常用函数泰勒展开公式
泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f"(x.)(x-x.)+f""(x.)/2!�6�1(x-x.)^2,+f"""(x.)/3!�6�1(x-x.)^3+……+f(n)(x.)/n!�6�1(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!�6�1(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。瑞瑞爱吃桃2023-05-25 12:16:502
函数y=sinx/(x^3-x)e^x-2的可去间断点为 A,B选项不是很懂
∵x→0limy=x→0lim{cosx/[(3x²-1)e^(x-2)+(x³-x)e^(x-2)]}=-e²即极限存在,∴x=0是可去间断点,因为只需重新定义y(0)=-e²就可以了。又x→1limy=∞; ∴x=1是无穷型间断点。人类地板流精华2023-05-25 12:16:501
请问y的反函数怎么求呢?
把y当已知,解方程求x;然后交换x,y两个字母。FinCloud2023-05-25 12:16:492
反比例函数的反函数怎么求?
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数。性质:(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;(2)一个函数与它的反函数在相应区间上单调性一致;(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。(4)一段连续的函数的单调性在对应区间内具有一致性;(5)严增(减)的函数一定有严格增(减)的反函数;(6)反函数是相互的且具有唯一性;(7)定义域、值域相反对应法则互逆(三反);(8)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f"(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I }内也可导;(9)y=x的反函数是它本身。扩展资料反函数的复合函数:这个内容属于高等数学的内容了。大伙想想函数里面最简单最基本的函数是什么函数?不用说,肯定就是我们的恒等函数y=x,这就和我们数字里面的1一般地位,所以,我们记恒等函数为“1x”。数字的基本运算就是加减乘除,而函数也有运算,虽然也有加减乘除,但是属于函数自己的,就是复合与反函数。我们知道在实数里,x与1/x的乘积等于1,在函数的复合运算里,也有类似的性质,函数f和g的复合记为f○g,那么下面的性质成立:f-1○f=1x;1x○f=f○1x=f。参考资料来源:百度百科-反函数康康map2023-05-25 12:16:491
高数求反函数
你跟你好哦hi投2023-05-25 12:16:492
如何求已知反函数的原函数?
互逆运算kikcik2023-05-25 12:16:493
对数函数的反函数怎么求
求对数函数的反函数的公式:log(a)(MN)=log(a)(M)+log(a)(N)。一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x)。一般地,对数函数是以幂(真数)为自变量,指数为因变量,底数为常量的函数。对数函数是6类基本初等函数之一。其中对数的定义:如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。人类地板流精华2023-05-25 12:16:482
如何求反函数求导?
反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数。 首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy因为x=siny,所以cosy=√1-x2所以y‘=1/√1-x2。同理可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。扩展资料:一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。善士六合2023-05-25 12:16:481
反函数怎样求值
反函数定义般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.反函数性质1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数。)。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F"(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]"=1[F"(Y)]"。反函数说明 ⑴在函数x=f"(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f"(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。 ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f‘(x),那么函数y=f"(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f‘(x)互为反函数。 ⑶互为反函数的两个函数在各自定义域内有相同的单调性。单调函数才有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数。 ⑷ 从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f‘(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f"(x)的值域;函数y=f(x)的值域正好是它的反函数y=f"(x)的定义域(如下表): 函数:y=f(x) 反函数:y=f"(x) 定义域: A C 值域: C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数y=f"(x)就叫做函数y=f(x)的反函数. 反函数y=f‘(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f"(s)=s/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f‘(x)=x/2-3. 有时是反函数需要进行分类讨论,如:f(x)=x+1/x,需将x进行分类讨论:在x大于0时的情况,x小于0的情况,多是要注意的。一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的: 1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x; 4、写出原函数及其值域。 实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身。 反函数求解三步骤: 1、换:X、Y换位 2、解:解出Y 3、标:标出定义域NerveM 2023-05-25 12:16:482
