函数

高中数学中导数判断函数单调性及其推导?

1、先判断函数y=f(x)在区间D内是否可导(可微);2、如果可导(可微),且x∈D时恒有f"(x)>0,则函数y=f(x)在区间D内单调增加;反之,若x∈D时,f"(x)<0,则称函数y=f(x)在区间D内单调减少。其他判断函数单调性的方法还有:1、图象观察法如上所述,在单调区间上,增函数的图象是上升的,减函数的图象是下降的。因此,在某一区间内,一直上升的函数图象对应的函数在该区间单调递增;一直下降的函数图象对应的函数在该区间单调递减;2、定义法根据函数单调性的定义,在这里只阐述用定义证明的几个步骤:①在区间D上,任取x1x2,令x1<x2;②作差f(x1)-f(x2);③对f(x1)-f(x2)的结果进行变形处理(通常是配方、因式分解、有理化、通分,利用公式等等);④确定符号f(x1)-f(x2)的正负;⑤下结论,根据“同增异减”原则,指出函数在区间上的单调性。扩展资料:函数单调性的应用:利用函数单调性可以解决很多与函数相关的问题。通过对函数的单调性的研究,有助于加深对函数知识的把握和深化,将一些实际问题转化为利用函数的单调性来处理。1、利用函数单调性求最值求函数的最大(小)值有多种方法,但基本的方法是通过函数的单调性来判定,特别是对于小可导的连续点,开区问或无穷区问内最大(小)值的分析,一般都用单调性来判定。2、利用函数单调性解方程函数单调性是函数一个非常重要的性质,由于单调函数v=f(x)中x与y是一对应的,这样我们就可把复杂的方程通过适当变形转化为型如“f(x)=f(a)”方程,从而利用函数单调性解方程x=a,使问题化繁为简,而构造单调函数是解决问题的关键。3、利用函数单调性证明不等式首先,根据小等式的特点,构造一个单调函数;其次,判别此函数在某区问[a,b]上为单调函数;最后,由单调函数的定义得到要证明的小等式。
再也不做站长了2023-06-03 14:31:402

导数的保号性和函数的单调性有什么关系

导数的单调性和函数的单调性没什么关系不过在求解函数单调性时可能用到导数单调性,因为导数为正值,则函数单调递增;反之亦然。当求解导数正负值或者0点(极值点)时可能用到导数单调性。
康康map2023-06-03 14:31:401

怎样用导数求函数的单调性

首先对函数求导得出其导函数的表达式再分别令导函数大于0和小于0解得的x的范围,就得到了函数的递增和递减区间而有的导函数=0的点需要经过讨论才能判断
Jm-R2023-06-03 14:31:401

函数的单调与导数有什么关系?

函数的单调性与导数的关系:已知函数f(x)在某个区间内可导,则①如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;②如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.利用导数求函数单调区间的基本步骤是:(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.
瑞瑞爱吃桃2023-06-03 14:31:391

如何利用导数判断函数单调性

  利用导数判断函数单调性的步骤如下:   先求出原函数的定义域;对原函数求导;令导数大于零;解出自变量的范围;该范围即为该函数的增区间;同理令导数小于零,得到减区间;若定义域在增区间内,则函数单增;若定义域在减区间内则函数单减,若以上都不满足,则函数不单调。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。   函数的单调性也可以叫做函数的增减性。当函数的自变量在其定义区间内增大或减小时,函数值也随着增大或减小,则称该函数为在该区间上具有单调性,即单调增加或单调减少。
可桃可挑2023-06-03 14:31:391

导数和函数的单调性的关系

可以通过导数法去判断函数单调性
mlhxueli 2023-06-03 14:31:392

函数的单调性与导数是什么?

函数的单调性与导数是以下这些:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间。(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
凡尘2023-06-03 14:31:381

函数单调性与导数有什么关系?

函数的单调性与导数的关系:已知函数f(x)在某个区间内可导,则①如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;②如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.利用导数求函数单调区间的基本步骤是:(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.
凡尘2023-06-03 14:31:381

如果一个函数是单调函数,那么他的导数会怎么样?

