流形的可定向性
考虑一个拓扑流形,其坐标图映射到Rn。给定一个Rn的有序基,坐标图就给它所覆盖的流形的一片引入了一个方向,我们可以视为或者右手或者左手的。重叠的坐标图不要求在方向上一致,这给了流形一个重要的自由度。对于某些流形,譬如球面,我们可以选取一些坐标图使得重叠区域在"手性"上一致;这些流形称为"可定向"的。对于其它的流形,这不可能做到。后面这种可能性容易被忽视,因为任何在三维空间中(不自交的)嵌入的闭曲面都是可定向的。我们考虑三个例子: (1)莫比乌斯带,它是有边界的流形,(2)克莱因瓶,它在三维空间必须自交,以及(3)实射影平面,它很自然的出现在几何学中。 从圆心为原点的球面开始。穿过原点的每条直线在两个相对的点穿透球面。虽然我们不能物理上这么做,我们在数学上可以把相对点合并为同一点。这样产生的闭合曲面是实射影平面,又一个不可定向曲面。它有一些等价 的表述和构造,但是这个方法揭示了它的名字:所有给定的穿过原点的直线射影到该"平面"的一个"点"。CarieVinne 2023-05-24 12:09:021
微分流形是大几的课
一般来说微分流形是大三的课。微分流形(differentiable manifold),也称为光滑流形(smooth manifold),是拓扑学和几何学中一类重要的空间,是带有微分结构的拓扑流形。 微分流形是微分几何与微分拓扑的主要研究对象,是三维欧式空间中曲线和曲面概念的推广,可以有更高的维数,而不必有距离和度量的概念。光滑函数流形M上的实数值连续函数f:M →R是一个光滑函数,如果对每一个相容的坐标卡ρ:U→M, f(ρ):U→R是一个U上的光滑函数。因为坐标卡之间的坐标变换是光滑映射,这是一个良好的定义。特别的,光滑函数可以看成一种0阶张量场。无尘剑 2023-05-24 12:09:021
泛函分析和微分流形哪个对考研更重要
泛函分析。考研基础数学包含数理逻辑、数论、代数、几何、拓扑、函数论、泛函分析、微分方程等众多的分支学科,泛函分析和微分流形相比泛函分析更重要。泛函分析是数学类硕士研究生的一门非常重要的专业基础课程。真颛2023-05-22 18:14:121
流形的构造
一个流形可以以不同方式构造,每个方式强调了流形的一个方面,因而导致了不同的观点。 可能最简单的构造一个流形的方法是在上面的例子中的圆圈的构造方法。首先,确认R2的一个子集,然后覆盖这个自己的图册被构造出来。流形的概念历史上就是从这样的构造发展出来的。这里有另一个例子,把这个方法应用在球面的构造上:①带图册的球面球面的表面可以用几乎和圆圈一样的方法来处理。我们把球面视作R3的子集:球面是二维的,所以每个坐标图将映射球面的一部分到一个R2的开子集。例如考虑北半球,它是带正z坐标的部分。(在右图中它着红色)定义如下的函数χχ(x,y,z) = (x,y)把北半球映射到开单位圆盘,通过把它投影到(x, y)平面。类似的坐标图对南半球也存在。和投影到(x, z)平面的两个坐标图以及投影到(y, z)平面的两个坐标图一起,我们得到了一个覆盖整个球面的含6个坐标图的图册。这可以很容易地扩展到高维的球面。 流形可以通过把碎片以一种相容的方式粘合来构造,使得碎片成为互相覆盖的坐标图。这种构造对于任何流形都是可行的,所以经常作为流形的表述,特别是微分和黎曼流形。它集中于图册的构造,把流形作为坐标图所自然的提供的贴片,因为不涉及外部的空间,这导致了流形的内在的观点。这里,流形通过给定图册来构造,图册通过定义转换映射来得到。流形的一个点因而是指通过变换映射映到同一个点的坐标点的等价类。坐标图把等价类映射到一个贴片上的点。通常会对变换映射有很强的一致性要求。对于拓扑流形,它们被要求为同胚;如果它们也是微分同胚,最后得到的流形就是微分流形。这可以通过变换映射圆圈例子的第二部分中的t = 1/s来解释。从直线的两个拷贝开始。第一个拷贝用坐标s,第二个拷贝用t。现在,通过把第二个拷贝上的点t和第一个拷贝上的点1/s作为同一个点来粘合起来(点t = 0不和任何第一个拷贝上的点认同)。这就给出了一个圆圈。①内在和外在的观点第一种构造和这种构造非常相似,但是他们代表了相当不同的观点。