分数的反函数怎么求
具体题目,有么hi投2023-05-25 12:16:487
求反函数,怎么求
1. 反函数存在的条件。对于任意一个函数y=f(x),不一定有反函数。如y=x2 (x∈R),由y=x2,解得 ,对于每一个确定的函数值y,有两个x值与之对应,不符合函数定义,所以y=x2(x∈R)没有反函数。不难发现,只有当函数y=f(x)的对应法则f是从定义域到值域的一一映射时,它才存在反函数。函数若存在反函数,它的反函数是唯一的。 2. 反函数也是函数。一个函数与它的反函数互为反函数,并且它们的定义域、值域互换,对应法则互逆。一个函数与它的反函数可以是两个不同的函数,也可以是同一个函数。如函数 3. 在反函数概念的学习中,先后出现了三个函数记号——y=f(x),x=f-1(y),y=f-1(x),它们之间的关系是:在y=f(x)与x=f-1(y)中,字母x,y所表示的数量相同,取值范围相同,但地位不同。在y=f(x)中,x是自变量,y是x的函数;在x=f-1(y)中,y是自变量,x是y的函数。y=f(x)与x=f-1(y)互为反函数,它们的图象相同(由于两式中x,y所表示的量完全相同)。在y=f(x)与y=f-1(x)中,字母x,y的地位相同,即x是自变量,y是x的函数,但x,y表示的量的意义变换了,取值范围也互换了,即y=f(x)中x(或y)与y=f-1(x)中的y(或x)表示相同的量。y=f(x)与y=f-1(x)互为反函数,它们的图象关于直线y=x对称。在y=f-1(x)与x=f-1(y)中,字母x,y的地位及其表示的量互相交换,但它们却是同一函数,都是y=f(x)的反函数。函数x=f-1(y)与y=f-1(x)是同一函数的理由是:它们的定义域相同,值域相同,对应法则一样。 4. 反应函数的性质主要有:(1)互为反函数的两个函数的图象关于直线y=x对称;(2)函数存在反函数的充要条件是,函数在它的定义域上是单调的;(3)一个函数与它的反函数在相应区间上单调性一致;(4)偶函数一定不存在反函数,奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数;,其中A、C分别为函数f(x)的定义域、值域。 反函数的求法。注意不要把f-1(x)理解为 ,防止把求反函数混为求倒数。f-1(x)表示f(x)的反函数,式子中的f-1表示对应法则,它与原来函数f(x)中的对应法则是互逆的关系。求反函数的过程主要是“解方程”的过程,即将y视为常数,将x看作未知数,用解方程的方法解出x=f-1(y),此时一定要注意表达式的唯一性。再将x,y的位置交换,得y=f-1(x)。求出式子y=f-1(x)后,一般还要注明反函数的定义域。由于反函数的定义域必须与原来函数的值域相同,由式子f-1(x)确定x的取值范围未必合适(原因是在解方程的过程中,可能出现非同解变形),因此,标注反函数的定义域很有必要,而且须结合原来函数的值域确定反函数的定义域。例如,函数 的反函数的解析式为y=(x-1)2,由于原来函数的值域是y≥1,故反函数的定义域是x≥1,而不能是x∈R。求反函数的解题步骤可概括为“一解二换三注”。墨然殇2023-05-25 12:16:481
求反函数步骤
反函数的求法步骤如下:1、将y=f(x)看成方程,解出x=f-1(y)。2、将x,y互换得y=f-1(x)。3、写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定)。反函数性质1、反函数的定义域和值域分别是原函数的值域和定义域,称为互调性。2、定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数。3、函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称。4、设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。5、函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x)的反函数是y=f(x),称为互反性。6、函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上。水元素sl2023-05-25 12:16:481
怎么求一个函数的反函数
首先看这个函数是不是单调函数,如果不是则反函数不存在。如果是单调函数,则只要把x和y互换,然后解出y即可。例如y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域。 求一个函数的反函数: 1、从原函数式子中解出x用y表示; 2、对换x,y; 3、标明反函数的定义域。 注:反函数里的x是原函数里的y,原函数中,y≥0,所以反函数里的x≥0。在原函数和反函数中,由于交换了x、y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。余辉2023-05-25 12:16:481
如何求反函数
1)求原函数的值域,也就是反函数的定义域 2)求x关于y的表达式 3)将x,y对换因为互为反函数的两个函数定义域和值域是互相交换的,陶小凡2023-05-25 12:16:476
函数求反函数问题
如图豆豆staR2023-05-25 12:16:471
求反函数的方法
求反函数的方法:(1)从原函数式子中解出x用y表示;(2)对换 x,y ,(3)标明反函数的定义域如:求y=√(1-x) 的反函数 注:√(1-x)表示根号下(1-x) 两边平方,得y²=1-xx=1-y²对换x,y 得y=1-x²所以反函数为y=1-x²(x≥0)说明:反函数里的x是原函数里的y ,原函数中,y≥0,所以反函数里的x≥0。在原函数和反函数中,由于交换了x,y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。hi投2023-05-25 12:16:471
如何求f(x)的反函数?
