高阶等差数列

关于高阶等差数列的来源及历史背景

000000001414014014
苏州马小云2023-05-21 08:46:192

高阶等差数列的例题精讲

例1.数列的二阶差数列的各项均为16,且a63=a89=10,求a51 解:法一:显然{an}的二阶差数列{bn}是公差为16的等差数列,设其首项为a,则bn=a+(n-1)×16,于是=a1+(n-1)a+8(n-1)(n-2)这是一个关于n的二次多项式,其中n2的系数为8,由于a63=a89=10,所以an=8(n-63)(n-89)+10,从而a51=8(51-63)(51-89)+10=3658解:法二:由题意,数列是二阶等差数列,故其通项是n的二次多项式,又a63=a89=10,故可设an=A(n-63)(n-89)+10由于是二阶差数列的各项均为16,所以(a3-a2)-(a2-a1)=16即a3-2a2+a1=16,所以A(3-63)(3-89)+10-2[A(2-63)(2-89)+10]+A(1-63)×(1-89)+10=16解得:A=8an=8(n-63)(n-89)+10,得a51=8(51-63)(51-89)+10=3658例2.一个三阶等差数列的前4项依次为30,72,140,240,求其通项公式解:由性质⑵,an是n的三次多项式,可设an=An3+Bn2+Cn+D由a1=30、a2=72、a3=140、a4=240得A+B+C+D=30 A=18A+4B+2C+D=72 解得: B=727A+9B+3C+D=140 C=1464A+16B+4C+D=240 D=8所以an=n3+7n2+14n+8例3.求和:Sn=1×3×22+2×4×32+…+n(n+2)(n+1)2解:Sn是是数列{n(n+2)(n+1)2}的前n项和,因为an=n(n+2)(n+1)2是关于n的四次多项式,所以{an}是四阶等差数列,于是Sn是关于n的五次多项式k(k+2)(k+1)2=k(k+1)(k+2)(k+3)-2k(k+1)(k+2),故求Sn可转化为求Kn=和Tn=k(k+1)(k+2)(k+3)=[ k(k+1)(k+2)(k+3)(k+4)-(k-1) k(k+1)(k+2)(k+3)],所以Kn==Tn==从而Sn=Kn-2Tn=例4.已知整数列适合条件:⑴an+2=3an+1-3an+an-1,n=2,3,4,…⑵2a2=a1+a3-2⑶a5-a4=9,a1=1求数列{an}的前n项和Sn解:设bn=an+1-an,Cn=bn+1-bnCn=bn+1-bn= (an+2-an+1)-(an+1-an)=an+2-2an+1+an=(3an+1-3an+an-1) -2an+1+an=an+1-2an+an-1=Cn-1 (n=2,3,4,…)所以{ Cn}是常数列由条件⑵得C1=2,则{an}是二阶等差数列因此由条件⑶知b4=9,从而b1=3,于是an=n2,例5.求证:二阶等差数列的通项公式为证明:设{an}的一阶差数列为{bn},二阶差数列为{cn},由于{an}是二阶等差数列,故{cn}为常数列又c1=b2-b1=a3-2a2+a1所以===例6.求数列1,3+5+7,9+11+13+15+17,…的通项解:问题等价于:将正奇数1,3,5,…按照“第n个组含有2n-1个数”的规则分组:⑴、(3,5,7)、(9,11,13,15,17),… 然后求第n组中各数之和an依分组规则,第n组中的数恰好构成以2为公差的项数为2n-1的等差数列,因而确定了第n组中正中央这一项,然后乘以(2n-1)即得an将每一组的正中央一项依次写出得数列:1,5,13,25,…这个数列恰为一个二阶等差数列,不难求其通项为2n2-2n+1,故第n组正中央的那一项为2n2-2n+1,从而an=(2n-2n+1)(2n-1)例7.数列{an}的二阶差数列是等比数列,且a1=5,a2=6,a3=9,a4=16,求{an}的通项公式解:易算出的二阶差数列是以2为首项,2为公比的等比数列,则cn=2n,的一阶差数列设为bn,则b1=1且bn=,从而an=例8.设有边长为1米的正方形纸一张,若将这张纸剪成一边长为别为1厘米、3厘米、…、(2n-1)厘米的正方形,恰好是n个而不剩余纸,这可能吗?解:原问题即是是否存在正整数n,使得12+32+…+(2n-1)2=1002由于12+32+…+(2n-1)2=[12+22+…+(2n-1)2]-[22+42+…+(2n)2]=随着n的增大而增大,当n=19时=9129<10000,当n=20时=10660>10000故不存在…例9.对于任一实数序列A={a1,a2,a3,…},定义DA为序列{a2-a1,a3-a2,…},它的第n项为an+1-an,假设序列D(DA)的所有项均为1,且a19=a92=0,求a1解:设序列DA的首项为d,则序列DA为{d,d+1,d+2,…},它的第n项是d+(n-1),因此序列A的第n项显然an是关于n的二次多项式,首项等比数列为由于a19=a92=0,必有所以a1=819
肖振2023-05-21 08:46:191