在第一种构造中,流形被视为嵌入到某个欧氏空间中。这是外在的观点。当一个流形用这种方式来看的时候,它很容易通过直觉从欧氏空间得倒附加的结构。例如,在欧氏空间,很明显某个点的一个向量是否和穿过该点的曲面相切或者垂直。贴补构造不用任何嵌入,只是简单地把流形看作拓扑空间本身。这个抽象的观点称为内在的观点。这使得什么是切向量更难以想象。但是它表达了流形的本质,在计算上来讲,这使我们避免了使用更高的维度,例如我们只要二维而不是三维就可以作球面上的计算。②作为贴补的n维球面n维球面Sn可以通过粘合Rn的两个拷贝来构造。他们之间的变换函数定义为这个函数是它自身的逆,因而可以在两个方向使用。因为变换映射是一个光滑函数,这个图册定义了一个光滑流形。如果我们取n = 1, 我们就得倒了上面圆圈的例子。 很多流形可以定义为某个函数的零点集。这个构造自然的把流形嵌入一个欧氏空间,因而导向一个外在的观点。这很形象,但不幸的是不是每个流形都可以这样表示。如果一个可微函数的雅戈比矩阵在函数为0的每一点是满秩的,则根据隐函数定理,每个这样的点周围存在一个为0的领域微分同胚于一个欧氏空间。因此零点集是一个流形。①作为一个函数零点的n维球面n维球面Sn经常定义为Sn={x∈Rn+1∶‖x‖=1}这等价为如下函数的零点x→‖x‖-1这个函数的雅戈比矩阵是[x1 … xn+1]它的秩对于除了原点的所有点为1(对于1×n矩阵就是满秩的)。这证明n维球面是一个微分流形。 可以把流形上的不同点定义为相同。这可以视为把不同的点粘合为同一个点。结果经常不是流形,但在有些情况下是流形。这些情况下,认同过程是用群来完成的,这是作用在流形上的群。两个点被视为同一个如果一个能被该群的一个元素移动到另一个上面。如果M是该流形而G是该群,结果空间称为商空间,并记为M/G。可以通过认同点来构造的流形包括环面和实射影空间(分别从一个平面和一个球面开始)。 流形的直积也是流形。但不是每个流形都是一个积。积流形的维度是其因子的维度之和。其拓扑是乘积拓扑,而坐标图的直积是积流形的坐标图。这样,积流形的图册可以用其因子的图册构造。如果这些图册定义了因子上的微分结构,相应的积图册定义了积流形上的一个微分结构。因子上定义的其他结构也可以同样处理。如果一个因子有一个边界,积流形也有边界。直积可以用来构造环面和有限圆柱面,例如,分别定义它们为S1 × S1和S1 × [0, 1]。 两个带边界的流形可以沿着边界粘合。如果用正确的方式完成,结果也是流形。类似的,一个流形的两个边界也可以粘合起来。形式化的,粘合可以定义为两个边界的一个双射。两个点被认同为一个,如果它们互相映射到对方。对于一个拓扑流形,这个双射必须是同胚,否则结果就不是拓扑流形。类似的,对于一个微分流形,它必须是微分同胚。对于其它流形,其他的结构必须被这个双射所保持。有限的圆柱面可以作为一个流形构造,先从一个长条R × [0, 1]开始,然后把对边通过适当的微分同胚粘合起来。克莱因瓶可以一个带孔的球面和一个莫比乌斯带沿着各自的圆形边界粘合起来得倒。再也不做站长了2023-05-20 17:38:051
流形的释义
如果把几何形体的拓扑结构看作是完全柔软的,因为所有变形(同胚)会保持拓扑结构不变,而把解析簇看作是硬的,因为整体的结构都是固定的(譬如一个1维多项式,如果你知道(0,1)区间的取值,则整个实数范围的值都是固定的,局部的扰动会导致全局的变化),那么我们可以把光滑流形看作是介于两者之间的形体,其无穷小的结构是硬的,而整体结构是软的。这也许是中文译名流形的原因(整体的形态可以流动),该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理上的模型。流形可以视为近看起来像欧氏空间或其他相对简单的空间的物体。例如:人们曾经以为地球是平坦的,因为我们相对于地球很小,这是一个可以理解的假象。所以,一个理想的数学上的球在足够小的区域也象一个平面,这使它成为一个流形。但是球和平面有很不相同的整体结构:如果你在球面上沿一个固定方向走,你最终回到起点,而在一个平面上,你可以一直走下去。一个曲面是三维的。但是,流形可以有任意维度。其他的例子有,一根线的圈(一维的)以及三维空间中的所有旋转(三维的)。