^x+1)/(e^x-1), (0<x<1).0<x<1,1<e^x<e, 0<e^x-1<e-1,1/(e^x-1)>1/(e-1),y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).5. 最值法如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].因此,求值域的方法与求最值的方法是相通的. 6. 反函数法有的又叫反解法.函数和它的反函数的定义域与值域互换.如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.7. 单调性法若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b), f(a)].Jm-R2023-08-12 08:46:462
如何求定积分的值域?
定积分的求法如下:扩展资料积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C拌三丝2023-08-12 08:46:461
分数式的函数怎样求值域的?
那你根据它给出的分式先求出定义域,再把定义域带进函数式求出y的范围,就是值域。hi投2023-08-12 08:46:462
怎样用正弦函数的有关性质求其值域.
我们可以通过分析正弦函数、余弦函数的主要性质来得出我们所求的值域!(1)定义域正弦函数、余弦函数的定义域都是实数集R,分别记作y=sinx,x∈R,y=cosx,x∈R,其中R当然可以换成(-∞,+∞).(2)值域因为正弦线、余弦线的长度小于或等于单位圆的半径的长度,所以|sinx|≤1,|cosx|≤1,即-1≤sinx≤1,-1≤cosx≤1.这说明正弦函数、余弦函数的值域都是[-1,1.其中正弦函数当且仅当时取得最大值1,当且仅当时取得最小值-1;而余弦函数当且仅当x=2kπ,k∈Z时取得最大值1,当且仅当x=(2k+1)π,k∈Z时取得最小值-1.(3)周期性由诱导公式sin(x+2kπ)=sinx,cos(x+2kπ)=cosx(k∈Z)可知,正弦函数值、余弦函数值是按照一定规律不断重复地取得的.图4-20正是按此性质画出的.一般地,对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数.非零常数T叫做这个函数的周期.例如,2π,4π,…及-2π,-4π,…都是正弦函数和余弦函数的周期.事实上,任何一个常数2kπ(k∈Z且k≠0)都是这两个函数的周期.对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.例如,2π是正弦函数的所有周期中的最小正数①,所以2π是正弦函数的最小正周期.根据上述定义,我们有:正弦函数、余弦函数都是周期函数,2kπ(k∈Z且k≠0)都是它们的周期,最小正周期是2π.可桃可挑2023-08-12 08:46:461
求函数值域的方法总结
在具体求某个函数的值域时, 首先要仔细、 认真观察其题型特征, 然后再选择恰当的方法,下面为大家总结了求函数值域的方法,希望可以帮助到同学们。 一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x)的值域。 点拨:根据算术平方根的性质,先求出√(2-3x)的值域。 解:由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3。 ∴函数的知域为. 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。 练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域。 例2求函数y=(x+1)/(x+2)的值域。 点拨:先求出原函数的反函数,再求出其定义域。 解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。 练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域。 点拨:将被开方数配方成完全平方数,利用二次函数的最值求。 解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的"一种重要的思想方法。 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。 解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解。∴函数的值域为2<y≤10/3。 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。 练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域。 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。 解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。 当x=-1时,z=-5;当x=3/2时,z=15/4。 ∴函数z的值域为{z∣-5≤z≤15/4}。 点评:本题是将函数的值域问题转化为函数的最值。对开区间,若存在最值,也可通过求出最值而获得函数的值域。 练习:若√x为实数,则函数y=x2+3x-5的值域为() A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞) (答案:D)。 六.图象法 通过观察函数的图象,运用数形结合的方法得到函数的值域。 例6求函数y=∣x+1∣+√(x-2)2的值域。 点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象。 解:原函数化为-2x+1(x≤1) y=3(-1<x≤2) 2x-1(x>2) 它的图象如图所示。 显然函数值y≥3,所以,函数值域[3,+∞]。 点评:分段函数应注意函数的端点。利用函数的图象 求函数的值域,体现数形结合的思想。是解决问题的重要方法。 求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域 七.单调法 利用函数在给定的区间上的单调递增或单调递减求值域。 例1求函数y=4x-√1-3x(x≤1/3)的值域。 点拨:由已知的函数是复合函数,即g(x)=-√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。 解:设f(x)=4x,g(x)=-√1-3x,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-√1-3x 在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。 点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。 练习:求函数y=3+√4-x的值域。(答案:{y|y≥3}) 八.换元法 以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。 例2求函数y=x-3+√2x+1的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域。 解:设t=√2x+1(t≥0),则 x=1/2(t2-1)。 于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2. 