反函数的求法步骤如下:1、将y=f(x)看成方程,解出x=f-1(y)。2、将x,y互换得y=f-1(x)。3、写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定)。反函数性质1、反函数的定义域和值域分别是原函数的值域和定义域,称为互调性。2、定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数。3、函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称。4、设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。5、函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x)的反函数是y=f(x),称为互反性。6、函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上。大鱼炖火锅2023-05-25 12:16:471
求一个函数的反函数
反函数的图像和原函数的图像是对称关系,他们关于y=x这条线对称。f(x)=2^x+1先改写成y=2^x+1,这样方便我们交换x和y的地位。反函数的定义域就是原函数的值域,我们现在有了原函数的定义域(-1≤x<0),第一步要根据这个定义域求原函数的值域,不过还要先判断y=2^x+1是增函数还是减函数,以及单调性。画画图就知道y=2^x+1是单调增函数,不用说,它反函数肯定也是单调增函数。这就好办了,当x=-1时,y=1.5,当x=0时,y=2。那么原函数的值域就是(1.5≤y<2),那么反函数的定义域就是(1.5≤x<2)。第二步,求反函数,把x倒腾过来,y倒腾过去就行了。2^x=y-1;x=log(2)(y-1);然后,按着习惯,x,y的位置换一下,y=log(2)(x-1);最后一步,写出完整结果y=log(2)(x-1)定义域为(1.5≤x<2),或者f-1(x)=log(2)(x-1)定义域为(1.5≤x<2)无尘剑 2023-05-25 12:16:471
如何求常见函数的反函数,
【求反函数的一般步骤】①求原函数的值域;②反解,由解出;③写出反函数的解析式(互换),并注明反函数的定义域(即原函数的值域)。注:求分段函数的反函数可以分别求出各段函数的反函数再合成.mlhxueli 2023-05-25 12:16:473
高等数学 求反函数
(1)y=(x+1)/(x-1)xy -y = x+1x(y-1) = y+1x=(y+1)/(y-1)反函数 : y= (x+1)/(x-1)(2)y=cotxarccot y = x反函数 : y= arccotx北营2023-05-25 12:16:471
反正弦函数怎么求
x=sint。分析过程如下:t=arcsinx表示t=sinx的反函数,t和x交换位置,得x=sint。反正弦函数(反三角函数之一)为正弦函数y=sinx(x∈[-½π,½π])的反函数,记作y=arcsinx或siny=x(x∈[-1,1])。由原函数的图像和它的反函数的图像关于一三象限角平分线对称可知正弦函数的图像和反正弦函数的图像也关于一三象限角平分线对称。同角三角函数(1)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)(2)积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα豆豆staR2023-05-25 12:16:471
反函数导数怎么求?
原函数的导数等于反函数导数的倒数。设y=f(x),其反函数为x=g(y),可以得到微分关系式:dy=(df/dx)dx ,dx=(dg/dy)dy .那么,由导数和微分的关系我们得到,原函数的导数是 df/dx = dy/dx,反函数的导数是 dg/dy = dx/dy .所以,可以得到 df/dx = 1/(dg/dx) .扩展资料:反函数存在定理定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。在证明这个定理之前先介绍函数的严格单调性。设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点x1和x2,当x1<x2时,有y1<y2,则称y=f(x)在D上严格单调递增;当x1<x2时,有y1>y2,则称y=f(x)在D上严格单调递减。证明:设f在D上严格单增,对任一y∈f(D),有x∈D使f(x)=y。而由于f的严格单增性,对D中任一x"<x,都有y"<y;任一x"">x,都有y"">y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。任取f(D)中的两点y1和y2,设y1<y2。而因为f存在反函数f-1,所以有x1=f-1(y1),x2=f-1(y2),且x1、x2∈D。若此时x1≥x2,根据f的严格单增性,有y1≥y2,这和我们假设的y1<y2矛盾。因此x1<x2,即当y1<y2时,有f-1(y1)<f-1(y2)。这就证明了反函数f-1也是严格单增的。如果f在D上严格单减,证明类似。参考资料:反函数_百度百科ardim2023-05-25 12:16:471
反函数求导公式表
反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先函数y=arcsinx的反函数为x=siny,所以y‘=1/sin"y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。反函数性质:1.函数存在反函数的充要条件是,函数的定义域与值域是映射;2.一个函数与它的反函数在相应区间上单调性一致;3.大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。4.一段连续的函数的单调性在对应区间内具有一致性;5.严增(减)的函数一定有严格增(减)的反函数;6.反函数是相互的且具有唯一性;7.定义域、值域相反对应法则互逆(三反)。Ntou1232023-05-25 12:16:471
反函数求导公式
反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。扩展资料:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x)。反函数y=f^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。若一函数有反函数,此函数便称为可逆的。陶小凡2023-05-25 12:16:461
对数函数的反函数如何求?
log10 x(10为底,x为真数)=y反函数就是10^x=y拌三丝2023-05-25 12:16:462
如何求原函数的反函数
反函数定义 般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 反函数性质 1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称 (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数.).奇函数不一定存在反函数.被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数. (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】. (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F"(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]"=1[F"(Y)]". 反函数说明 ⑴在函数x=f"(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f"(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式. ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f‘(x),那么函数y=f"(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f‘(x)互为反函数. ⑶互为反函数的两个函数在各自定义域内有相同的单调性.单调函数才有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数. ⑷ 从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f‘(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f"(x)的值域;函数y=f(x)的值域正好是它的反函数y=f"(x)的定义域(如下表): 函数:y=f(x) 反函数:y=f"(x) 定义域: A C 值域: C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数y=f"(x)就叫做函数y=f(x)的反函数. 反函数y=f‘(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f"(s)=s/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f‘(x)=x/2-3. 有时是反函数需要进行分类讨论,如:f(x)=x+1/x,需将x进行分类讨论:在x大于0时的情况,x小于0的情况,多是要注意的.一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a 直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的: 1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x; 4、写出原函数及其值域. 实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身. 反函数求解三步骤: 1、换:X、Y换位 2、解出Y 3、标:标出定义域ardim2023-05-25 12:16:461
反三角函数的反函数详细求解
y = 3arcsin(x/2)y/3 = arcsin(x/2)sin(y/3) = x/22sin(y/3)=x反函数为: y = 2sin(x/3)苏萦2023-05-25 12:16:463
如何求一个函数的反函数
求反函数就求x=?例如f(x)=y=x^2x=正负根号y则f(x)的反函数是正负根号x求完后注意定义域和值域不满足的舍掉反函数的定义域就是原函数的值域反函数的值域就是原函数的定义域豆豆staR2023-05-25 12:16:461
反函数的导数怎么求?