旋转所组成的空间的例子表明流形可以是一个抽象空间。流形的技术使得我们能够独立的考虑这些对象,从某种意义上来讲,我们可以有一个不依赖于任何其他空间的球。局部的简单性是一个很强的要求。例如,我们不能在球上吊一个线并把这个整体叫做一个流形;包含把线粘在球上的那一点的区域都不是简单的—既不是线也不是面—无论这个区域有多小。我们用收集在地图集中的平的地图在地球上航行。类似的,我们可以用在数学图集中的数学地图(称为坐标图)来描述一个流形。通常不可能用一张图来描述整个流形,这是因为流形和建造它的模型所用的简单空间在全局结构上的差异。当使用多张图来覆盖流形的时候,我们必须注意它们重叠的区域,因为这些重叠包含了整体结构的信息。有很多不同种类的流形。最简单的是拓扑流形,它们局部看来像欧氏空间。其他的变种包含了它们在使用中所需要的额外的结构。例如,一个微分流形不仅支持拓扑,而且要支持微积分。黎曼流形的思想导致了广义相对论的数学基础,使得人们能够用曲率来描述时空。小白2023-05-20 17:38:041
对称正定矩阵流形是紧致吗
是。对称正定矩阵流形黎曼流形中的紧致极小子流形,我们可以从正定矩阵的定义、性质和定理等进行判断。在线性代数里,正定矩阵(positivedefinitematrix)有时会简称为正定阵。在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。拌三丝2023-05-20 17:38:041
有谁知道“拓扑流形”的准确定义吗
流形(Manifold),一般可以认为是局部具有欧氏空间性质的空间。 而实际上欧氏空间就是流形最简单的实例。像地球表面这样的球面是一个稍为复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。流形在数学中用于描述几何形体,它们提供了研究可微性的最自然的舞台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。他们也用于组态空间(configuration space)。环(torus)就是双摆的组态空间。如果把几何形体的拓扑结构看作是完全柔软的,因为所有变形(同胚)会保持拓扑结构不变,而把解析簇看作是硬的,因为整体的结构都是固定的(譬如一个1维多项式,如果你知道(0,1)区间的取值,则整个实属范围的值都是固定的,局部的扰动会导致全局的变化),那么我们可以把光滑流形看作是介于两者之间的形体,其无穷小的结构是硬的,而整体结构是软的。这也许是中文译名流形的原因(整体的形态可以流动),该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理上的模型。最容易定义的流形是拓扑流形,它局部看起来象一些"普通"的欧氏空间Rn。形式化的讲,一个拓扑流形是一个局部同胚于一个欧氏空间的拓扑空间。这表示每个点有一个领域,它有一个同胚(连续双射其逆也连续)将它映射到Rn。这些同胚是流形的坐标图。通常附加的技术性假设被加在该拓扑空间上,以排除病态的情形。可以根据需要要求空间是豪斯朵夫的并且第二可数。这表示下面所述的有两个原点的直线不是拓扑流形,因为它不是豪斯朵夫的。流形在某一点的维度就是该点映射到的欧氏空间图的维度(定义中的数字n)。连通流形中的所有点有相同的维度。有些作者要求拓扑流形的所有的图映射到同一欧氏空间。这种情况下,拓扑空间有一个拓扑不变量,也就是它的维度。其他作者允许拓扑流形的不交并有不同的维度。水元素sl2023-05-20 17:38:031
流形是啥
流形(Manifold),是局部具有欧氏空间性质的空间。 而实际上欧氏空间就是流形最简单的实例。像地球表面这样的球面是一个稍为复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。 流形在数学中用于描述几何形体,它们提供了研究可微性的最自然的舞台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。他们也用于位形空间(configuration space)。环面(torus)就是双摆的位形空间。……建议你百度一下吧。。。望采纳~~~豆豆staR2023-05-20 17:38:031