所以,原函数的值域为{y|y≥-7/2}。 点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。 练习:求函数y=√x-1–x的值域。(答案:{y|y≤-3/4} 九.构造法 根据函数的结构特征,赋予几何图形,数形结合。 例3求函数y=√x2+4x+5+√x2-4x+8的值域。 点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。 解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22 作一个长为4、宽为3的矩形ABCD,再切割成12个单位 正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22, KC=√(x+2)2+1。 由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共 线时取等号。 ∴原函数的知域为{y|y≥5}。 点评:对于形如函数y=√x2+a±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。 练习:求函数y=√x2+9+√(5-x)2+4的值域。(答案:{y|y≥5√2}) 以上九种是函数求值域最常用的方法,下面介绍三种特殊情况下求值域的几种方法. 十.比例法 对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。 例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。 点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。 解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数) ∴x=3+4k,y=1+3k, ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。 当k=-3/5时,x=3/5,y=-4/5时,zmin=1。 函数的值域为{z|z≥1}. 点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。 练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1}) 十一.利用多项式的除法 例5求函数y=(3x+2)/(x+1)的值域。 点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。 解:y=(3x+2)/(x+1)=3-1/(x+1)。 ∵1/(x+1)≠0,故y≠3。 ∴函数y的值域为y≠3的一切实数。 点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。 练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2) 十二.不等式法 例6求函数Y=3x/(3x+1)的值域。 点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。 解:易求得原函数的反函数为y=log3[x/(1-x)], 由对数函数的定义知x/(1-x)>0 1-x≠0 解得,0<x<1。 ∴函数的值域(0,1)。 点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一可桃可挑2023-08-12 08:46:461
值域怎么求要过程
求函数值域的方法有配方法,常数分离法,换元法,逆求法,基本不等式法,求导法,数形结合法和判别式法等。配方法:将函数配方成顶点式的格式,再根据函数的定义域求函数的值域,画一个简单图更能便捷直观的求值域。常数分离:一般是对于分数形式的函数来说的。将分子上的函数尽量配成与分母相同的形式,进行常数分离求得值域。逆求法:对于y=某x的形式可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。换元法:对于函数的某一部分较复杂或生疏可用换元法,将其转变成我们熟悉的形式求解。单调性:先求出函数的单调性,注意先求定义域,根据单调性再求函数的值域。基本不等式:根据我们学过的基本不等式可将函数转换成可运用基本不等式的形式,以此来求值域。数形结合:可根据函数给出的式子画出函数的图形,在图形上找出对应点求出值域。求导法:求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值就可得到值域了。判别式法:将函数转变成某某等于零的形式,再用解方程的方法求出要满足的条件,求解即可。可桃可挑2023-08-12 08:46:431
怎样求值域
配方法、常数分离、逆求法、换元法、拆分法、单调性法、数形结合法、判别式法。1、值域的综合性极强,真正能把函数值域学好的人很少,把值域学好了,你的函数将会达到一个很高的水准!所以,务必要重视值域,对于二次函数y=ax+bx+c(a≠0)来说,只要知道开口方向和对称轴,就可以知道它的单调性;单调性知道了,值域也就出来了。2、若fx的解析式是整式,则其定义域为R,若fx的解析式是分式,则其定义域是使分母不为0的实数的集合,若fx的解析式是偶次根式或可化为偶次根式,则其定义域是使根号内的式子大于或等于0的实数的集合,若fx的解析式是指数式,若fx指数为负指数或0指数,则其底数不为,若fx指数含变量,则其底数应为大于0且不等于1,若fx的解析式是对数式,则真数应大于,若fx底数含未知数,则底数大于且不等于。3、在解决函数问题时,要注意定义域优先的原则,要注意函数的定义域不能是空集,一切函数的问题都要在其定义域内研究和解决,例如求函数的单调区间,求函数的值域或最值等都应应先求函数的定义域。u投在线2023-08-12 08:46:431
高中数学值域怎么求
一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。例1求函数y=3+√(2-3x) 的值域。点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3。∴函数的知域为[3,+∞]。点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})二、反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域。例2:求函数y=(x+1)/(x+2)的值域。点拨:先求出原函数的反函数,再求出其定义域。解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y_y≠1,y∈R}。点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。练习:求函数y=(10∧x+10∧-x)/(10∧x-10∧-x)的值域。(答案:函数的值域为{y_y<-1或y>1})meira2023-08-12 08:46:431
分数的值域怎么求