反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数。 首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy因为x=siny,所以cosy=√1-x2所以y‘=1/√1-x2。同理可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。扩展资料:一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。苏萦2023-05-25 12:16:461
怎样求一个函数的反函数
求反函数的步骤:1、反解方程,将x看成未知数,y看成已知数,解出x的值。2、将这个式子中的x,y兑换位置,就得到反函数的解析式。3、求反函数的定义域,这个是很重要的一点,反函数的定义域是原函数的值域。则转变成求原函数的值域问题,求出了解析式,求出了定义域,就完成了反函数的求解。苏州马小云2023-05-25 12:16:451
如何求反函数?
反函数定义般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.反函数性质1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数。)。奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F"(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]"=1[F"(Y)]"。反函数说明 ⑴在函数x=f"(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f"(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。 ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f‘(x),那么函数y=f"(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f‘(x)互为反函数。 ⑶互为反函数的两个函数在各自定义域内有相同的单调性。单调函数才有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数。 ⑷ 从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f‘(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f"(x)的值域;函数y=f(x)的值域正好是它的反函数y=f"(x)的定义域(如下表): 函数:y=f(x) 反函数:y=f"(x) 定义域: A C 值域: C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数y=f"(x)就叫做函数y=f(x)的反函数. 反函数y=f‘(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f"(s)=s/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f‘(x)=x/2-3. 有时是反函数需要进行分类讨论,如:f(x)=x+1/x,需将x进行分类讨论:在x大于0时的情况,x小于0的情况,多是要注意的。一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的: 1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x; 4、写出原函数及其值域。 实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身。 反函数求解三步骤: 1、换:X、Y换位 2、解:解出Y 3、标:标出定义域kikcik2023-05-25 12:16:454
怎么求反函数?
01 首先看这个函数是不是单调函数,如果不是则反函数不存在。如果是单调函数,则只要把x和y互换,然后解出y即可。例如 y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。 求反函数先判断反函数是否存在,严格单调函数必定有严格单调的反函数,并且二者单调性相同,再判断该函数与它的反函数在相应区间上单调性是否一致,例如 求 y=x^2 的反函数。x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。 反函数的定义是:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,大部分偶函数不存在反函数。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。反函数是对一个给定函数做逆运算的函数,一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x) 。 反函数存在的条件为原函数的函数关系必须是一一对应的(不一定是整个数域内的),它的定义域、值域分别是原函数的值域、定义域。若一个奇函数存在反函数,则它的反函数也是奇函数。因此,在求反函数时要先确定是不是单调函数,如果是就把x和y互换,然后解出y即可。陶小凡2023-05-25 12:16:451
数学反函数怎么求 有例题
把X和Y互换,然后再写成标准形式就好hi投2023-05-25 12:16:456
求反函数的步骤是什么?
求反函数的步骤: 1.求原函数的值域y∈A. 2.将函数y=f(x)的形式反解成x=g(y)的形式. 3.对调x=g(y)中的x,y,并标出定义域x∈A. 这样就得出了反函数y=g(x)(x∈A).豆豆staR2023-05-25 12:16:451
怎么求反函数?
ln(MN)=lnM +lnNln(M/N)=lnM-lnNln(M^n)=nlnMln1=0lne=1注意,拆开后,M,N需要大于0没有 ln(M+N)=lnM+lnN,和ln(M-N)=lnM-lnNlnx 是e^x的反函数,也就是说 ln(e^x)=x 求lnx等于多少,就是问 e的多少次方等于x.苏萦2023-05-25 12:16:451
该函数的反函数怎么求写出具体步骤
y+1=(x-1)²±√(y+1)=x-1x=1±√(y+1)反函数y=1±√(x+1)铁血嘟嘟2023-05-25 12:16:444
求反函数的方法
求反函数的一般步骤如下:1、从原函数式子中解出x用y表示。2、对换x,y。3、标明反函数的定义域。一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣(x) 。反函数y=f ﹣(x)的定义域、值域分别是函数y=f(x)的值域、定义域。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。反函数的性质:(1)函数f(x)与它的反函数图象关于y=x直线对称。(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。(3)一个函数与它的反函数在相应区间上单调性一致。tt白2023-05-25 12:16:441
反函数怎么求
如果不是单调函数需要分区间求解无尘剑 2023-05-25 12:16:445
反函数怎么求
求反函数的方法:(1)从原函数式子中解出x用y表示;(2)对换 x,y ,(3)标明反函数的定义域如:求y=√(1-x) 的反函数 注:√(1-x)表示根号下(1-x) 两边平方,得y²=1-xx=1-y²对换x,y 得y=1-x²所以反函数为y=1-x²(x≥0)说明:反函数里的x是原函数里的y ,原函数中,y≥0,所以反函数里的x≥0。在原函数和反函数中,由于交换了x,y的位置,所以原函数的定义域是反函数的值域,原函数的值域是反函数的定义域。阿啵呲嘚2023-05-25 12:16:441
反函数的求法步骤是什么?怎么写呢?