倒数要么大于0要么小于0
可桃可挑2023-06-03 14:31:375

如何用导数求函数单调性

用导数求函数单调性:设函数在某个区间有导数,如果在这个区间内y"大于0,那么y=f(x)为这个区间内的增函数;如果在这个区间内y"小于0,那么y=f(x)为这个区间内的减函数.
陶小凡2023-06-03 14:31:371

用导数怎么来判断函数的单调性

f"(x)=0时求的是极值点.当极值点左增右减时,极值点为极大值.当极值点左减右增时,极值点为极小值.极值点不一定为最值点,当函数所在定义域内端点值不大于极值时极大值变为最大值.(最小值同理)f"(x)=0求的是点不考虑单调性,因为一个点是没有单调性的.
北营2023-06-03 14:31:361

怎么用导数判断函数单调性?

函数解析式中含有参数时,求其单调区间问题往往要转化为解含参数的不等式问题,这时应对所含参数进行适当地分类讨论,做到不重不漏,最后要将各种情况分别进行表述。
苏州马小云2023-06-03 14:31:364

怎样用导数求函数单调性

自己看书吧书上讲的很清楚
无尘剑 2023-06-03 14:31:365

高一证明函数单调性用导数怎么证?

已知f(x)=x+1/x,求导得f"(x)=1-1/x^2=(x^2-1)/x^2.再令f"(x)=0,得x=1或x=-1。列表得当x<-1时,f"(x)>0,f(x)单调增。当-11时,f"(x)>0,f(x)单调增。导数表示切线的斜率,当导数大于0,则函数单调增,当导数小于0,则函数单调减。
阿啵呲嘚2023-06-03 14:31:364

用导数判断函数的单调性

楼上正解
Jm-R2023-06-03 14:31:353

如何用导数求函数的单调性

先看是否连续,连续才能可导,然后求导数,求出导数大于0小于零的区间,导数大于零,函数递增导数小于零,函数递减
大鱼炖火锅2023-06-03 14:31:351

函数单调性与导数有什么联系和区别呢?

利用导数求解多项式函数单调性的一般步骤:①确定f(x)的定义域;②计算导数f′(x);③求出f′(x)=0的根;④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间。含义对于可导的函数f(x),xu21a6f"(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。
余辉2023-06-03 14:31:351

用导数求函数单调性怎么求?

令导数的结果等于0就是该函数的拐点,通过拐点前后随机两个数代入计算就可以知道是递增还是递减了。
九万里风9 2023-06-03 14:31:343

导函数单调,原函数单调吗

导函数单调与原函数单调没有必然联系。原函数的单调性和导函数的正负有关。如果导函数值为正,则原函数单调递增;如果导函数值为负,则原函数单调递减。举个反例:原函数为f(x)=x^2,则导函数为f(x)=2x。二次函数是常见函数,二次函数开口向上,在定义域内不单调,在对称轴(y轴)左侧单调递减,y轴右侧单调递增。导函数f(x)=2x是一次函数,一次函数是单调的,斜率为2,单调递增。导函数某种程度上反应的是原函数的斜率,其正负才关系到原函数的单调性。所以,原函数与导函数的单调性直接没有必然联系。
kikcik2023-06-03 14:31:341

如何用导数求函数的单调性和单调区间(简

求出定义域内导数值等于0的点(驻点)及不可导的点,如两者均不存在,则函数是单调函数;求出极值点:判断驻点及不可导点左右一阶导数值的正负有无变化,有为极值点(左-右+为极小值点,左+右-为极大值点),无,则不是极值点。也可以通过求二阶导数(一阶导数再对x求导)来判断:将驻点值代入,求出驻点处的二阶导数值,二阶导数值>0,该驻点为极小值点,二阶导数值<0,该驻点为极大值点,二阶导数值=0,该驻点可能不是极值点,需进一步判断。极小值点左侧为单调递减区间,右侧为单调递增区间,极大值点左侧为单调递增区间,右侧为单调递减区间。类似解不等式的穿针引线法,就可得出极值点(定义域端点)之间单调区间。
水元素sl2023-06-03 14:31:341

怎么用二阶导数判断函数的单调性,和单

根据驻点(一阶导数为0的点)的二阶导数值,可以判断驻点的性质:>0,驻点是极小值点,左侧为单减区间右侧为单增区间;<0,驻点是极大值点,左侧为单增区间右侧为单减区间;=0,驻点有可能不是极值点,单调性有可能不改变。
tt白2023-06-03 14:31:343

如何用“导数法”求函数的单调性?