1)直接法——从自变量x的范围出发,推出y=f(x)的取值范围2)配方法——配方是求“二次函数类”值域的基本方法,形如f(x)=af(x)方bf(x)方+c的函数的值域问题,均可使用配方法3)反函数法——利用函数与他的范函数的定义域与值域的互逆关系,通过求范函数的定义域,得到原函数的值域。一次分数式型均可使用反函数,此外,此种类型也可使用“分离常数法”求得4)判别式法——把函数转化成关于x的二次方程f(x,y)=0,通过方程有实根,判别式“的塔”>=0,从而求得原函数的值域。通常用于球二次分式型5)换元法运用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求的函数的值域 形如:y=ax+b-根号cx+d(a,b,c,d均为常数,且a不为0)的函数常用此方法求解6)不等式法利用均值不等式求函数的值域,“一正、二定、三相等”7)单调性法确定函数在定义域(或某个定义域上的子集)上的单调性求出函数的值域分母中含根号的分式的值域均可使用此方法求解8)求导法当一个函数在定义域上可导时,可据其导数求最值9)数形结合当一个函数图像可作时,通过图像可求其值域和最值;或利用函数所表示的几何意义,借助于几何方法求出函数的值域kikcik2023-08-12 08:46:431
分段函数定义域怎么求 分段函数的定义域和值域怎么求
1、如何求定义域 求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围。其求解根据一般有:分式中,分母不为零;偶次根式中,被开方数非负;对数的真数大于0。 2、如何求值域 求分段函数的值域要分段进行,就是把分段函数各个分段上的函数看作一个独立的函数,分别求出它们的值域,那么各个分段上的函数的值域的并集就是这个分段函数的值域。 3、分段函数定义 分段函数对于自变量x的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数。它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。tt白2023-08-12 08:46:431
已知函数f(x)=x*2+ax+b(a,b∈R)的值域为【0,+∞),若关于x的不等式f(x)<c的解集为(m,m+6)
打出来不方便,我告诉你一个思路吧。fx的值域是【0,+∞),所以可以的到判别式a^2=4bx*2+ax+b-c<0解集是(m,m+6),把解集的两个端点值代入x*2+ax+b-c=0这么多的式子就可以解答了,你可以做到的,相信自己无尘剑 2023-08-10 10:24:373
关于指数函数的定义域和值域
1.1/x的取值范围是负无穷到正无穷,不包括零令1/x=t,t不等于零则y=0.7^t对于指数函数而言,定义域为负无穷到正无穷,时值域为零到正无穷,而t不等于零,所以y不等于0.7^0=1,所以y的范围是负无穷到零的开区间,并上零到正无穷的开区间2.2^x的范围是零到正无穷开区间,所以-2^x范围是负无穷到零开区间所以1-2^x范围是负无穷到一得开区间又因为根号下的数大于等于零,所以0=<1-2^x<1所以y的范围是【0,1)开方后还是【0,1)阿啵呲嘚2023-08-05 17:17:211
如何求指数函数的定义域与值域
如图西柚不是西游2023-08-05 17:17:211
指数函数,对数函数求定义域、值域的一般思路
(1)在已知函数的解析式的条件下,求函数的定义域,就是求使得解析式有意义的自变量的允许值范围. (2)指数函数和对数函数的底大于0而且不等于1,对数式的真数大于0等限制条件. (3)函数的值域取决于定义域和对应法则,不论采用什么方法求函数的值域均应考虑其定义域. (4)指数函数值域 y>0 底数a>0且a不等于1 对数函数值域 R 底数a>0且a不等于1豆豆staR2023-08-05 17:17:161
指数函数定义域,值域求法
指数函数的定义域要底数大于零,这样才有意义,在定义域范围内讨论函数能取到的值,就是值域了,高中数学要多做点题才行,很多题都有规律的,希望我的回答对你有帮助肖振2023-08-05 17:17:112
指数函数 定义域,值域,奇偶性,单调性,周期,有界性
解析:y=a^x(a>0且a≠1)以a>1为例(1) 定义域:R(2) 值域:(0,+∞)(3) 奇偶性:非奇非偶(4) 单调性:单调递增(5) 周期性:无(T=∞)(6) 有界性:有下界无上界FinCloud2023-08-05 17:17:061
关于指数函数的定义域和值域
指数函数的定义域为所有实数的集合。 指数函数的值域指在制定条件和定义域的的限制下,指数函数值的取值范围。指数函数的值域是零到正无穷。 底数已知,指数未知的函数称为指数函数。 指数函数没有奇偶性,值域永远大于零。底数大于1时,是单调递增函数;底数在零到一区间范围内,是单调递减函数。tt白2023-08-05 17:17:051
指数函数的定义域和值域怎么求?具体说明
定义域就是指能使式子成立的x的值,根据各个式子不同而求得,总之一句话:x取的值能使式子成立(即有意义,或根据题目界定)的所有x的取值集合。值域即f(x)的值,x 每取一个值,都有且仅有一个y 值与之对应,在定义域范围内取得的所有y值的集合就是值域。懂得此概念是做题的基础。此后故乡只2023-08-05 17:17:051
指数函数定义域和值域求法
因为a^x>0所以f(x)=(a^x-1)/(a^x1)=(a^x1-2)/(a^x1)=1-【2/(a^x1)】的最小值>1-2/(01)=-1(即求2/(a^x1)的最大值,此时a^x→0)同理,f(x)=(a^x-1)/(a^x1)=1-2/(a^x1)<1-0(即求2/(a^x1)的最小值,此时a^x→∞)所以因此f(x)的值域为(-1,1)(2)判断f(x)的奇偶性.因为函数f(x)的定义域为(-∞,∞),且f(-x)=(a^(-x)-1)/(a^(-x)1)=(1-a^x)/(1a^x)=-(a^x-1)/(a^x1)=-f(x),所以,f(x)是奇函数.真颛2023-08-05 17:17:042
高一数学指数函数定义域、值域的问题
定义域 值域1、 x不为4 0到正无穷且y不为12、 R 1到正无穷左闭右开区间(你这绝对值把我整晕了)3、R 不理解题目余辉2023-08-05 17:17:042
指数函数的值域和定义域怎么求
指数函数定义域x∈R值域y∈(0,+∞)希望我的回答能帮助你,如果你认可我的回答,敬请及时采纳,在我回答的右上角点击【采纳答案】此后故乡只2023-08-05 17:17:031
关于指数函数的定义域和值域
把一拆开,令T=1/x,则原函数等于:Y=0.7的T次方,分开讨论苏州马小云2023-08-05 17:16:593
关于指数函数的定义域和值域
指数函数的定义域为所有实数的集合。 指数函数的值域指在制定条件和定义域的的限制下,指数函数值的取值范围。指数函数的值域是零到正无穷。 底数已知,指数未知的函数称为指数函数。 指数函数没有奇偶性,值域永远大于零。底数大于1时,是单调递增函数;底数在零到一区间范围内,是单调递减函数。墨然殇2023-08-05 17:16:581
关于指数函数的定义域和值域
1/x,x非0时有意义,指数函数大于0.即值域为大于0.把一换成a,则2^x评论000加载更多wpBeta2023-08-05 17:16:582
指数函数的定义域和值域如何求? 如图所示的题
指数函数y=a^x 其中a>0,x属于实数域。因此求指数函数的定义域是先考虑底数a>0,再考虑指数,使用化归思想,找出具体题目中的指数和底数,然后考虑范围。对于指数而言,本身并没有什么限制,因而只需要考虑指数位置上的参数本身的定义域,常见的有分母不为零,根式里的数要大于等于0.求指数函数的值域的方法大致有:1 反函数法—求出原函数的反函数,然后求出反函数定义域即可得到原函数的值域; 2 最值法—求出函数的最大值和最小值(要求连续)图片上的题目可以考虑用反函数法,指数函数的反函数是对数函数,对数函数的基本要求自变量大于0,然后应用上面求定义域的方法即可求得值域。我就不解了,你自己算一下吧。bikbok2023-08-05 17:16:581
指数函数定义域,值域?