黎曼球面的作为复流形
作为一维复流形,黎曼曲面可以由两个图卡描述,每个的定义域都是复数平面.令ζ和ξ为上的复坐标。将非零复数ζ和非零复数ξ用如下转移映射等同起来:ζ = 1 / ξ, ξ = 1 / ζ. 因为这些变换映射为全纯函数,他们定义了一个复流形,称为黎曼球面。直观地来看,这些变换映射表示了如何将两个平面粘合成一个黎曼球面。两个面用一种从里翻出来的方式粘合,所以他们几乎处处重合,每个平面(用自己的原点)贡献对方平面上缺少的一点。换言之,(几乎)所有黎曼球面上的点既有ζ值也有ξ值,而两个值由ζ = 1 / ξ关联。ξ = 0处的点应该具有ζ-value 1 / 0;从这个意义上讲,ξ-图的原点是ζ-图上的。对称地,ζ-图的原点对应于ξ-图上的.拓扑上,最后的结果是从平面到球面的单点紧致化。但是,黎曼球面不单单是一个拓扑球面。它是具有复结构的拓扑球面,所以球面上的每个点都有一个领域可以通过双全纯函数和同胚。另一方面,黎曼曲面分类的的中心结果单值化定理,断言仅有的三类单连通一维复流形为复平面、双曲平面、和黎曼球面。在这三者中,黎曼球面是唯一的闭曲面(无边界的紧致曲面)。因此二维球面只有唯一的复结构将它变为一维复流形。拌三丝2023-05-20 17:38:021
一维流形分类
流形是局部具有欧几里得空间性质的空间,在数学中用于描述几何形体。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。中文名流形外文名manifold是欧几里得空间中的曲线是局部具有欧几里得空间性质的空间快速导航定义 圆周 重要流形发展历史n维流形的概念,在J.L.Lagrange的力学中已经初见端倪,十九世纪中期,已经知道n维Euclid空间是n个实变量的连续统,但是一般n维流形的概念是B.Riemann研究微分几何学时引进的,他是用归纳法进行构造的。正如曲线的运动形成曲面一样,n维流形是把无限多个(n-1)维流形按照一维流形方式放在一起而形成的。流形的拓扑结构的研究与其局部理论的研究是同时开始的,Riemann、E.Betti、H.Poincaré等人应用的是解析方法,但是,Poincaré为了摆脱这种方法的困难与不利之处,将n维流形定义为一种连通的拓扑空间,其中每一点都具有和n维Euclid空间同胚的邻域,并对之进行研究,从而开辟了组合拓扑学的道路。定义在n维Euclid空间中,由定义的半空间用表示。Hausdorff空间M,当每点p具有与或同胚的开邻域U(p)时,称为n维拓扑流形。U(p)≈(同胚)的点p的全体∂M称为流形M的边缘,其补集称为M的内部,∂M=Φ的流形称为无边缘流形。n维流形M的边缘∂M是n-1维无边缘流形。紧的无边缘的连通流形称为闭流形,非紧的无边缘的连通流形称为开流形。存在连通的但非仿紧的拓扑流形。一维的这种流形称为长直线。[1]圆周圆周是除欧氏空间外最简单的流形。让我们考虑二维平面内一个半径为1,圆心在原点的圆(单位圆)。若x和y是平面上的欧式坐标,那么单位圆的方程就是。局部坐标卡单位圆的任意一点附近的一小段都像一条线。而线是一维的图形,我们只要一个坐标就可以标记这一小段上的一个点。例如单位圆在x轴上方的半圆上的任何一点都可以用x坐标确定。所以,存在双射Xtop,它通过简单的投影到第一个坐标(x)将圆的黄色部分映射到开区间(−1, 1):。这样的一个函数称为一个局部坐标卡(local coordinate chart)。类似的,单位圆的下半圆,左半圆,右半圆上也有相应的坐标卡。这四个半圆可以覆盖整个单位圆,我们称对应的四个局部坐标卡组成这个单位圆的一个坐标图集(atlas)。坐标变换注意上部和右部的坐标卡的重叠部分。它们的交集位于圆上x和y坐标都是正的四分之一弧上。两个图χtop 和χright 将这部分双射到区间(0, 1)。这样我们有个函数T 从(0, 1)到它自己,首先取黄色图的逆到达圆上再通过绿图回到该区间:。这样的函数称为变换映射(坐标变换)。从微积分的观点来看,圆的变换函数T只是开区间之间的函数,所以我们知道它意味着T是可微的。事实上,T在(0, 1)可微而且对于其他变换函数也是一样。所以,这个图集把圆圈变成可微流形。瑞瑞爱吃桃2023-05-20 17:38:021