分段函数需要单独考虑每个分段一阶导数大于零,函数递增一阶导数等于零,有极值(拐点)一阶导数小于零,函数递减
北有云溪2023-06-03 14:31:334

如何用导数求函数单调性

一般地,设函数y=f(x)在某个区间内可导,如果f(x)">0,则f(x)为增函数; 如果f(x)"<0,则f(x)为减函数.
gitcloud2023-06-03 14:31:332

数学导数怎样判断函数单调性

先写出原函数的定义域,然后对原函数求导,令导数大于零,反解出X的范围,该范围即为该函数的增区间,同理令导数小于零,得到减区间。若定义域在增区间内,则函数单增,若定义域在减区间内则函数单减,若以上都不满足,则函数不单调。f"(x)=0时求的是极值点.当极值点左增右减时,极值点为极大值.当极值点左减右增时,极值点为极小值.极值点不一定为最值点,当函数所在定义域内端点值不大于极值时极大值变为最大值.(最小值同理)f"(x)=0求的是点不考虑单调性,因为一个点是没有单调性的.
Jm-R2023-06-03 14:31:331

用导数求函数的单调性,详细步骤,

对给出的函数进行求导,如果导函数恒大于零或恒小于零,则该函数单调,导函数恒大于零,单调递增,恒小于零,单调递减。如果导函数与x轴有交点,则看如果导函数某一段的值大于零,则增,小于零,则减根据上面可以大致画出函数的变化图像,值域范围就能看出来了希望能解决您的问题。
善士六合2023-06-03 14:31:332

怎么用导数判断函数单调性

函数解析式中含有参数时,求其单调区间问题往往要转化为解含参数的不等式问题,这时应对所含参数进行适当地分类讨论,做到不重不漏,最后要将各种情况分别进行表述。
拌三丝2023-06-03 14:31:323

导数的单调性与函数的单调性有何区别

“各是各的单调性”。比如,三次函数y=x^3的导数,是二次函数y=3x^2,而二次函数y=3x^2的导数是y=3x.显然,它们的单调性是不一样的,各是各的。
小白2023-06-03 14:31:322

导数与函数单调性的关系

函数的单调性与导数的关系:已知函数f(x)在某个区间内可导,则①如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;②如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.利用导数求函数单调区间的基本步骤是:(1)确定函数f(x)的定义域;(2)求导数f′(x);(3)由f′(x)>0(或<0)解出相应的x的取值范围.当f′(x)>0时,f(x)在相应的区间内是单调递增函数;当f′(x)<0时,f(x)在相应的区间内是单调递减函数.
墨然殇2023-06-03 14:31:312