指数函数定义域为:R(一切实数) 指数函数值域为:(0,+∞)即所有正数FinCloud2023-08-05 17:16:561
指数函数的定义域和值域怎么求,要具体的
北营2023-08-05 17:16:563
怎么求值域
由于 y≥0两边平方得到 y^2=x-3+5-x+2√(x-3)(5-x)=2+2√[(x-3)(5-x)]根据 ab≤[(a+b)/2]^2 (均值不等式)∵√[(x-3)(5-x)]≥0 且 (x-3)(5-x)≤[(x-3+5-x)/2]^2=1∴0≤√[(x-3)(5-x)]≤1 ∴ 值域为 2≤y^2≤4 ∴值域开方 即可 最后为 [√2,2]左迁2023-08-03 10:32:001
高一数学 求值域
1. f(x)=x+1/x-1 (x≤2),f(x)‘=(x^2-1)/x^2,当x=1时有极小值,f(1)=1,值域[1,正无穷)2.f(x)=2x-3/x-1 在【0,1),(0,2)单调递增,f(0)=3,f(2)=1,在x=1时趋于无穷,值域为(3,正无穷)并(负无穷,2)3. f(x^3)=(x^3)^2-2x^3-1,令f(t)=t^2-2t-1,0<t<8,f(t)=t^2-2t-1=(t-1)^2-2,极小值f(1)=-2,f(0)=-1,f(8)=47,值域[-2,47]韦斯特兰2023-08-03 10:32:001
f(x)=2x-1/3x+5求值域定义域
值域:R定义域:x≠3/5tt白2023-08-03 10:31:592
函数值域怎么求?
函数的值域问题及解法 值域的概念: 函数y=f(x)的值域是函数值的取值范围,用集合表示为{y│y=f(x),x∈A}.这里集合A是函数的定义域,由此可见,它与定义域密切相关. 值域的几何意义是函数图象上点的纵坐标的集合,也可以说成是函数图象纵向的分布范围. 一般来说,求值域比求定义域困难得多.求值域要根据解析式的结构特征选择适当的方法,具有较强的灵活性和一定的技巧性. 1.观察法 用于简单的解析式. y=1-√x≤1,值域(-∞, 1] y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞). 2.配方法 多用于二次(型)函数. y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,+∞) y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞) 3.换元法 多用于复合型函数. 通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域. 特别注意中间变量(新量)的变化范围. y=-x+2√( x-1)+2 令t=√(x-1),则t≥0,x=t^2+1. y=-t^2+2t+1=-(t-1)^2+2≤2,值域(-∞, 2]. 4.不等式法 用不等式的基本性质,也是求值域的常用方法. y=(e^x+1)/(e^x-1), (0豆豆staR2023-08-03 10:31:591
数学 求值域
1 小于等于1大于等于-3u投在线2023-08-03 10:31:591
值域怎么算?求答案
一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域. 例1求函数y=3+√(2-3x) 的值域. 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域. 由算术平方根的性质,知√(2-3x)≥0, 故3+√(2-3x)≥3. ∴函数的知域为 . 点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性. 本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法. 练习:求函数y=[x](0≤x≤5)的值域.(答案:值域为:{0,1,2,3,4,5}) 二.反函数法 当函数的反函数存在时,则其反函数的定义域就是原函数的值域. 例2求函数y=(x+1)/(x+2)的值域. 点拨:先求出原函数的反函数,再求出其定义域. 显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}. 点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数.这种方法体现逆向思维的思想,是数学解题的重要方法之一. 练习:求函数y=(10x+10-x)/(10x-10-x)的值域.(答案:函数的值域为{y∣y1}) 三.配方法 当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域 例3:求函数y=√(-x2+x+2)的值域. 点拨:将被开方数配方成完全平方数,利用二次函数的最值求. 由-x2+x+2≥0,可知函数的定义域为x∈[-1,2].此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4] ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2] 点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用.配方法是数学的一种重要的思想方法. 练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3}) 四.判别式法 若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域. 例4求函数y=(2x2-2x+3)/(x2-x+1)的值域. 点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域. 将上式化为(y-2)x2-(y-2)x+(y-3)=0 (*) 当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3 当y=2时,方程(*)无解.∴函数的值域为2<y≤10/3. 点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域.