8字曲线是流形吗
是。8字曲线呈流形形状,因此是。流形是局部具有欧几里得空间性质的空间,在数学中用于描述几何形体。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。hi投2023-05-20 17:38:021
黎曼几何学的黎曼流形
黎曼几何是黎曼流形上的几何学。黎曼流形指的是一个n维微分流形M,在其上给定了一个黎曼度量g,也就是说,在微分流形M的每一个坐标邻域(U,x)内,用一个正定对称的二次微分来度量二个无限邻近的点(x1,x2,…,xn)和(x1+dx1,x2+dx2,…,xn+dxn)之间的距离。这里(gij)构成一个正定对称的n×n阵,并假设gij(x)关于(xi)有一定的可微性,而M上连接两点P、Q的曲线C:xi=xi(t),α≤t≤b的长度l(C)就用积分来计算。为了保证距离的度量与坐标邻域的选取无关,还要求gij满足二阶协变张量的变换规律,用整体黎曼几何的语言来说,就是在微分流形M上给定了一个由分量gij决定的正定对称二阶协变张量场g。M连同g,即(M,g)称为一个n维黎曼流形,g称为度量张量或基本张量。由于历史的原因,黎曼流形又常称黎曼空间,但后者偏重于局部意义,即常指黎曼流形的一个开子集或一个坐标邻域。度量张量g在流形M每点P(x1,x2,…,xn)的切空间Tp(M)中就规定了一个内积gp(或记为:〈,〉)用来计算切向量的长度、交角。即若向量X,Y∈Tp(M),而,,则X 的长度;X、Y的交角 θ由,0≤θ≤π决定。如果cosθ=0,即,就称X、Y 为互相正交。│尣│=1的向量称为单位向量,Tp(M)中由两两互相正交的单位向量组成的基称为正规正交基,对任一点P∈M,在P点的某一邻域U 内总存在n个单位向量场e1,e2,…,en,使得在U的每点它们构成切空间的一个正规正交基,这n个局部向量场称为一个局部正规正交基或局部正规正交标架。运用局部正规正交标架来研究黎曼几何的方法称为活动标架法。黎曼几何中的许多公式和几何量在活动标架下有特别简单明了的表达式,例如取ω1,ω2,…,ωn为局部正规正交标架e1,e2,…,en的对偶形式,也称对偶基,即满足的n个一次微分形式,于是在基{ei}下,由于,度量形式可写为。任一仿紧微分流形总具有黎曼度量,这种黎曼度量的数目是非常繁多的,但也不是完全任意的。微分流形的度量结构是受它的拓扑结构所制约的,而这种制约关系正是黎曼几何研究的一个重要内容,还存在许多没有解决的问题。有了计算曲线长度的方法,黎曼流形(M,g)上任意两点P、Q之间的距离d(P,Q)就可以用M中连接P、Q的所有分段可微分曲线的长度的下确界来定义,即 (连接P,Q的分段可微分曲线C)。于是,M在上述距离下成为一个度量空间,还可以证明,它所导出的度量拓扑与流形M原有的拓扑是等价的。mlhxueli 2023-05-20 17:38:011
黎曼流形的黎曼流形
黎曼流行(英文版)作者:J.M.Lee 著出版社:世界图书出版公司出版日期:2003-11-01个人简介内容简介This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds.同类图书推荐·《财富理论的数学原理的研究》·《高考总复习闯关训练:数学——天骄》 微分流形一、 流形的基本概念:流形的定义和基本例子,子流形,切空间和切丛,光滑函数、光滑映射及切映射。要求了解球面、环面、射影空间等基本例子,并了解一维、二维流形的分类。要求了解浸入(immersion)、嵌入(embedding)、淹没(submersion)和微分同胚的概念。二、 正则性、奇异性及其应用:正则点和正则值,临界点和临界值,Sard定理,Morse引理,Thom横截性定理。要求了解映射度的概念,并能运用正则值的概念验证某些空间是流形。三、 光滑向量场和可积性定理:光滑向量场及其奇点的定义,Lie括号,积分曲线和动力系统,Euler-Poincare公式,Frobenius可积性定理。