怎么用导数来判断函数单调性

利用导数判断函数的单调性的方法利用导数判断函数的单调性,其理论依据如下:设函数在某个区间内可导,如果,则为增函数;如果,则为减函数。如果,则为常数。要用导数判断好函数的单调性除掌握以上依据外还须把握好以下两点:导数与函数的单调性的三个关系我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数在某个区间内可导。1.与为增函数的关系。由前知,能推出为增函数,但反之不一定。如函数在上单调递增,但,∴是为增函数的充分不必要条件。2.时,与为增函数的关系。若将的根作为分界点,因为规定,即抠去了分界点,此时为增函数,就一定有。∴当时,是为增函数的充分必要条件。3.与为增函数的关系。由前分析,为增函数,一定可以推出,但反之不一定,因为,即为或。当函数在某个区间内恒有,则为常数,函数不具有单调性。∴是为增函数的必要不充分条件。函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,特别是研究以下问题时。二.函数单调区间的合并函数单调区间的合并主要依据是函数在单调递增,在单调递增,又知函数在处连续,因此在单调递增。同理减区间的合并也是如此,即相邻区间的单调性相同,且在公共点处函数连续,则二区间就可以合并为一个区间。【例】用导数求函数()的单调区间。解:(用第一种关系及单调区间的合并),当,即或时,∴在,上为增函数,又∵在处连续,且相邻区间的单调性又相同,∴在上为增函数。旧教材很少提到函数单调区间的合并,原因在于教师很难讲,学生很难把握,但是新教材引进函数的连续性和导数之后就很容易说明,也很容易理解了。综之,用导数证明划分函数的单调性是导数最常用、也是最基本的应用,其它重要性如极值、最值等都必须用到单调性。它比用单调性的定义证明要简单许多,划分也容易理解得多。讨论可导函数得单调性可按如下步骤进行:确定的定义域;(2)求,令,解方程求分界点;(3)用分届点将定义域分成若干个开区间;(4)判断在每个开区间内的符号,即可确定的单调性。以下是前几年高考用导数证明、求单调性的题目,举例说明如下:例1设,是上的偶函数。(i)求的值;(ii)证明在上是增函数。(2001年天津卷)解:(i)依题意,对一切有,即,∴对一切成立,由此得到,,又∵,∴。(ii)证明:由,得,当时,有,此时。∴在上是增函数。
黑桃花2023-06-03 14:31:314

如何用导函数判断函数的单调性?

导函数的图象与原函数的图象有关系:1、导函数图像在x轴上方的部分对应原函数的图像单调上升;2、导函数图像在x轴下方的部分对应原函数的图像单调下降;3、导函数图像穿越x轴的位置是原函数的极值点。如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数。如果f(x)在(a,b)内可导,且在区间端点a处的右导数和端点b处的左导数都存在,则称f(x)在闭区间[a,b]上可导,f"(x)为区间[a,b]上的导函数。扩展资料:如果一个函数的定义域为全体实数,即函数在上都有定义。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。和差积商函数的导函数:[f(x) + g(x)]" = f"(x) + g"(x)[f(x) - g(x)]" = f"(x) - g"(x)[f(x)g(x)]" = f"(x)g(x) + f(x)g"(x)[f(x)/g(x)]" = [f"(x)g(x) - f(x)g"(x)] / [g(x)^2]复合函数的导函数设 y=u(t) ,t=v(x),则 y"(x) = u"(t)v"(x) = u"[v(x)] v"(x)例 :y = t^2 ,t = sinx ,则y"(x) = 2t * cosx = 2sinx*cosx = sin2x参考资料:百度百科——导函数
左迁2023-06-03 14:31:311

如何利用导数判断函数单调性

利用导数判断函数单调性的步骤如下: 先求出原函数的定义域;对原函数求导;令导数大于零;解出自变量的范围;该范围即为该函数的增区间;同理令导数小于零,得到减区间;若定义域在增区间内,则函数单增;若定义域在减区间内则函数单减,若以上都不满足,则函数不单调。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。 函数的单调性也可以叫做函数的增减性。当函数的自变量在其定义区间内增大或减小时,函数值也随着增大或减小,则称该函数为在该区间上具有单调性,即单调增加或单调减少。
小菜G的建站之路2023-06-03 14:31:311

导函数的单调性如何判断?

具体回答如下:y"/y=cosxlnx+sinx/xy"=(cosxlnx+sinx/x)y=(cosxlnx+sinx/x)*x^sinx导数的单调性:若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点,需代入驻点左右两边的数值求导数正负判断单调性。若已知函数为递增函数,则导数大于等于零;若已知函数为递减函数,则导数小于等于零。
大鱼炖火锅2023-06-03 14:31:301

导数与函数的单调性是什么?

导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间。(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在,只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。
余辉2023-06-03 14:31:301

导数与函数单调性的关系是什么?