反函数的求法步骤如下:1、将y=f(x)看成方程,解出x=f-1(y)。2、将x,y互换得y=f-1(x)。3、写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定)。反函数性质1、反函数的定义域和值域分别是原函数的值域和定义域,称为互调性。2、定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数。3、函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称。4、设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。5、函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x)的反函数是y=f(x),称为互反性。6、函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上。余辉2023-05-25 12:16:441
怎么求反函数?求详细讲解,
反函数就是把xy互换然后解出来y二次函数y=ax^2+bx+c x=ay^2+by+c=a(y-b/2a)^2+(4ac-b^2)/4a所以y=[x-(4ac-b^2)/4a]^0.5+b/2a指数函数y=a^x x=a^y y=loga(x)大鱼炖火锅2023-05-25 12:16:442
如何求反函数?
简单一点说就是求出用Y表示X的一个函数,再把X与Y的位置对换。比如说函数:Y=aX+b那么即得到X=(Y-b)/a对换位置即得到反函数:Y=(X-b)/a铁血嘟嘟2023-05-25 12:16:444
反函数的求法三个步骤
反函数的求法步骤如下:1、将y=f(x)看成方程,解出x=f-1(y)。2、将x,y互换得y=f-1(x)。3、写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定)。反函数性质1、反函数的定义域和值域分别是原函数的值域和定义域,称为互调性。2、定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数。3、函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称。4、设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。5、函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x)的反函数是y=f(x),称为互反性。6、函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上。墨然殇2023-05-25 12:16:441
反函数怎么求 反函数的符号是什么
1、求反函数的方法:设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得g(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数。由该定义可以很快得出函数f的定义域D和值域f(D)恰好就是反函数f-1的值域和定义域,并且f-1的反函数就是f,也就是说,函数f和f-1互为反函数。arccos计算公式:cos(arcsinx)=√(1-x^2)。 2、反函数的符号记为f -1(x),在中国的教材里,反三角函数记为arcsin、arccos等等,但是在欧美一些国家,sinx的反函数记为sin-1(x)。kikcik2023-05-25 12:16:431
三角函数反函数求法
x与y的位置相互对调,我们有另一种表示方法:即:y=sinx的反函数:即x=siny 我们习惯把y写在左边,有新的表示方法:即y=arcsinxbikbok2023-05-25 12:16:432
如何求逻辑函数反函数
举一例说明之:若: F = A + BC那么:F" = (A + BC)" = A"(BC)" = A"(B"+ C") = A"B" + A"C"式中 F" 为F的非(逆),也就是F的反函数。总之一个逻辑代数的表达式F或称逻辑函数的反函数F"可用逻辑代数的定理、公式、真值表获得。u投在线2023-05-25 12:16:431
反三角函数求导公式是什么?
反正有函数求导公式是什么?我记得那个都有一个表,然后你可以查一下那个表。韦斯特兰2023-05-25 12:16:4310
求反函数,
题目里可以看出:x>-2, 且y-1是实数,所以y∈R ,(x+2)=e的(y-1)次幂。于是,原题目的反函数是:y= -2+e^(x-1),x属于实数集。bikbok2023-05-25 12:16:432
求反函数的思路与解题技巧
这个问题太笼统,反函数的解题方法有很多种,其中最常用的一种方法是通过y来求x,但是要注意定义域和值域的取值范围。希望这个答案对你有帮助u投在线2023-05-25 12:16:433
反函数的导数如何求?
如果$f$是一个可导函数,并且在某个区间内$f"(x) eq 0$,那么$f$在该区间内是可逆的。设$f$在该区间上的反函数为$g=f^{-1}$,则有:$$g"(y)=frac{1}{f"(x)}$$其中$x=g(y)$。这个公式的意思是,如果$g$是$f$的反函数,则$g$在某个点$y$处的导数等于$f$在$x=g(y)$处的导数的倒数。这个公式的推导可以通过链式法则来证明。因为$f(g(y))=y$,所以有:$$frac{d}{dy}f(g(y))=1$$根据链式法则,左侧可以展开为:$$frac{d}{dy}f(g(y))=f"(g(y))cdot g"(y)$$将上面两个等式联立,得到:$$g"(y)=frac{1}{f"(g(y))}=frac{1}{f"(x)}$$其中$x=g(y)$。因此,反函数的导数可以通过将函数的导数取倒数来求得。此后故乡只2023-05-25 12:16:432
反正弦函数怎么求
y=arcsinx y"=1/√(1-x^2)反函数的导数:y=arcsinx,那么,siny=x,求导得到,cosy *y"=1即 y"=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)。简介:在数学中,反三角函数(偶尔也称为弓形函数(arcus functions),反向函数(antitrigonometric functions)或环形函数(cyclometric functions)是三角函数的反函数(具有适当的限制域)。 具体来说,它们是正弦,余弦,正切,余切,正割和辅助函数的反函数,并且用于从任何一个角度的三角比获得一个角度。 反三角函数广泛应用于工程,导航,物理和几何。反正弦函数(反三角函数之一)为正弦函数y=sinx(x∈[-½π,½π])的反函数,记作y=arcsinx或siny=x(x∈[-1,1])。由原函数的图像和它的反函数的图像关于一三象限角平分线对称可知正弦函数的图像和反正弦函数的图像也关于一三象限角平分线对称。苏萦2023-05-25 12:16:431
反函数的求导法则是什么?