求高阶等差数列求和法公式。我是四年级学生。

和 Sn首相 a1末项 an公差 d项数 n等差数列求和=(首项+末项)*项数/2
无尘剑 2023-05-21 08:46:194

关于高阶等差数列的的问题。。。高分求解!

我以为是高中等差数列,没想到是大学的
u投在线2023-05-21 08:46:195

高阶等差数列公式是什么意思

通项公式:an=a1+(n-1)d1+(n-1)(n-2)d2/2!+…+(n-1)(n-2)…(n-r)dr/r!求和公式可由通项公式推出,自己试试.
ardim2023-05-21 08:46:192

高阶等差数列,急~~

可以证明结果是5次表达式待定系数法就好了。
黑桃花2023-05-21 08:46:192

关于高阶等差数列的一些基础知识的疑问

1,相邻两个数的差相等,所以是等差。只减了一次,所以叫一阶。2,1,2,6,9,16,……一次阶差是1,4,3,7,……二次阶差是3,-1,4,……三次阶差是-4,5,……四次阶差是9,……几次阶差是常数列?3,例如数列1,8,27,64,125,216,……一次阶差是7,19,37,61,91……二次阶差是12,18,24,30,……三次阶差是6,6,6,……三次阶差是常数列,所以数列1,8,27,64,125,216,……是三阶等差数列。而数列7,19,37,61,91……一次阶差是12,18,24,30,……二次阶差是6,6,6,……二次阶差是常数列,所以数列7,19,37,61,91……是二阶等差数列。所以数列1,8,27,64,125,216,……的一次阶差是7,19,37,61,91……为二阶等差数列。
真颛2023-05-21 08:46:181

求高阶等差数列通项公式

an=a1+(n-1)dSn=(a1+an)n/2=na1+n(n-1)d/2
Chen2023-05-21 08:46:181

高阶等差数列性质证明

和=(前项+后项)×项数÷2
kikcik2023-05-21 08:46:181

求高阶等差数列求和法公式【公式中的字母含义麻烦解释一下,我是四年级学生】

天才学生,你真厉害啊
Jm-R2023-05-21 08:46:182

求高阶等差数列求和法公式。我是四年级学生。

(首项+末项)*项数/2=总和(末项-首项)*公差+1=项数首项+(N-1)*公差=第N项首项,一个等差数列中第一个数,末项,一个等差数列中最后一个数。项数,这个等差数列有几个数,公差,就是相邻两个数的差。
此后故乡只2023-05-21 08:46:181

求教一下,请问有没有高阶等差数列一说?

我记得上小学的奥数教程里就有,不过只是让找规律而已。呵呵
阿啵呲嘚2023-05-21 08:46:182

高阶等差数列怎么求

表示还没听说过高阶等差数列这个概念,难道是我孤陋寡闻么? 等差数列都是一次的,怎么可能会出现高阶呢? 麻烦你把你要问的问题表述清楚一点.
真颛2023-05-21 08:46:181

