收敛数列

请问收敛数列有界吗?

证明如下:设lim xn = a,lim xn = b当n > N1,|xn - a| < E当n > N2,|xn - b| < E取N = max {N1,N2},则当n > N时有|a-b|=|(xn - b)-(xn - a)|收敛数列定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|。收敛数列的性质:如果数列收敛,那么它的极限唯一;如果数列收敛,那么数列一定有界;保号性;与子数列的关系一致.发散的数列有可能有收敛的子数列。
北有云溪2023-05-21 12:53:271

收敛数列是怎么定义的

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛。2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。3、加减的时候,把高阶的无穷小直接舍去如 1 + 1/n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如 1/n * sin(1/n) 用1/n^2 来代替 4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。拓展资料:收敛是一个经济学、数学名词,是研究函数的一个重要工具,是指会聚于一点,向某一值靠近。收敛类型有收敛数列、函数收敛、全局收敛、局部收敛。收敛数列令{}为一个数列,且A为一个固定的实数,如果对于任意给出的b>0,存在一个正整数N,使得对于任意n>N,有|-A|<b恒成立,就称数列{}收敛于A(极限为A),即数列{}为收敛数列。函数收敛定义方式与数列收敛类似。柯西收敛准则:关于函数f(x)在点x0处的收敛定义。对于任意实数b>0,存在c>0,对任意x1,x2满足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。收敛的定义方式很好的体现了数学分析的精神实质。如果给定一个定义在区间i上的函数列,u1(x), u2(x) ,u3(x)......至un(x)....... 则由这函数列构成的表达式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴称为定义在区间i上的(函数项)无穷级数,简称(函数项)级数对于每一个确定的值X0∈I,函数项级数 ⑴ 成为常数项级u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 这个级数可能收敛也可能发散。如果级数(2)发散,就称点x0是函数项级数(1)的发散点。函数项级数(1)的收敛点的全体称为他的收敛域 ,发散点的全体称为他的发散域 对应于收敛域内任意一个数x,函数项级数称为一收敛的常数项 级数 ,因而有一确定的和s。这样,在收敛域上 ,函数项级数的和是x的函数S(x),通常称s(x)为函数项级数的和函数,这函数的定义域就是级数的收敛域,并写成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函数项级数 ⑴ 的前n项部分和 记作Sn(x),则在收敛域上有lim n→∞Sn(x)=S(x)记rn(x)=S(x)-Sn(x),rn(x)叫作函数级数项的余项 (当然,只有x在收敛域上rn(x)才有意义,并有lim n→∞rn (x)=0迭代算法的敛散性1.全局收敛对于任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所产生的点列收敛,即其当k→∞时,Xk的极限趋于X*,则称Xk+1=φ(Xk)在[a,b]上收敛于X*。2.局部收敛若存在X*在某邻域R={X| |X-X*|<δ},对任何的X0∈R,由Xk+1=φ(Xk)所产生的点列收敛,则称Xk+1=φ(Xk)在R上收敛于X*。参考资料:百度百科:收敛
kikcik2023-05-21 12:53:271

收敛数列有哪些性质?

性质1、唯一性思维导图如果数列Xn收敛,每个收敛的数列只有一个极限。2、有界性定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件3、保号性若数列某项起Xn>0(或Xn<0)且{Xn}收敛于a,则a>0(或a<0),扩展资料:收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。
Ntou1232023-05-21 12:53:271

常数列是收敛数列吗?

常数列也是收敛数列,满足收敛数列的定义。收敛数列 定义:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。 性质1 极限唯一 、性质2 有界性 、性质3 保号性、性质4 子数列也是收敛数列且极限为a。补充:如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。
凡尘2023-05-21 12:53:272

求证收敛数列加发散数列为发散数列

用反证法设{an+bn}收敛根据收敛的定义,an数列和an+bn数列都有极限所以可以设lim(n→∞)an=clim(n→∞)(an+bn)=d那么根据极限是四则运算,有lim(n→∞)bn=lim(n→∞)[(an+bn)-an]=lim(n→∞)(an+bn)-lim(n→∞)an=d-c所以bn也有极限,bn也收敛这和题目规定bn发散矛盾所以an+bn也发散。
Jm-R2023-05-21 12:53:274

什么是收敛数列和发散数列?