导数和函数的单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0的解集与定义域的交集的对应区间为减区间。运算性质:f(x)与f(x)+a具有相同单调性;f(x)与g(x) = a·f(x)在a>0时有相同单调性,当a<0时,具有相反单调性;当f(x)、g(x)都是增(减)函数时,若两者都恒大于零,则f(x)×g(x)为增(减)函数;若两者都恒小于零,则为减(增)函数;两个增函数之和仍为增函数;增函数减去减函数为增函数;两个减函数之和仍为减函数;减函数减去增函数为减函数;函数值在区间内同号时,增(减)函数的倒数为减(增)函数。
阿啵呲嘚2023-06-03 14:31:301

求问导数为分数怎么求原函数??急急急类似如图这种。

凑 往后面凑
陶小凡2023-06-03 14:31:242

分式函数怎么求函数的导数呢?

方法如下,请作参考:
Chen2023-06-03 14:31:211

log函数的导数是怎样的?

对数函数的导数公式:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)扩展资料性质:定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。
苏州马小云2023-06-03 14:31:161

对数函数的导数公式?

对数函数的导数公式:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)扩展资料性质:定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。
bikbok2023-06-03 14:31:151

请问对数函数的导数公式是什么?

对数函数的导数公式:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)扩展资料性质:定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。
凡尘2023-06-03 14:31:151

对数函数的导数计算过程是什么。

logab=lnb/lna,(lnx)导数=1/x,logax=lnx/lna 导数为1/(xlna)儿子乁 2014-09-21
北有云溪2023-06-03 14:31:152

对数函数导数推导

Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x 因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae所以有 limΔx→0Δy/Δx=loga(e/x)进一步用换底公式 limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1)
无尘剑 2023-06-03 14:31:151

对数函数的导数怎么求?

对数函数的导数公式:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)扩展资料性质:定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。
Jm-R2023-06-03 14:31:141

对数函数的导数公式是什么?

对数函数的导数公式:一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数。底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。(a>1时)如果底数一样,真数越小,函数值越大。(0<a<1时)扩展资料性质:定义域求解:对数函数y=logax 的定义域是{x 丨x>0},但如果遇到对数型复合函数的定义域的求解,除了要注意大于0以外,还应注意底数大于0且不等于1,如求函数y=logx(2x-1)的定义域,需同时满足x>0且x≠1和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}值域:实数集R,显然对数函数无界;定点:对数函数的函数图像恒过定点(1,0);单调性:a>1时,在定义域上为单调增函数;0<a<1时,在定义域上为单调减函数;奇偶性:非奇非偶函数周期性:不是周期函数对称性:无最值:无零点:x=1注意:负数和0没有对数。
九万里风9 2023-06-03 14:31:141

对数函数的导数的证明问题

这是个复合函数,即y=ln[f(x)],其中f(x)=2x^2+3x+1也就是说该函数是由一个对数函数和一个二次函数复合而成的函数,其中对数函数为主体函数,二次函数为附加函数,因此在求复合函数的导数的时候不能只求主体函数的导数,还要求整个复合函数的导数
FinCloud2023-06-03 14:31:142

对数函数的导数

这是个复合函数,即y=ln[f(x)],其中f(x)=2x^2+3x+1也就是说该函数是由一个对数函数和一个二次函数复合而成的函数,其中对数函数为主体函数,二次函数为附加函数,因此在求复合函数的导数的时候不能只求主体函数的导数,还要求整个复合函数的导数
LuckySXyd2023-06-03 14:31:141

对数函数的二分之一次方的导数

设f(x)=g(x)^0.5f(x)"=0.5g(x)^-0.5.g(x)"
墨然殇2023-06-03 14:31:132

数学对数函数求导的推导过程?

ardim2023-06-03 14:31:135

对数函数的导数怎么求?