四、 Lie群和Lie 群作用初步:Lie群和Lie代数的定义和基本例子,单参数子群,指数映射,Lie群在流形上的作用,基本向量场,齐性空间等。要求能够验证一些常见的矩阵群为Lie群并计算它们的Lie代数,并对一些低维Lie群的流形结构较为熟悉。要求能将一些常见流形写成齐性流形。五、 微分形式和积分:微分形式和外积的定义和性质,外微分,内积,Lie 导数,Cartan公式,de Rham上同调,Poincare对偶,Laplace算子,Hodge理论初步,定向和微分形式的积分,带边流形和Stokes定理。要求掌握单位分解的技巧,要求了解外微分和Stokes定理的古典形式。要求能够计算常见流形和二维流形的上同调环。六、 Riemann 几何初步:Riemann度量,Levi-Civita联络,Christoffel符号,Rieman曲率,截曲率,常截曲率流形的模 型。要求能够从给定的Riemann度量计算Riemann曲率。要求对向量丛的概念和张量运算较为熟悉。黎曼流形爱因斯坦的广义相对论告诉我们,引力并不是真正的力,而是反映空间扭曲的一个几何现象。对一个考察者来说,他身处在这个空间里,是无法直接体会到空间扭曲的。 但是他可以通过测量自己所处的空间来判断是否存在空间扭曲,测量的标准就是所谓的度量。 度量是内蕴性质。 具有度量的空间就称为黎曼空间。具体的定义如下:黎曼流形是具有黎曼度量的微分流形,换句话说,这个流形上有一个对称 正定 协变 二阶张量场, 亦即每一点处有一个2阶正定矩阵。给了度量以后, 我们就可以向数学分析里做的那样,建立起微积分的理论。欧氏空间有自然的度量ds^2=(dx_1)^2+...+(dx_n)^2.它的矩阵就是单位矩阵。欧氏空间中的子流形当然也就自然地诱导出一个度量。 曲线和曲面的微分几何 里,我们都是把曲线曲面视为三维空间的子流形,所以自然赋予了度量结构。黎曼度量给定后,我们可以有唯一的确定出一个对称(即无挠)联络,并且它是保持黎曼内积。这个联络称为黎曼联络。有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。 在欧氏空间上,联络是0,所以这就是通常意义上的向量函数的微分。黎曼度量还诱导出黎曼曲率的概念,它反映了流形的弯曲程度,是内蕴性质,也就是说这个性质与流形所在的大空间无关。 曲率恒消失的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。大数学家 高斯 最早研究了曲面上的曲率--高斯曲率, 发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。 这是一个非常了不起的发现。肖振2023-05-20 17:38:011
黎曼流形的介绍
黎曼(德,1826-1866年):几何观点,黎曼面。1851年博士论文《单复变函数一般理论基础》,其重要性恰如著名数学家阿尔福斯(芬-美,1907-1996年)所说:这篇论文不仅包含了现代复变函数论主要部分的萌芽,而且开启了拓扑学的系统研究,革新了代数几何,并为黎曼自己的微分几何研究铺平了道路。此外,建立了柯西-黎曼条件,真正使这方程成为复分析大厦的基石,揭示出复函数与实函数之间的深刻区别,黎曼映射定理。wpBeta2023-05-20 17:38:011
黎曼流形的联络与曲率
流形上的黎曼度量给定后,我们可以得到一个唯一确定的对称(即无挠)联络,并且它保持黎曼度量。这个联络称为这个黎曼度量的Levi-Civita联络。 有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。欧氏空间的联络就是通常意义上的向量函数的微分。 黎曼度量还诱导出曲率的概念,它反映了流形的弯曲程度。曲率处处为零的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。德国数学家高斯最早研究了曲面上的曲率,发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。左迁2023-05-20 17:38:011
有什么关于黎曼流形的好书?