收敛数列不一定有界,有界数列不一定收敛,发散数列也可能有界如:(–1)的n次方 ––±1;无界数列一定发散,如: lim (2n)( n 趋于无穷)=±无穷
小菜G的建站之路2023-05-21 12:53:273

收敛数列都有哪些,能给举几个例子嘛?

!!!
人类地板流精华2023-05-21 12:53:271

为什么数列是收敛数列?

收敛数列  如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。  性质1 极限唯一收敛和发散是互补的,发散的定义是没有极限摆动数列如-1,1,-1,1.。。是没有极限的,因为无穷处有-1和1,不逼近于一点,所以发散   性质2 有界性  性质3 保号性  性质4 子数列也是收敛数列且极限为a 谢谢采纳
Jm-R2023-05-21 12:53:261

收敛数列与有界数列

不是 例如油界数列取1 -1 1 -1 1 -1...
小菜G的建站之路2023-05-21 12:53:266

什么是收敛数列?

收敛数列是指:设数列{Xn},如果存在常数a,那么对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称为数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。收敛数列与其子数列间的关系为:子数列也是收敛数列且极限为a恒有Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。收敛数列的推论为:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
凡尘2023-05-21 12:53:261

收敛数列为什么“收敛”

还有发散数列,如sin(2n+1)
水元素sl2023-05-21 12:53:268

收敛数列有什么性质?

收敛数列有个保号性,就是:如果数列极限为正数,那么该数列从某项后的所有项都是正数;如果数列极限为负数,那么该数列从某项后的所有项都是负数。
LuckySXyd2023-05-21 12:53:262

收敛数列的定义

敛收的解释(1). 收敛 ,收缩。 宋 赵抃 《次韵王宪中秋不见月》 :“ 明月 幸无亏损处,浮云应有敛收时。” 明 无名氏 《鸣凤记·秋夜 女工 》 :“二更月皎云敛收,寒衣乘此裁就。” (2). 约束 。 宋 苏轼 《入寺》 诗:“闲看树转午,坐到钟鸣昏;敛收 平生 心,耿耿聊自温。” 词语分解 敛的解释 敛 (敛) ǎ 收拢, 聚集 :敛钱。敛足(收住脚步, 不住 前进)。敛容。敛衣(用收集来的碎布制成的衣)。收敛。聚敛。 征收:横征暴敛。 收束,约束:敛迹。敛手(.缩手,表示 不敢 恣意 妄为;. 拱手 ,表示 恭敬 ) 收的解释 收 ō 接到,接受:收发。收信。收支。收讫。收益。 藏或放置妥当:这是 重要 东西 ,要收好了。 割断 成熟 的农作物:收割。收成。麦收。 招回:收兵。收港。 聚,合拢:收容。收理。收集。 结束:收尾。收煞。
左迁2023-05-21 12:53:261

收敛数列是否一定有极限

收敛数列的定义设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列由此可见,数列有极限,就称数列收敛数列无极限,就称数列发散(不收敛)所以数列收敛和数列有极限是同一个事情的两种描述。
u投在线2023-05-21 12:53:261

什么是收敛数列?

在大于某个特定的项数n之后,任选两个项的绝对值总会小于一个数(该数值不确定,但恒大于零),则这个数列就是基本数列(收敛数列)。“柯西准则”又称“柯西收敛原理”,是一个数列极限存在的充要条件。条件:对于任意小数ε>0,存在自然数N,当n>N且n">N时,有|xn-xn"|<ε;结论:数列{xn}有极限x,即对于任意小数ε'>0,存在自然数N",当n>N"时,有|xn-x|<ε'。柯西极限存在准则应用柯西极限存在准则是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:(1)数列。(2)数项级数。(3)函数。(4)反常积分。(5)函数列和函数项级数。
康康map2023-05-21 12:53:261

常见的收敛数列有哪些?