反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求= arcsinx的导函数。首先, 函数y= arcsinx的反函数为x=siny ,所以: y "=1/sin" y= 1/cosy因为x=siny ,所以cosy=V1-x2;所以y "=1/v1-x2。原函数的导数等于反函数导数的倒数设y=f (x)。其反函数为x=g (v)可以得到微分关系式: dy= (df/ dx) dx, dx= (dg/ dy) dy。那么,由导数和微分的关系我们得到:原函数的导数是df/ dx=dy/ dx。反函数的导数是dg/ dy=dx/ dy。所以,可以得到df/ dx=1/ (dg/ dx)。1、反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。2、互为反函数的两个函数的图像关于直线y=x对称。3、原函数若是奇函数,则其反函数为奇函数。4、若函数是单调函数,则-定有反函数,且反函数的单调性与原函数的一致。5、原函数与反函数的图像若有交点,则交点-定在直线y=x上或关于直线y=x对称出现。小白2023-05-25 12:16:421
求出反函数
e^x=y+√(y^2+1)x=ln[y+√(y^2+1)]所以反函数f(x)=ln[x+√(x^2+1)]北营2023-05-25 12:16:422
反函数的导数怎么求?
反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin"y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。扩展资料:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x)。反函数y=f^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。若一函数有反函数,此函数便称为可逆的。hi投2023-05-25 12:16:421
反函数求导法则
如果y =函数f(x):D =(A,B),在区间(F(A)中,f(b)条)的反函数是单调=>可导。小菜G的建站之路2023-05-25 12:16:423
特别的反函数怎么求?例如:lnx的反函数 请列出具体模式。
y=lnx=logex所以x=e^y可桃可挑2023-05-25 12:16:425
求反函数的基本步骤
从原函数式子中解出 x 用 y 表示。对换 x,y 。标明反函数的定义域。一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f﹣(x) 。反函数y=f ﹣(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。hi投2023-05-25 12:16:421
对数函数的反函数如何求?
直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的: 1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x; 4、写出原函数及其值域。 实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身。 反函数求解三步骤: 1、换:X、Y换位 2、解:解出Y 3、标:标出定义域北营2023-05-25 12:16:421
数学上的求一个函数的反函数怎么求
求反函数就求x=? 例如 f(x)=y=x^2 x=正负根号y 则f(x)的反函数是正负根号x 求完后注意定义域和值域 不满足的舍掉 反函数的定义域就是原函数的值域 反函数的值域就是原函数的定义域无尘剑 2023-05-25 12:16:422
求反函数详细解释
在高考试题及平时测试中,经常能碰到分式型函数求值域问题。其表现形式有一元一次式比一元一次式,一元二次式比一元一次式,一元一次式比一元二次式,一元二次式比一元二次式;三次以上的比较少见,如果碰到的话,技巧性也比较强;此外还有f(x)=x+m/x的形式。现在我们就对这些分式函数求值域的问题进行详细探究。一、一元一次式比一元一次式,一元一次式比一元一次式解法有三种:(1)极限法;(2)分离法;(3)反函数法。二、分子分母至少有一个是二元2.1、当x∈R时,或者x没有限制时,可用判别式法来求值域2.2、当x有取值范围限制时,可转化为对勾函数(形如f(x)=ax+b/x(a,b>0)的函数)来求值域三、一元三次式比一元四次式,方法技巧:一元三次式比一元四次式,先用换元法将其转化为一元一次式比一元二次式。四、形如f(x)=x+m/x的函数求值域(1)当m<0时,函数在(-∞,0)或(0,+∞)为均单调递增(2)当m>0时,可利用不等式的性质求解好了,今天的《高中数学:四种类型轻松学会分式函数求值域》就介绍到这里,欢迎继续关注,精彩还将继续!LuckySXyd2023-05-25 12:16:413
如何求一个函数的反函数
求一个函数的反函数的方法如下:先判读这个函数是否为单调函数,若非单调函数,则其反函数不存在。设y=f(x)的定义域为D,值域为f(D)。如果对D中任意两点 x₁ 和 x₂ ,当 x₁<x₂ 时,有 y₁<y₂ ,则称y=f(x)在D上严格单调递增;当 x₁<x₂ 时,有 y₁>y₂,则称 y=f(x) 在D上严格单调递减。再判断该函数与它的反函数在相应区间上单调性是否一致;满足以上条件即反函数存在。拓展:大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。严格单调函数必定有严格单调的反函数,并且二者单调性相同,再判断该函数与它的反函数在相应区间上单调性是否一致,例如 求 y=x^2 的反函数。x=±根号y,则 f(x) 的反函数是正负根号 x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。真颛2023-05-25 12:16:411
反函数怎么求
一般地,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x)。反函数y=f^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f(y)或者y=f﹣¹(x)。存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的并不是幂。余辉2023-05-25 12:16:412
求反函数步骤大学