常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数. 练习:求函数y=1/(2x2-3x+1)的值域.(答案:值域为y≤-8或y>0). 五.最值法 对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与边界值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域. 例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域. 点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域. ∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2), ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小. 当x=-1时,z=-5;当x=3/2时,z=15/4. ∴函数z的值域为{z∣-5≤z≤15/4}. 点评:本题是将函数的值域问题转化为函数的最值.对开区间,若存在最值,也可通过求出最值而获得函数的值域. 练习:若√x为实数,则函数y=x2+3x-5的值域为 ( ) A.(-∞,+∞) B.[-7,+∞] C.[0,+∞) D.[-5,+∞) (答案:D). 六.图象法 通过观察函数的图象,运用数形结合的方法得到函数的值域. 例6求函数y=∣x+1∣+√(x-2)2 的值域. 点拨:根据绝对值的意义,去掉符号后转化为分段函数,作出其图象. 原函数化为 -2x+1 (x≤1) y= 3 (-12) 它的图象如图所示. 显然函数值y≥3,所以,函数值域[3,+∞]. 点评:分段函数应注意函数的端点.利用函数的图象 求函数的值域,体现数形结合的思想.是解决问题的重要方法. 求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域. 七.单调法 利用函数在给定的区间上的单调递增或单调递减求值域. 例1求函数y=4x-√1-3x(x≤1/3)的值域. 点拨:由已知的函数是复合函数,即g(x)= -√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域. 设f(x)=4x,g(x)= -√1-3x ,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-√1-3x 在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}. 点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域. 练习:求函数y=3+√4-x 的值域.(答案:{y|y≥3}) 八.换元法 以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域. 例2求函数y=x-3+√2x+1 的值域. 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域. 设t=√2x+1 (t≥0),则 x=1/2(t2-1). 于是 y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2. 所以,原函数的值域为{y|y≥-7/2}. 点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域.这种解题的方法体现换元、化归的思想方法.它的应用十分广泛. 练习:求函数y=√x-1 –x的值域.(答案:{y|y≤-3/4} 九.构造法 根据函数的结构特征,赋予几何图形,数形结合. 例3求函数y=√x2+4x+5+√x2-4x+8 的值域. 点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域. 原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22 作一个长为4、宽为3的矩形ABCD,再切割成12个单位 正方形.设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22 , KC=√(x+2)2+1 . 由三角形三边关系知,AK+KC≥AC=5.当A、K、C三点共 线时取等号. ∴原函数的知域为{y|y≥5}. 点评:对于形如函数y=√x2+a ±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷.这是数形结合思想的体现. 练习:求函数y=√x2+9 +√(5-x)2+4的值域.(答案:{y|y≥5√2}) 十.比例法 对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域. 例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域. 点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数. 由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数) ∴x=3+4k,y=1+3k, ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1. 当k=-3/5时,x=3/5,y=-4/5时,zmin=1. 函数的值域为{z|z≥1}. 点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识. 练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域.(答案:{f(x,y)|f(x,y)≥1}) 十一.利用多项式的除法 例5求函数y=(3x+2)/(x+1)的值域. 点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和. y=(3x+2)/(x+1)=3-1/(x+1). ∵1/(x+1)≠0,故y≠3. ∴函数y的值域为y≠3的一切实数. 点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法. 练习:求函数y=(x2-1)/(x-1)(x≠1)的值域.(答案:y≠2) 十二.不等式法 例6求函数Y=3x/(3x+1)的值域. 点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式. 易求得原函数的反函数为y=log3[x/(1-x)], 由对数函数的定义知 x/(1-x)>0 1-x≠0 解得,0<x1或y苏萦2023-08-03 10:31:591