收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。有界性定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。
NerveM 2023-05-21 12:53:261

什么是收敛数列?

数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{Xn}收敛于a,那么它的任一子数列也收敛于a。相互关系收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{}收敛于a,那么它的任一子数列也收敛于a。以上内容参考:百度百科-收敛数列
小白2023-05-21 12:53:251

什么是收敛数列?

数列收敛是设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a)。收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{Xn}收敛于a,那么它的任一子数列也收敛于a。相互关系收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{}收敛于a,那么它的任一子数列也收敛于a。以上内容参考:百度百科-收敛数列
人类地板流精华2023-05-21 12:53:251

收敛数列有哪些性质?

还有保不等式性。
豆豆staR2023-05-21 12:53:253

收敛数列的定义是什么?

收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。其实高中数学很简单,数列中只学简单的递减递增。数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值. 收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。同时也说明:(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数.(3) 数列收敛一定有界,但是有界的数列不一定收敛!收敛数列的保号性:(1)如果an≥0,数列{an}收敛于a,则a≥0。
北营2023-05-21 12:53:251

什么是收敛数列?

收敛数列是指:设数列{Xn},如果存在常数a,那么对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称为数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。收敛数列与其子数列间的关系为:子数列也是收敛数列且极限为a恒有Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。收敛数列的推论为:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
u投在线2023-05-21 12:53:251

什么是收敛数列,什么是发散数列

收敛数列是求和有个确定的数值,而发散数列则求和等于无穷大没有意义了
小菜G的建站之路2023-05-21 12:53:252

收敛数列举例有哪些?

如下图:收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。相互关系:收敛数列与其子数列间的关系:子数列也是收敛数列且极限为a恒有|Xn|<M。若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。
陶小凡2023-05-21 12:53:251

收敛数列的

数列收敛的定义:设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a,即数列{Xn}为收敛数列。其定义与极限定义相同,意即数列收敛于a则可以说其极限为a。所以数列收敛和数列有极限是等价的。但是对于数列{n²},当n趋于无穷时,n²趋于无穷,在广义上可以称其收敛于无穷大,但在狭义上称其发散。一般情况下我们称这个数列是发散的。按照收敛数列和发散数列的定义,前者有极限而后者没有极限。
LuckySXyd2023-05-21 12:53:252

高数数列通项,收敛数列的极限值

分别是1/n!和(-1)^n/n,观察出极限都是0啦!
北营2023-05-21 12:53:252

什么是收敛数列?

收敛数列是指:设数列{Xn},如果存在常数a,那么对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称为数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。收敛数列与其子数列间的关系为:子数列也是收敛数列且极限为a恒有Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。收敛数列的推论为:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
kikcik2023-05-21 12:53:251

收敛数列一定有极限吗?

收敛数列一定有极限。收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。相关:数列(sequence of number),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。
九万里风9 2023-05-21 12:53:251

请问,什么是收敛数列,通俗点,谢谢。我是一个初中刚毕业的人,因为兴趣开始学习高等数学。

我也说不清楚,大概就是有界如数列1/x它无限接近0,0就是它的界
左迁2023-05-21 12:53:245

什么是收敛数列?

收敛数列就是越来越小的等差数列。
苏州马小云2023-05-21 12:53:243

什么是收敛数列呢?

收敛数列是指:设数列{Xn},如果存在常数a,那么对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称为数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。收敛数列与其子数列间的关系为:子数列也是收敛数列且极限为a恒有Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。收敛数列的推论为:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件。如果数列{Xn}收敛于a,且a>0(或a<0),那么存在正整数N,当n>N时,都有Xn>0(或Xn<0)。
tt白2023-05-21 12:53:231