求反函数步骤大学如下:1、将y=f (x)看成方程,解出x=f"(y) 。2、将x,y互换得y=f" (x) 。3、写出反函数的定义域(可根据原函数的定义域或反函数的解析。另外:分段函数的反函数可以分别求出各段函数的反函数冉合成。反函数定义:设式子y=f (x)表示y是x的函数,定义域为A,值域为C,从式子y=f (x)中解出x,得到式子x=P (y),如果对于y但C中的任何一个值, 通过式子x=° (y),x在A中都有唯一确定的值和它对应。反函数的些性质:反函数的定义域和值域分别是原函数的值域和定义域,称为互调性;定义域上的单调雨数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数。函数y=f (x)的图象与其反函数y=f" (x)的图象关于直线y=x对称,但要注意:函数y=f (x)的图象与其反函数x=9 (y) =f"(y)的图象相同。( 对称性)。bikbok2023-05-25 12:16:411
怎样求反函数啊
反函数定义 般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y).若对于y在C中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x).反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 反函数性质 1)互为反函数的两个函数的图象关于直线y=x对称; 函数及其反函数的图形关于直线y=x对称 (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a^x,x∈{0},但是y=k(常数)无法通过水平线测试,所以没有反函数.).奇函数不一定存在反函数.被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数. (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】. (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(Y)在区间I上单调,可导,且F‘(Y)不等于0,那么他的反函数Y=F"(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F‘(X)]"=1[F"(Y)]". 反函数说明 ⑴在函数x=f"(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f‘(y)中的字母x,y,把它改写成y=f"(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式. ⑵反函数也是函数,因为它符合函数的定义.从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f‘(x),那么函数y=f"(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f‘(x)互为反函数. ⑶互为反函数的两个函数在各自定义域内有相同的单调性.单调函数才有反函数,如二次函数在R内不是反函数,但在其单调增(减)的定义域内,可以求反函数. ⑷ 从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f‘(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f"(x)的值域;函数y=f(x)的值域正好是它的反函数y=f"(x)的定义域(如下表): 函数:y=f(x) 反函数:y=f"(x) 定义域:A C 值域:C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数y=f"(x)就叫做函数y=f(x)的反函数.反函数y=f‘(x)的定义域、值域分别是函数y=f(x)的值域、定义域.开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f"(s)=s/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f‘(x)=x/2-3. 有时是反函数需要进行分类讨论,如:f(x)=x+1/x,需将x进行分类讨论:在x大于0时的情况,x小于0的情况,多是要注意的.一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a 直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的: 1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x; 4、写出原函数及其值域. 实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身. 反函数求解三步骤: 1、换:X、Y换位 解出Y 3、标:标出定义域九万里风9 2023-05-25 12:16:411
怎么求函数的反函数?
反函数的定义是把原函数的x当做反函数的y,把原函数的y当作反函数的x 所以根据这个就很容易求出该函数的反函数即x=2^y/(2^y+1),由于这个可能比较难算,可把2^y当作一个整体再经过计算得2^y=x/(x-1),可把这个化为对数函数就是y=log2[x/(x-1)]就是以2为底x/(x-1)的对数所以该函数的反函数就是y=log2[x/(x-1)]bikbok2023-05-25 12:16:412
反函数的求法。 已知一个函数,如何求这个函数的反函数。
不调换不可能。反函数也是函数,是函数的话,一般用x表示自变量,y表示函数。既是习惯,也是约定。反函数的求法“三部曲”:求原函数的定义域,y>1,以备作反函数的定义域;从y=2^x+1中解出x=log2(y-1);x,与y互换,得反函数y=log2(x-1)阿啵呲嘚2023-05-25 12:16:413
大学反函数怎么求
首先看这个函数是不是单调函数,如果不是则反函数不存在。如果是单调函数,则只要把x和y互换,然后解出y即可。例如:y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。 扩展资料 反函数的定义是:设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的`函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,大部分偶函数不存在反函数。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。小菜G的建站之路2023-05-25 12:16:411
如何求反函数,有什么公式
反函数就是把y换成x x换成y 之后化成y=kx的形式wpBeta2023-05-25 12:16:405
反函数的求解方法是什么?