黎曼流行(英文版)作者:J.M.Lee 著出版社:世界图书出版公司出版日期:2003-11-01个人简介内容简介This book is designed as a textbook for a one-quarter or one-semester graduate course on Riemannian geometry, for students who are familiar with topological and differentiable manifolds. It focuses on developing an intimate acquaintance with the geometric meaning of curvature. In so doing, it introduces and demonstrates the uses of all the main technical tools needed for a careful study of Riemannian manifolds.同类图书推荐·《财富理论的数学原理的研究》·《高考总复习闯关训练:数学——天骄》 微分流形一、 流形的基本概念:流形的定义和基本例子,子流形,切空间和切丛,光滑函数、光滑映射及切映射。要求了解球面、环面、射影空间等基本例子,并了解一维、二维流形的分类。要求了解浸入(immersion)、嵌入(embedding)、淹没(submersion)和微分同胚的概念。二、 正则性、奇异性及其应用:正则点和正则值,临界点和临界值,Sard定理,Morse引理,Thom横截性定理。要求了解映射度的概念,并能运用正则值的概念验证某些空间是流形。三、 光滑向量场和可积性定理:光滑向量场及其奇点的定义,Lie括号,积分曲线和动力系统,Euler-Poincare公式,Frobenius可积性定理。四、 Lie群和Lie 群作用初步:Lie群和Lie代数的定义和基本例子,单参数子群,指数映射,Lie群在流形上的作用,基本向量场,齐性空间等。要求能够验证一些常见的矩阵群为Lie群并计算它们的Lie代数,并对一些低维Lie群的流形结构较为熟悉。要求能将一些常见流形写成齐性流形。五、 微分形式和积分:微分形式和外积的定义和性质,外微分,内积,Lie 导数,Cartan公式,de Rham上同调,Poincare对偶,Laplace算子,Hodge理论初步,定向和微分形式的积分,带边流形和Stokes定理。要求掌握单位分解的技巧,要求了解外微分和Stokes定理的古典形式。要求能够计算常见流形和二维流形的上同调环。六、 Riemann 几何初步:Riemann度量,Levi-Civita联络,Christoffel符号,Rieman曲率,截曲率,常截曲率流形的模 型。要求能够从给定的Riemann度量计算Riemann曲率。要求对向量丛的概念和张量运算较为熟悉。黎曼流形爱因斯坦的广义相对论告诉我们,引力并不是真正的力,而是反映空间扭曲的一个几何现象。对一个考察者来说,他身处在这个空间里,是无法直接体会到空间扭曲的。 但是他可以通过测量自己所处的空间来判断是否存在空间扭曲,测量的标准就是所谓的度量。 度量是内蕴性质。 具有度量的空间就称为黎曼空间。具体的定义如下:黎曼流形是具有黎曼度量的微分流形,换句话说,这个流形上有一个对称 正定 协变 二阶张量场, 亦即每一点处有一个2阶正定矩阵。给了度量以后, 我们就可以向数学分析里做的那样,建立起微积分的理论。欧氏空间有自然的度量ds^2=(dx_1)^2+...+(dx_n)^2.它的矩阵就是单位矩阵。欧氏空间中的子流形当然也就自然地诱导出一个度量。 曲线和曲面的微分几何 里,我们都是把曲线曲面视为三维空间的子流形,所以自然赋予了度量结构。黎曼度量给定后,我们可以有唯一的确定出一个对称(即无挠)联络,并且它是保持黎曼内积。这个联络称为黎曼联络。有了联络,我们就可以定义向量场的协变微分和协变导数,从而建立起流形上的微分学。 在欧氏空间上,联络是0,所以这就是通常意义上的向量函数的微分。黎曼度量还诱导出黎曼曲率的概念,它反映了流形的弯曲程度,是内蕴性质,也就是说这个性质与流形所在的大空间无关。 曲率恒消失的流形称为平坦黎曼流形。欧氏空间就是最常见的平坦流形。大数学家 高斯 最早研究了曲面上的曲率--高斯曲率, 发现这种曲率是内蕴的,尽管它的定义式不是内蕴的。 这是一个非常了不起的发现。真颛2023-05-20 17:38:011
流形的研究历史