什么是收敛数列

收敛是数列的通项在n趋向于无穷大时数列的通项趋向于一个数,即有极限。其实高中数学很简单,数列中只学简单的递减递增。数列的收敛性与前面有限项无关:即数列去掉有限项或增加有限项不影响数列的收敛性;如果数列收敛,也不影响数列的极限值. 收敛数列的有界性:如果数列{an}收敛于a,则数列{an}有界,即存在M>0,使得| an|≤M恒成立。同时也说明:(1)如果数列{an}收敛于a,则对任意给定的正数ε,an 最多只有有限项落在以a为中心,ε为半径的邻域U(a,ε)外。(2) 如果数列{an}收敛a,则在此数列中一定有最大数或最小数,但不一定同时有最大数和最小数.(3) 数列收敛一定有界,但是有界的数列不一定收敛!收敛数列的保号性:(1)如果an≥0,数列{an}收敛于a,则a≥0。
康康map2023-05-21 12:53:231

收敛数列是什么意思

这是一个高等数学上的概念。就是说,当一个数列在n趋于无穷大的时候,这个数列趋于某一个定值,那么就说这个数列收敛。比如,an=(1/2)^n这个数列,当n趋于无穷时,an趋于0,那么这个数列是收敛数列。
此后故乡只2023-05-21 12:53:231

高数中 收敛数列是什么意思

收敛是高数中对于函数及数列极限的一个定义,也就是极限。在数列中即为随着项数n趋近于正无穷的变化过程中,an数列所对应的值无限趋向于一个界,但是不会达到。也可以说它的极限是这个数。 用数学定理解释就是 设 {An} 为实数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣An-a∣<ε 则称数列 {An} 收敛于 a,定数 a 称为数列 {Xn} 的极限
凡尘2023-05-21 12:53:232

什么是收敛数列?

性质1、唯一性思维导图如果数列Xn收敛,每个收敛的数列只有一个极限。2、有界性定义:设有数列Xn , 若存在M>0,使得一切自然数n,恒有|Xn|<M成立,则称数列Xn有界。定理1:如果数列{Xn}收敛,那么该数列必定有界。推论:无界数列必定发散;数列有界,不一定收敛;数列发散不一定无界。数列有界是数列收敛的必要条件,但不是充分条件3、保号性若数列某项起Xn>0(或Xn<0)且{Xn}收敛于a,则a>0(或a<0),扩展资料:收敛数列,设数列{Xn},如果存在常数a(只有一个),对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列(Convergent Sequences)。
LuckySXyd2023-05-21 12:53:231

什么是收敛数列?什么是发散数列?求通俗解释。

你好!!! 1.收敛数列如果数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,不等式|Xn-a|<q都成立,就称数列{Xn}收敛于a(极限为a),即数列{Xn}为收敛数列。 2.发散数列:如果数列{Xn},如果存在实数b>0,对于任意给出的c>0,任意n1,n2满足|n1-n2|<c,有|x(n1)-x(n2)|<b,则数列数为发散数列。3.收敛数列有极限,发散数列没有极限.希望能够帮助你!!
北有云溪2023-05-21 12:53:231

收敛数列是指什么意思?

数列有界是数列收敛的条件是必要而不充分条件。无界数列一定发散,所以有界是收敛的必要条件,但是有界数列不一定收敛。显然是有界的,但也是发散的。所以有界不是收敛的充分条件。有界数列是指任一项的绝对值都小于等于某一整数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。若数列Xn满足:对一切n有Xn≤M 其中M是与n无关的常数称数列Xn上有界并称M是他的一个上界,对一切n有Xn≥m其中m是与n无关的常数称数列Xn下有界并称m是他的一个下界。数列Xn如果存在常数a,对于任意给定的正数q,总存在正整数N,使得n>N时,恒有|Xn-a|<q成立,就称数列Xn收敛于a,即数列Xn为收敛数列,如果数列Xn收敛,每个收敛的数列只有一个极限,收敛数列与其子数列间的关系。
左迁2023-05-21 12:53:231

什么是收敛数列?