kikcik2023-05-25 12:16:407
如何求反函数
显然在y=3+a^(x-1)中x=1时,y=3+a^0=3+1=4成立,所以原函数一定经过点(1,4),而反函数的自变量x就是原函数的y,所以反函数的图像一定经过点(4,1).因此P的坐标是(4,1).小菜G的建站之路2023-05-25 12:16:406
反函数的求法步骤
反函数的求法步骤如下:1、将y=f(x)看成方程,解出x=f-1(y)。2、将x,y互换得y=f-1(x)。3、写出反函数的定义域(可根据原函数的定义域或反函数的解析式确定)。反函数性质1、反函数的定义域和值域分别是原函数的值域和定义域,称为互调性。2、定义域上的单调函数必有反函数,且单调性相同(即函数与其反函数在各自的定义域上的单调性相同),对连续函数而言,只有单调函数才有反函数,但非连续的非单调函数也可能有反函数。3、函数y=f(x)的图象与其反函数y=f-1(x)的图象关于直线y=x对称。4、设y=f(x)与y=g(x)互为反函数,如果点(a,b)在函数y=f(x)的图像上,那么点(b,a)在它的反函数y=g(x)的图像上。5、函数y=f(x)的反函数是y=f-1(x),函数y=f-1(x)的反函数是y=f(x),称为互反性。6、函数y=f(x)的图象与其反函数y=f-1(x)的图象的交点,当它们是递增时,交点在直线y=x上。当它们递减时,交点可以不在直线y=x上。NerveM 2023-05-25 12:16:401
求反函数的一般步骤
求反函数一般有三个步骤:(1).把因变量y看作常数,解关于自变量x的方程,求出x。(2).将y和x调换位置。(3).根据原函数的值域求出反函数的定义域。反函数即是映射定义过来的,函数的两要素是表达式和定义域。反函数的求解是高等数学考试中常考的一个基本考点,主要考察什么是反函数、反函数的求解方法以及考试中常考的函数类型。反函数通俗的来讲就是将原来定义函数的映射反过来,原函数的定义域变成值域,原函数的值域变成定义域进行新的映射。反函数的定义域就是原来函数的值域。小白2023-05-25 12:16:402
隐函数求不定积分,求解。高数大师
直接对隐函数两边求全微分,然后得到dx=左边的全微分。把dx带入积分式,然后凑微分得解。这种题型可以参照第二类曲线积分 格林公式那一章 直接对积分式凑分 然后利用牛顿-莱布尼兹公式求解的题型。黑桃花2023-05-25 12:16:393
数学高手指点 什么是隐函数?隐函数求导怎么求
ardim2023-05-25 12:16:392
求隐函数
1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导; 2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x 的导数,也就是说,一定是链式求导; 3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法, 这三个法则可解决所有的求导; 4、然后解出dy\/dx; 5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。西柚不是西游2023-05-25 12:16:391
隐函数怎么求导?怎么化简?
求隐函数的二阶偏导分两步(1)在方程两边先对X求一阶偏导得出Z关于X的一阶偏导,然后再解出Z关于X的一阶偏导。(2)在在原来求过一阶偏导的方程两边对X再求一次偏导,此方程当中一定既含有X的一阶偏导,也含有二阶偏导。最后把(1)中解得的一阶偏导代入其中,就能得出只含有二阶偏导的方程.解出即可。拓展资料:求导法则对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y" 的一个方程,然后化简得到 y" 的表达式。隐函数导数的求解一般可以采用以下方法:方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z) = 0的形式,然后通过(式中F"y,F"x分别表示y和x对z的偏导数)来求解。参考资料:隐函数-百度百科gitcloud2023-05-25 12:16:391
隐函数方程求导
例如:方程2x^2+y^2+z^2=ye^z,求z对x,y的偏导数。可以有以下两种方法:全微分计算偏导数:2x^2+y^2+z^2=ye^z,两边同时求导,得:4xdx+2ydy+2zdz=e^zdy+ye^zdz4xdx+2ydy-e^zdy=(ye^z-2z)dz,(ye^z-2z)dz=4xdx+(2y-de^z)dydz=[4x/(ye^z-2z)]dx+[(2y-e^z)/(ye^z-2z)]dy,则:dz/dx=4x/(ye^z-2z),dz/dy=(2y-e^z)/(ye^z-2z)。构造函数法:F(x,y,z)=2x^2+y^2+z^2-ye^z,则F分别对x,y,z的偏导数为:F"x=4x,F"y=2y-e^z,F"z=2z-ye^z;则:dz/dx=-F"x/F"z=-4x/(2z-ye^z)dz/dx=4x/(ye^z-2z);dz/dy=-F"y/F"z=-(2y-e^z)/( 2z-ye^z)=(2y-e^z)/(ye^z-2z)。u投在线2023-05-25 12:16:391
什么是隐函数 隐函数的解释
1、如果是方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。 2、而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。F(x,y)=0即隐函数是相对于显函数来说的。豆豆staR2023-05-25 12:16:391
隐函数怎么求导? 里面y的导数等于多少
用y‘表示 再反解出了凡尘2023-05-25 12:16:393
隐函数求导怎么求?
隐函数求导怎么求?隐函数求导的方法与一般函数相同,只是在计算过程中需要考虑到未显式表达的变量。例如:假定隐函数 y=f(x,z) ,其中 x 、 z 是已知的变量;则求 f 关于 x 的偏导数时,应使用以下公式: ∂f/∂x = ∂f/∂x ∂f/∂z * (dz/dx) 。左迁2023-05-25 12:16:393