高一数学 求函数的解析式、值域的方法
这个要具体问题具体分析呐~值域简单来说就是考虑一下极端情况,也就是最大和最小的极值,其间就是值域;至于解析式,就只能具体看问题咯~高一数学没有那么难的,别给自己压力,慢慢来就会明白了~豆豆staR2023-08-03 10:31:593
高中数学 求函数的值域
那两个顶点对应的y值应该就是值域了,所以答案应该就只有两个了,因为x∈{0,2}Ntou1232023-08-03 10:31:592
求值域的几种方法
1:直接法:从自变量的范围出发,推出值域,也就是直接看咯。这个不用例题了吧?2:分离常数法例题:y=(1-x^2)/(1+x^2)解,y=(1-x^2)/(1+x^2)=2/(1+x^2)-1∵1+x^2≥1,∴0<2/(1+x^2)≤2∴-1< y≤1 即y∈(-1,1】3:配方法(或者说是最值法)求出最大值还有最小值,那么值域不就出来了吗。例题:y=x^2+2x+3 x∈【-1,2】先配方,得y=(x+1)^2+1∴ymin=(-1+1)^2+2=2ymax=(2+1)^2+2=114:判别式法,运用方程思想,根据二次方程有实根求值域不好意思,当初做笔记的时候忘记抄例题了,不过这种方法不是很常用。5:换元法:适用于有根号的函数例题:y=x-√(1-2x)设√(1-2x)=t(t≥0)∴x=(1-t^2)/2∴y=(1-t^2)/2-t=-t^2/2-t+1/2=-1/2(t+1)^2+1∵t≥0,∴y∈(-∝,1/2)6:图像法,直接画图看值域例题:y=|x+1|+√(x-2)^2这是一个分段函数,你画出图后就可以一眼看出值域。7:反函数法。求反函数的定义域,就是原函数的值域。例题:y=(3x-1)/(3x-2)先求反函数y=(2x-1)/(3x-3)明显定义域为x≠1所以原函数的值域为y≠1mlhxueli 2023-08-03 10:31:591
高一数学,值域怎么求,要过程
求值域要先知道方程式的图像,这个是对勾函数,右半轴最低点是根号4即2,定义域是2到5,由图像可知单调递增,所以可以直接把2入方程式得4,把5带入方程式得29/5,因此定义域是[4,29/5]对勾函数虽然书上没有说,但是这个是基本的要记住的特殊方程小白2023-08-03 10:31:582
求值域问题
令 t=x+2 ,则由 x > -2 得 t>0 ,y=(x+2)/(x^2+x+1)=t/[(t-2)^2+(t-2)+1]=t/(t^2-3t+3)=1/(t+3/t-3) ,由于 t>0 ,所以 t+3/t>=2√3 ,因此 y<=1/(2√3-3)=(2√3+3)/3 ,同时 y=(x+2)/(x^2+x+1)>0 ,所以函数值域为(0,(2√3+3)/3] 。kikcik2023-08-03 10:31:571
高中数学函数求值域的常用方法
1.观察法用于简单的解析式。y=1-√x≤1,值域(-∞, 1]y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).2.配方法多用于二次(型)函数。y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1, +∞)y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)3. 换元法多用于复合型函数。通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。特别注意中间变量(新量)的变化范围。y=-x+2√( x-1)+2令t=√(x-1),则t≤0, x=t^2+1.y=-t^2+2t+1=-(t-1)^2+2≤1,值域(-∞, 1].4. 不等式法用不等式的基本性质,也是求值域的常用方法。y=(e^x+1)/(e^x-1), (0<x<1).0<x<1,1<e^x<e, 0<e^x-1<e-1,1/(e^x-1)>1/(e-1),y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).5. 最值法如果函数f(x)存在最大值M和最小值m.那么值域为[m,M].因此,求值域的方法与求最值的方法是相通的.6. 反函数法有的又叫反解法.函数和它的反函数的定义域与值域互换.如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.7. 单调性法若f(x)在定义域[a, b]上是增函数,则值域为[f(a), f(b)].减函数则值域为[f(b), f(a)].kikcik2023-08-03 10:31:571
如何求函数值域?(方法)
图像法,换元法Jm-R2023-08-03 10:31:573
高中求函数值域都有哪些方法啊?
数学如茫茫宇宙一样,需要一颗去探索的心。多去钻研,这才是正道康康map2023-08-03 10:31:573
三角函数值域的求法
问题太大了啊,你应该具体点黑桃花2023-08-03 10:31:573
已知函数f(x)的定义域,如何求值域?
对定义域中每一个元素按f(x)计算结果的集合即值域小白2023-08-03 10:31:563
求函数值域方法