有界不一定收敛是指此数列或函数存在上下限,但没有一种趋势是趋向于某一个确定的数,就像正弦函数一样,虽然有正负1给它作为上下限,但随着x的变化,函数值没有趋向于一个确定的1一样。收敛一定有界指的是此数列或函数存在一个趋势,这个趋势的极限是一个确定的值,就像反比例函数一样。收敛数列一定有界(反证,假设无界,肯定不收敛) 有界数列不一定收敛(反例,数列{(-1)^n}是有界的,但它却是发散的)本质的不同数列的收敛是指当n趋于无穷时数列项趋于一个数,而数列的前面的有限项是一个确定的数,显然有界,当n趋于无穷时数列收敛,,说明后面的任意项都是一个有限的数。而函数收不收敛是指当x趋于x0时,函数的敛散情况,当x趋于x0收敛,函数在x0处肯定是有界的,但并不代表x趋于x1就一定收敛,是否有界也不得而知。扩展资料有界数列不一定是收敛数列,例如,摆动数列。 是有界的,因对一切n,有但它是发散的;而数列 也是有界的,因对一切n, 但数列是收敛的,有无界数列一定是发散的,因为如果它是收敛的,根据收敛数列是有界的,得出数列有界的结论。
ardim2023-05-21 12:53:231

级数问题:收敛数列是什么意思

第一个其实就是正项的等比数列的和,公比小于1,是收敛的。第二个项的极限是∞,必然不收敛。拓展资料:简单的说有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。例如:f(x)=1/x 当x趋于无穷是极限为0,所以收敛。f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。收敛数列与其子数列间的关系子数列也是收敛数列且极限为a恒有|Xn|<M若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。如果数列{ }收敛于a,那么它的任一子数列也收敛于a。发散级数指不收敛的级数。一个数项级数如果不收敛,就称为发散,此级数称为发散级数。一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。按照通常级数收敛与发散的定义,发散级数是没有意义的。然而为了实际的需要,可以确立一些法则,对某些发散级数求它们的“和”,或者说某个发散级数在特定的极限过程中,逐渐逼近某个数。但是在实际的数学研究以及物理等其它学科的应用中,常常需要对发散级数进行运算,于是数学家们就给发散级数定义了各种不同的“和”,比如Cesàro和,Abel和,Euler和等,使得对收敛级数求得的这些和仍然不变,而对某些发散级数,这种和仍然存在。
陶小凡2023-05-21 12:53:231

收敛数列的性质

收敛数列的性质如下:1. 有界性:收敛数列必定是有界的,即存在一个常数M,使得该数列的所有项都小于等于M。2. 单调性:收敛数列可能是单调递增或单调递减的,也可能是既不单调递增也不单调递减的。3. 极限唯一性:收敛数列的极限是唯一的,即如果一个数列收敛,则其极限是唯一的。4. 保号性:若数列的项都大于(或小于)某个数,且该数列收敛,则其极限也大于(或小于)该数。5. 夹逼定理:如果一个数列的前面项和后面项都夹在两个收敛数列的项之间,那么这个数列也收敛,并且其极限也夹在两个收敛数列的极限之间。6. 收敛数列的子数列也收敛,并且其极限也是原数列的极限。7. 收敛数列的和差、积、商(除数不为0)仍是收敛数列,其极限分别为原数列对应项的和、差、积、商(除数不为0)。
kikcik2023-05-21 12:53:231

收敛数列有哪些性质?

第一,有界性,如果函数收敛,那么这个函数一定有界。第二,唯一性,如果函数收敛,那么函数有且只有一个极限值。
苏萦2023-05-21 12:53:234

收敛数列如何判断

不算,收敛数列必须是无限趋近于某一个数。
北有云溪2023-05-21 12:53:233

高数中 收敛数列是什么意思

收敛是高数中对于函数及数列极限的一个定义,也就是极限。在数列中即为随着项数n趋近于正无穷的变化过程中,an数列所对应的值无限趋向于一个界,但是不会达到。也可以说它的极限是这个数。 用数学定理解释就是 设 {An} 为实数列,a 为定数.若对任给的正数 ε,总存在正整数N,使得当 n>N 时有∣An-a∣<ε 则称数列 {An} 收敛于 a,定数 a 称为数列 {Xn} 的极限
善士六合2023-05-21 12:53:232