如何利用高阶等差数列来解决堆垛问题。

堆垛问题一般都可以用归纳法归纳为高阶等差数列的问题!三角垛求积法医,茭草垛求积法!
hi投2023-05-21 08:46:182

学习高阶等差数列之前要先学习什么,,

一阶的等差数列总的学呀,简单的等比数列的知道吧,很多都会转化为这两种呀!
Chen2023-05-21 08:46:183

高阶等差数列的基本知识

⒈定义:一般地,如果{an+1-an}是K阶等差数列,就称原数列{an}为K+1阶等差数列,二阶以及高于二阶的等差数列统称为高阶等差数列。 ⒉如果某数列的p阶差数列是一非零常数列,则称此数列为p阶等差数列⒊高阶等差数列是二阶或二阶以上等差数列的统称⒋高阶等差数列的性质:⑴如果数列是p阶等差数列,则它的一阶差数列是p-1阶等差数列⑵数列是p阶等差数列的充要条件是:数列的通项是关于n的p次多项式⑶ 如果数列是p阶等差数列,则其前n项和Sn是关于n的p+1次多项式⒌高阶等差数列中最重要也最常见的问题是求通项和前n项和,更深层次的问题是差分方程的求解,解决问题的基该方法有:⑴逐差法:其出发点是⑵待定系数法:在已知阶数的等差数列中,其通项an与前n项和Sn是确定次数的多项式(关于n的),先设出多项式的系数,再代入已知条件解方程组即得⑶裂项相消法:其出发点是an能写成an=f(n+1)-f(n)⑷化归法:把高阶等差数列的问题转化为易求的同阶等差数列或低阶等差数列的问题,达到简化的目的
CarieVinne 2023-05-21 08:46:171

关于高阶等差数列……

设A(n)=an^2+bn+c,其中a,b,c为常数 则每相邻两项的差: B(n)=A(n+1)-A(n) =a(n+1)^2+b(n+1)+c-(an^2+bn+c) =a(2n+1)+b 则C(n)=B(n+1)-B(n)=a(2(n+1)+1)+b-(a(2n+1)+b)=2a为常数, 所以A(n)为二阶等差数列 反之 设C(n)=d为常数 B(n)为公差为d的等差数列 则B(n)=B(1)+(n-1)*d 则基于一阶等差数列B(n)的二阶等差数列A(n)的通项为 A(n)=A(1)+B(1)+B(2)+...+B(n-1) =A(1)+B(1)+(B(1)+d)+...+(B(1)+(n-2)*d) =A(1)+(n-1)*B(1)+d*(1+2+...+(n-2)) =A(1)+(n-1)*B(1)+d*(n-2)*(n-1)/2 =d/2*n^2+(B(1)-3d/2)*n+A(1)+d 其中d、A(1)、B(1)为常数 所以A(n)的通项为一个关于n的二次三项式 所有高次多项式都可以表达一个高阶等差数列的通项可以用数学归纳法证明A(n)={-5,-4,1,10,23,40……} 设B(n)=A(n+1)-A(n) B(n)={1,5,9,13,17.....} 设C(n)=B(n+1)-B(n) C(n)={4,4,4,4...} 所以B(n)=1+(n-1)*4 A(n)=-5+(B(1)+B(2)+...+B(n-1)) =-5+(1+5+...+(1+(n-2)*4)) =-5+1*(n-1)+4*(n-2)(n-1)/2 =2n^2-5n-2
豆豆staR2023-05-21 08:46:171

高阶等差数列与差分方法

对一个给定的数列 的相邻两项作差,得到一个新数列 这个数列称为 的一阶差数列.如果记该数列为 ,其中 ,那么再求 的相邻两项之差,所得数列 称为原数列 的二阶差数列. 依此类推,对任意 ,可以定义数列 的 阶差数列. 如果 的 阶差数列是一个非零常数数列,那么称它为 阶等差数列.特别地,一阶等差数列就是我们通常说的等差数列,二阶及二阶以上的等差数列统称为高阶等差数列. 注意到,数列是定义在 上的函数,将上述作差思想予以推广就得到了差分的概念. 设 是定义在 上的函数,令 ,则 也是定义在 上的函数,它称为 的一阶差分,与上类似,我们可以递推地定义 的二阶,三阶, , 阶差分 利用数学归纳法易证下面的定理: 定理1 设 是定义在 上的函数,则 如果函数 是关于 的 次多项式,那么 是关于 的 次多项式, 是关于 的 次多项式, , 是关于 的零次多项式,且 (这里 是 的首项系数),而当 , 时, . 反过来,对函数 ,如果 ,那么 是关于 的一个次数不超过 的多项式. 将这些结论应用于高阶等差数列,我们有 定理2 数列 是一个 阶等差数列的充要条件是数列的通项 为 的一个 次多项式.
Ntou1232023-05-21 08:46:171