求函数值域方法有:1,配方法(二次函数或二次形式的函数求值域的典型方法)2,换元法(比如三角换元,整体代换)3,判别式法4,利用函数单调性(闭区间上连续函数有最大,最小值)5,数形结合的方法(利用问题的几何意义,将代数问题转化为几何问题)6,求导数的方法(似乎所有的给定解析式求最值都可以用求导数的方法,但有些初等问题用导数求解相当啰嗦)7,反解法(利用函数和它的反函数的定义域和值域的互逆关系,通过恒等变形,求原函数的值域)8,其它特殊方法求函数值域的常用方法有:化归法、复合函数法、判别式法、图像法、分离常数法、反函数法、换元法、不等式法、单调性法。在函数中,因变量的变化而变化的取值范围叫做这个函数的值域。求值域的方法化归法:把所要解决的问题,经过某种变化,使之归结为另一个问题*,再通过问题*的求解,把解得结果作用于原有问题,从而使原有问题得解,这种解决问题的方法,我们称之为化归法。图像法:根据函数图像,观察最高点和最低点的纵坐标。配方法:利用二次函数的配方法求值域,需注意自变量的取值范围。单调性法:利用二次函数的顶点式或对称轴,再根据单调性来求值域。反函数法:若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。换元法:包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。韦斯特兰2023-08-03 10:31:551
定义域和值域怎么求
求函数定义域可以设两个变量或者设两个非空数集,求函数的值域可以用图像法,配方法,单调性法,换元法等方法。 求函数定义域的方法 设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。 设A,B是两个非空数集,从集合A到集合B的一个映射,叫做从集合A到集合B的一个函数。记作y=f(x),x∈A,或y=g(t),t∈A,其中A就叫做定义域。通常,用字母D表示。通常定义域是F(X)中x的取值范围。 其主要根据为: 1、分式的分母不能为零。 2、偶次方根的被开方数不小于零。 3、对数函数的真数必须大于零。 4、指数函数和对数函数的底数必须大于零且不等于1。 求函数值域的方法 1.图像法 根据函数图象,观察最高点和最低点的纵坐标。 2.配方法 利用二次函数的配方法求值域,需注意自变量的取值范围。 3.单调性法 利用二次函数的顶点式或对称轴,再根据单调性来求值域。 4.反函数法 若函数存在反函数,可以通过求其反函数,确定其定义域就是原函数的值域。 5.换元法 包含代数换元、三角换元两种方法,换元后要特别注意新变量的范围。 6.判别式法 判别式法即利用二次函数的判别式求值域。 7.复合函数法 设复合函数为f[g(x),]g(x)为内层函数,为了求出f的值域,先求出g(x)的值域,然后把g(x)看成一个整体,相当于f(x)的自变量x,所以g(x)的值域也就是f[g(x)]的定义域,然后根据f(x)函数的性质求出其值域; 8.不等式法 基本不等式法:利用a+b≥2√ab(其中a,b∈R+)求函数值域时,要时刻注意不等式成立的条件,即“一正,二定,三相等”。 9.化归法 用函数和他的反函数定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。 10.分离常数法 把分子分母中都有的未知数变成只有分子或者只有分母的情况,由于分子分母中都有未知数与常数的和,所以一般来说我们分拆分子,这样把分子中的未知数变成分母的倍数,然后就只剩下常数除以一个含有未知数的式子。tt白2023-08-03 10:31:551
高一如何求值域
函数值域的几种常见方法1.直接法:利用常见函数的值域来求一次函数y=ax b(a 0)的定义域为R,值域为R;反比例函数 的定义域为{x|x 0},值域为{y|y 0};二次函数 的定义域为R,当a>0时,值域为{ };当a<0时,值域为{ }.例1.求下列函数的值域① y=3x 2(-1 x 1) ② ③ ④ 解:①∵-1 x 1,∴-3 3x 3,∴-1 3x 2 5,即-1 y 5,∴值域是[-1,5]②∵ ∴ 即函数 的值域是 { y| y 2} ③ ④当x>0,∴ = ,当x<0时, =- ∴值域是 [2, ).(此法也称为配方法)函数 的图像为:2.二次函数比区间上的值域(最值):例2 求下列函数的最大值、最小值与值域:① ; 解:∵ ,∴顶点为(2,-3),顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y -3 }.②∵顶点横坐标2 [3,4],当x=3时,y= -2;x=4时,y=1; ∴在[3,4]上, =-2, =1;值域为[-2,1].③∵顶点横坐标2 [0,1],当x=0时,y=1;x=1时,y=-2,∴在[0,1]上, =-2, =1;值域为[-2,1].④∵顶点横坐标2 [0,5],当x=0时,y=1;x=2时,y=-3, x=5时,y=6,∴在[0,1]上, =-3, =6;值域为[-3,6].注:对于二次函数 ,⑴若定义域为R时,①当a>0时,则当 时,其最小值 ;②当a<0时,则当 时,其最大值 .⑵若定义域为x [a,b],则应首先判定其顶点横坐标x0是否属于区间[a,b].①若 [a,b],则 是函数的最小值(a>0)时或最大值(a<0)时,再比较 的大小决定函数的最大(小)值.②若 [a,b],则[a,b]是在 的单调区间内,只需比较 的大小即可决定函数的最大(小)值.注:①若给定区间不是闭区间,则可能得不到最大(小)值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.3.判别式法(△法):判别式法一般用于分式函数,其分子或分母只能为二次式,解题中要注意二次项系数是否为0的讨论 例3.求函数 的值域方法一:去分母得 (y-1) (y 5)x-6y-6=0 ①当 y11时 ∵x?R ∴△=(y 5) 4(y-1)×6(y 1) 0由此得 (5y 1) 0 检验 时 (代入①求根)∵2 ? 定义域 { x| x12且 x13} ∴ 再检验 y=1 代入①求得 x=2 ∴y11综上所述,函数 的值域为 { y| y11且 y1 }方法二:把已知函数化为函数 (x12)∵ x=2时 即 说明:此法是利用方程思想来处理函数问题,一般称判别式法. 判别式法一般用于分式函数,其分子或分母只能为二次式.解题中要注意二次项系数是否为0的讨论.4.换元法例4.求函数 的值域解:设 则 t 0 x=1- 代入得 5.分段函数例5.求函数y=|x 1| |x-2|的值域. 解法1:将函数化为分段函数形式: ,画出它的图象(下图),由图象可知,函数的值域是{y|y 3}.解法2:∵函数y=|x 1| |x-2|表示数轴上的动点x到两定点-1,2的距离之和,∴易见y的最小值是3,∴函数的值域是[3, ]. 如图两法均采用“数形结合”,利用几何性质求解,称为几何法或图象法.说明:以上是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习和经验的不断积累,还有如不等式法、三角代换法等.有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉和掌握各种解法,并在解题中尽量采用简捷解法.小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.拌三丝2023-08-03 10:31:551