第一个清楚地把曲线和曲面本身构想为空间的可能是高斯,他以他的theorema egregium(突出的定理)建立了内在的微分几何。黎曼是第一个广泛的展开真正需要把流形推广到高维的工作的人。流形的名字来自黎曼原来的德语术语Mannigfaltigkeit,William Kingdon Clifford把它翻译为"manifoldness"(多层)。在他的哥廷根就职演说中,黎曼表明一个属性可以取的所有值组成一个Mannigfaltigkeit。他根据值的变化连续与否对stetige Mannigfaltigkeit和离散 [sic] Mannigfaltigkeit(连续流形 和不连续流形)作了区分。作为stetige Mannigfaltikeiten的例子,他提到了物体颜色和在空间中的位置,以及一个空间形体的可能形状。他把一个n fach ausgedehnte Mannigfaltigkeit (n次扩展的或n-维流形)构造为一个连续的(n-1) fach ausgedehnte Mannigfaltigkeiten堆。黎曼直觉上的Mannigfaltigkeit概念发展为今天形式化的流形。 黎曼流形和黎曼曲面以他的名字命名。交换簇的概念在黎曼的时代已经被隐含的作为复流形使用。拉格朗日力学和哈密尔顿力学,从几何方面考虑,本质上也是流形理论。庞加莱研究了三维流形,并提出一个问题,就是现在所谓的庞加莱猜想:所有闭简单连通的三维流形同胚于3维球吗?这个问题已经完全解决,其中最重要的工作是由俄罗斯数学怪才Grigori Perelman做出的。中国数学家朱熹平和曹怀东参与了最后的封顶证明。HermannWeyl在1912年给出了微分流形的一个内在的定义。该课题的基础性方面在1930年代被Hassler Whitney等人运用从19世纪下半叶就开始发展的精确的直觉理清,并通过微分几何和李群理论得到了发展。meira2023-05-20 17:38:011
希尔伯特空间是黎曼流形吗
亲亲你好,很高兴为你解答广义相对论中所讨论的空间叫“伪黎曼流形”。我发觉很多人在讨论空间的时候满嘴挂着什么123456...N维空间但又不知道具体什么是什么...拌三丝2023-05-20 17:38:012
黎曼流形的黎曼流形
n维欧氏空间中有自然的度量ds^2=(dx_1)^2+...+(dx_n)^2。它的矩阵表示就是单位矩阵。欧氏空间中的子流形当然也就自然地诱导出一个度量。曲线和曲面的微分几何里,我们都是把曲线曲面视为三维空间的子流形,所以自然赋予了度量结构。北境漫步2023-05-20 17:38:011
流形的介绍
流形(manifold)是局部具有欧几里得空间性质的空间,是欧几里得空间中的曲线、曲面等概念的推广。欧几里得空间就是最简单的流形的实例。地球表面这样的球面则是一个稍微复杂的例子。一般的流形可以通过把许多平直的片折弯并粘连而成。流形在数学中用于描述几何形体,它们为研究形体的可微性提供了一个自然的平台。物理上,经典力学的相空间和构造广义相对论的时空模型的四维伪黎曼流形都是流形的实例。位形空间中也可以定义流形。环面就是双摆的位形空间。一般可以把几何形体的拓扑结构看作是完全“柔软”的,因为所有变形(同胚)会保持拓扑结构不变;而把解析几何结构看作是“硬”的,因为整体的结构都是固定的。例如一个多项式,如果你知道 区间的取值,则整个实数范围的值都是固定的,所以局部的变动会导致全局的变化。光滑流形可以看作是介于两者之间的模型:其无穷小的结构是“硬”的,而整体结构则是“柔软”的。这也许是中文译名“流形”的原因(整体的形态可以流动)。该译名由著名数学家和数学教育学家江泽涵引入。这样,流形的硬度使它能够容纳微分结构,而它的软度使得它可以作为很多需要独立的局部扰动的数学和物理的模型。小白2023-05-20 17:38:011
复流形的Hermitian度量和凯勒流形
如在复流形M 上定义了一个下列复形式 的黎曼度量,其是埃尔米特阵,则称此度量为埃尔米特度量,称具有埃尔米特度量的复流形为埃尔米特流形。复流形上总存在埃尔米特度量。在埃尔米特流形中可引进一个二次外微分形式ω,称为凯勒形式,它在复坐标下的局部表达式为 。若dω=0,即ω 是闭形式,称埃尔米特流形为凯勒流形。复欧氏空间Cn关于通常度量是凯勒流形。在复射影空间CPn中有著名的富比尼-施图迪度量,描述如下:设P是CPn中任一点,它确定了S2n中的大圆。CPn在P点的任一切向量X可对应于球面S2n中与上述大圆正交的切向量塣,把塣 的长度定义为X的长度。就给出了CPn中的富比尼-施图迪度量;CPn关于这个度量构成凯勒流形。任何黎曼面关于其上任何与复结构相容的黎曼度量也是凯勒流形。如果在复流形M 上有一个黎曼度量,那么由这个度量,对M 上任一点的每个二维平面可定义截面曲率(见黎曼几何学)。如特取某点P处的二维切平面σ为全纯截面,即n维复切空间TpM 的一维复子空间,则相应于σ的截面曲率,称为全纯截面曲率。前面例子中,复欧氏空间关于通常度量的全纯截面曲率为零,复射影空间关于富比尼-施图迪度量的全纯截面曲率为正常数。gitcloud2023-05-20 08:56:051