中职数学中最常见函数值域的几种求法
1:直接法:从自变量的范围出发,推出值域,也就是直接看咯.这个不用例题了吧?2:分离常数法例题:y=(1-x^2)/(1+x^2)解,y=(1-x^2)/(1+x^2)=2/(1+x^2)-1∵1+x^2≥1,∴0<2/(1+x^2)≤2∴-1<y≤1即y∈(-1,1】3:配方法(或者说是最值法)求出最大值还有最小值,那么值域不就出来了吗.例题:y=x^2+2x+3x∈【-1,2】先配方,得y=(x+1)^2+1∴ymin=(-1+1)^2+2=2ymax=(2+1)^2+2=114:判别式法,运用方程思想,根据二次方程有实根求值域不好意思,当初做笔记的时候忘记抄例题了,不过这种方法不是很常用.5:换元法:适用于有根号的函数例题:y=x-√(1-2x)设√(1-2x)=t(t≥0)∴x=(1-t^2)/2∴y=(1-t^2)/2-t=-t^2/2-t+1/2=-1/2(t+1)^2+1∵t≥0,∴y∈(-∝,1/2)6:图像法,直接画图看值域例题:y=|x+1|+√(x-2)^2这是一个分段函数,你画出图后就可以一眼看出值域.大鱼炖火锅2023-08-03 10:31:551
急急急,高中求值域的8种方法
函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。再也不做站长了2023-08-03 10:31:551
函数值域求法 带例题
1.导数法利用导数求出其单调性和极值点的极值,最常规,最不易高错,但往往计算很烦杂2.分离常数如x^2/(x^2+1)将其分离成1-1/(x^2+1)再判断值域3.分子分母同除以某个变量如x/(x^2+1)同时除以x得1/(x+1/x)分母的值域很好求,再带进整个函数即可4.换元法可以说是3的拓展如(x+1)/(x^2+1)一类分子分母同时除以x仍无法判断的。令t=x+1,再把x^2表示成(t-1)^2,再分子分母同时除以t就成了3中的情形5.基本换元法型如1/(x+1)+1/(x+1)^2等,直接令t=1/(x+1),求出t的定义域,可以很快将函数换成型如t^2+t的形式,从而可求值域。当然,要注意t的定义域6.倒数法和2基本相同。如x/(x^2+1)先求其倒数x+1/x,再倒回去,2,6基本类似。以上是几条比较基本和常用的方法,当然要注意他们的综合应用。韦斯特兰2023-08-03 10:31:551
求解值域的方法
1.直接法:从自变量的范围出发,推出值域。2.观察法:对于一些比较简单的函数,可以根据定义域与对应关系,直接得到函数的值域。3.配方法:(或者说是最值法)求出最大值还有最小值,那么值域就出来了。例题:y=x^2+2x+3x∈【-1,2】先配方,得y=(x+1)^2+1∴ymin=(-1+1)^2+2=2ymax=(2+1)^2+2=114.拆分法:对于形如y=cx+d,ax+b的分式函数,可以将其拆分成一个常数与一个分式,再易观察出函数的值域。5.单调性法:y≠ca.一些函数的单调性,很容易看出来。或者先证明出函数的单调性,再利用函数的单调性求函数的值域。6.数形结合法,其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。7.判别式法:运用方程思想,根据二次方程有实根求值域。8.换元法:适用于有根号的函数例题:y=x-√(1-2x)设√(1-2x)=t(t≥0)∴x=(1-t^2)/2∴y=(1-t^2)/2-t=-t^2/2-t+1/2=-1/2(t+1)^2+1∵t≥0,∴y∈(-∝,1/2)9:图像法,直接画图看值域这是一个分段函数,你画出图后就可以一眼看出值域。10:反函数法。求反函数的定义域,就是原函数的值域。例题:y=(3x-1)/(3x-2)先求反函数y=(2x-1)/(3x-3)明显定义域为x≠1所以原函数的值域为y≠1扩展资料:常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为x≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为R人类地板流精华2023-08-03 10:31:551
求函数值域的几种基本方法
求函数值域的常用方法有:配方法,分离常数法,判别式法,反解法,换元法,不等式法,单调性法,函数有界性法,数形结合法,导数法。 一、配方法二、反解法三、分离常数法四、判别式法五、换元法六、不等式法七、函数有界性法 直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。八、函数单调性法 先确定函数在其定义域(或定义域的某个子集上)的单调性,再求出函数值域的方法。考虑这一方法的是某些由指数形式的函数或对数形式的函数构成的一些简单的初等函数,可直接利用指数或对数的单调性求得答案;还有一些形如,看a,d是否同号,若同号用单调性求值域,若异号则用换元法求值域;还有的在利用重要不等式求值域失败的情况下,可采用单调性求值域。九、数形结合法 其题型是函数解析式具有明显的某种几何意义,如两点的距离公式、直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。十、导数法 利用导数求闭区间上函数的值域的一般步骤:(1)求导,令导数为0;(2)确定极值点,求极值;(3)比较端点与极值的大小,确定最大值与最小值即可确定值域。总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。苏州马小云2023-08-03 10:31:531