公式:(lnx)" = 1/x (x>0)(loga(x))" = 1/(xlna) (x>0)
小白2023-06-03 14:31:132

高分悬赏:(高中数学的常用公式):向量、函数、三角函数等;顺便说下数学的解题技巧,。(越多越好)

数学高考基础知识、常见结论详解 一、集合与简易逻辑: 一、理解集合中的有关概念 (1)集合中元素的特征: 确定性 , 互异性 , 无序性 。 集合元素的互异性:如: , ,求 ; (2)集合与元素的关系用符号 , 表示。 (3)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。 (4)集合的表示法: 列举法 , 描述法 , 韦恩图 。 注意:区分集合中元素的形式:如: ; ; ; ; ; ; (5)空集是指不含任何元素的集合。( 、 和 的区别;0与三者间的关系) 空集是任何集合的子集,是任何非空集合的真子集。 注意:条件为 ,在讨论的时候不要遗忘了 的情况。 如: ,如果 ,求 的取值。 二、集合间的关系及其运算 (1)符号“ ”是表示元素与集合之间关系的,立体几何中的体现 点与直线(面)的关系 ; 符号“ ”是表示集合与集合之间关系的,立体几何中的体现 面与直线(面)的关系 。 (2) ; ; (3)对于任意集合 ,则: ① ; ; ; ② ; ; ; ; ③ ; ; (4)①若 为偶数,则 ;若 为奇数,则 ; ②若 被3除余0,则 ;若 被3除余1,则 ;若 被3除余2,则 ; 三、集合中元素的个数的计算: (1)若集合 中有 个元素,则集合 的所有不同的子集个数为_________,所有真子集的个数是__________,所有非空真子集的个数是 。 (2) 中元素的个数的计算公式为: ; (3)韦恩图的运用: 四、 满足条件 , 满足条件 , 若 ;则 是 的充分非必要条件 ; 若 ;则 是 的必要非充分条件 ; 若 ;则 是 的充要条件 ; 若 ;则 是 的既非充分又非必要条件 ; 五、原命题与逆否命题,否命题与逆命题具有相同的 ; 注意:“若 ,则 ”在解题中的运用, 如:“ ”是“ ”的 条件。 六、反证法:当证明“若 ,则 ”感到困难时,改证它的等价命题“若 则 ”成立, 步骤:1、假设结论反面成立;2、从这个假设出发,推理论证,得出矛盾;3、由矛盾判断假设不成立,从而肯定结论正确。 矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题。 适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时。 正面词语 等于 大于 小于 是 都是 至多有一个 否定 正面词语 至少有一个 任意的 所有的 至多有n个 任意两个 否定 二、函数 一、映射与函数: (1)映射的概念: (2)一一映射:(3)函数的概念: 如:若 , ;问: 到 的映射有 个, 到 的映射有 个; 到 的函数有 个,若 ,则 到 的一一映射有 个。 函数 的图象与直线 交点的个数为 个。 二、函数的三要素: , , 。 相同函数的判断方法:① ;② (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑):②换元法:③待定系数法:④赋值法: (2)函数定义域的求法: ① ,则 ; ② 则 ; ③ ,则 ; ④如: ,则 ; ⑤含参问题的定义域要分类讨论; 如:已知函数 的定义域是 ,求 的定义域。 ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。如:已知扇形的周长为20,半径为 ,扇形面积为 ,则 ;定义域为 。 (3)函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如: 的形式; ②逆求法(反求法):通过反解,用 来表示 ,再由 的取值范围,通过解不等式,得出 的取值范围;常用来解,型如: ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; ⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 求下列函数的值域:① (2种方法); ② (2种方法);③ (2种方法); 三、函数的性质: 函数的单调性、奇偶性、周期性 单调性:定义:注意定义是相对与某个具体的区间而言。 判定方法有:定义法(作差比较和作商比较) 导数法(适用于多项式函数) 复合函数法和图像法。 应用:比较大小,证明不等式,解不等式。 奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(-x)的关系。f(x) -f(-x)=0 f(x) =f(-x) f(x)为偶函数; f(x)+f(-x)=0 f(x) =-f(-x) f(x)为奇函数。 判别方法:定义法, 图像法 ,复合函数法 应用:把函数值进行转化求解。 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。 其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期. 应用:求函数值和某个区间上的函数解析式。 四、图形变换:函数图像变换:(重点)要求掌握常见基本函数 五、反函数: (1)定义: (2)函数存在反函数的条件: ; (3)互为反函数的定义域与值域的关系: ; (4)求反函数的步骤:①将 看成关于 的方程,解出 ,若有两解,要注意解的选择;②将 互换,得 ;③写出反函数的定义域(即 的值域)。 (5)互为反函数的图象间的关系: ; (6)原函数与反函数具有相同的单调性; (7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。 如:求下列函数的反函数: ; ; 七、常用的初等函数: (1)一元一次函数: ,当 时,是增函数;当 时,是减函数; (2)一元二次函数: 一般式: ;对称轴方程是 ;顶点为 ; 两点式: ;对称轴方程是 ;与 轴的交点为 ; 顶点式: ;对称轴方程是 ;顶点为 ; ①一元二次函数的单调性: 当 时: 为增函数; 为减函数;当 时: 为增函数; 为减函数; ②二次函数求最值问题:首先要采用配方法,化为 的形式, Ⅰ、若顶点的横坐标在给定的区间上,则 时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得; 时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得; Ⅱ、若顶点的横坐标不在给定的区间上,则 时:最小值在距离对称轴较近的端点处取得,最大值在距离对称轴较远的端点处取得; 时:最大值在距离对称轴较近的端点处取得,最小值在距离对称轴较远的端点处取得; 有三个类型题型: (1)顶点固定,区间也固定。如: (2)顶点含参数(即顶点变动),区间固定,这时要讨论顶点横坐标何时在区间之内,何时在区间之外。 (3)顶点固定,区间变动,这时要讨论区间中的参数. ③二次方程实数根的分布问题: 设实系数一元二次方程 的两根为 ;则: 根的情况 等价命题 在区间 上有两根 在区间 上有两根 在区间 或 上有一根 充要条件 注意:若在闭区间 讨论方程 有实数解的情况,可先利用在开区间 上实根分布的情况,得出结果,在令 和 检查端点的情况。 (3)反比例函数: (4)指数函数: 指数运算法则: ; ; 。 指数函数:y= (a>o,a≠1),图象恒过点(0,1),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。 (5)对数函数: 指数运算法则: ; ; ; 对数函数:y= (a>o,a≠1) 图象恒过点(1,0),单调性与a的值有关,在解题中,往往要对a分a>1和0<a<1两种情况进行讨论,要能够画出函数图象的简图。 注意:(1) 与 的图象关系是 ; (2)比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较。 (3)已知函数 的定义域为 ,求 的取值范围。 已知函数 的值域为 ,求 的取值范围。 六、 的图象: 定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。 七、补充内容: 抽象函数的性质所对应的一些具体特殊函数模型: ① 正比例函数 ② ; ; ③ ; ; ④ ; 三、导 数 1.求导法则: (c)/=0 这里c是常数。即常数的导数值为0。 (xn)/=nxn-1 特别地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k•f(x))/= k•f/(x) 2.导数的几何物理意义: k=f/(x0)表示过曲线y=f(x)上的点P(x0,f(x0))的切线的斜率。 V=s/(t) 表示即时速度。a=v/(t) 表示加速度。 3.导数的应用: ①求切线的斜率。 ②导数与函数的单调性的关系 一 与 为增函数的关系。 能推出 为增函数,但反之不一定。如函数 在 上单调递增,但 ,∴ 是 为增函数的充分不必要条件。 二 时, 与 为增函数的关系。 若将 的根作为分界点,因为规定 ,即抠去了分界点,此时 为增函数,就一定有 。∴当 时, 是 为增函数的充分必要条件。 三 与 为增函数的关系。 为增函数,一定可以推出 ,但反之不一定,因为 ,即为 或 。当函数在某个区间内恒有 ,则 为常数,函数不具有单调性。∴ 是 为增函数的必要不充分条件。 函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点的讨论问题,要谨慎处理。 四单调区间的求解过程,已知 (1)分析 的定义域;(2)求导数 (3)解不等式 ,解集在定义域内的部分为增区间(4)解不等式 ,解集在定义域内的部分为减区间。 我们在应用导数判断函数的单调性时一定要搞清以下三个关系,才能准确无误地判断函数的单调性。以下以增函数为例作简单的分析,前提条件都是函数 在某个区间内可导。 ③求极值、求最值。 注意:极值≠最值。函数f(x)在区间[a,b]上的最大值为极大值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。 f/(x0)=0不能得到当x=x0时,函数有极值。 但是,当x=x0时,函数有极值 f/(x0)=0 判断极值,还需结合函数的单调性说明。 4.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线); (3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 四、不等式 一、不等式的基本性质: 注意:(1)特值法是判断不等式命题是否成立的一种方法,此法尤其适用于不成立的命题。 (2)注意课本上的几个性质,另外需要特别注意: ①若ab>0,则 。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。 ②如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。 ③图象法:利用有关函数的图象(指数函数、对数函数、二次函数、三角函数的图象),直接比较大小。 ④中介值法:先把要比较的代数式与“0”比,与“1”比,然后再比较它们的大小 二、均值不等式:两个数的算术平均数不小于它们的几何平均数。 若 ,则 (当且仅当 时取等号) 基本变形:① ; ; ②若 ,则 , 基本应用:①放缩,变形; ②求函数最值:注意:①一正二定三取等;②积定和小,和定积大。 当 (常数),当且仅当 时, ; 当 (常数),当且仅当 时, ; 常用的方法为:拆、凑、平方; 如:①函数 的最小值 。 ②若正数 满足 ,则 的最小值 。 三、绝对值不等式: 注意:上述等号“=”成立的条件; 四、常用的基本不等式: (1)设 ,则 (当且仅当 时取等号) (2) (当且仅当 时取等号); (当且仅当 时取等号) (3) ; ; 五、证明不等式常用方法: (1)比较法:作差比较: 作差比较的步骤: ⑴作差:对要比较大小的两个数(或式)作差。 ⑵变形:对差进行因式分解或配方成几个数(或式)的完全平方和。 ⑶判断差的符号:结合变形的结果及题设条件判断差的符号。 注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小。 (2)综合法:由因导果。 (3)分析法:执果索因。基本步骤:要证……只需证……,只需证…… (4)反证法:正难则反。 (5)放缩法:将不等式一侧适当的放大或缩小以达证题目的。 放缩法的方法有: ⑴添加或舍去一些项,如: ; ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如: ; ⑷利用常用结论: Ⅰ、 ; Ⅱ、 ; (程度大) Ⅲ、 ; (程度小) (6)换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元。如: 已知 ,可设 ; 已知 ,可设 ( ); 已知 ,可设 ; 已知 ,可设 ; (7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式; 六、不等式的解法: (1)一元一次不等式: Ⅰ、 :⑴若 ,则 ;⑵若 ,则 ; Ⅱ、 :⑴若 ,则 ;⑵若 ,则 ; (2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对 进行讨论: (5)绝对值不等式:若 ,则 ; ; 注意:(1).几何意义: : ; : ; (2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有: ⑴对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;①若 则 ;②若 则 ;③若 则 ; (3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。 (4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。 (6)分式不等式的解法:通解变形为整式不等式; ⑴ ;⑵ ; ⑶ ;⑷ ; (7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。 (8)解含有参数的不等式: 解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性. ②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论. ③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为 (或更多)但含参数,要分 、 、 讨论。 五、数列 本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解. ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类; ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整 体思想求解. (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错. 一、基本概念: 1、 数列的定义及表示方法: 2、 数列的项与项数: 3、 有穷数列与无穷数列: 4、 递增(减)、摆动、循环数列: 5、 数列{an}的通项公式an: 6、 数列的前n项和公式Sn: 7、 等差数列、公差d、等差数列的结构: 8、 等比数列、公比q、等比数列的结构: 二、基本公式: 9、一般数列的通项an与前n项和Sn的关系:an= 10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 11、等差数列的前n项和公式:Sn= Sn= Sn= 当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。 12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k (其中a1为首项、ak为已知的第k项,an≠0) 13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式); 当q≠1时,Sn= Sn= 三、有关等差、等比数列的结论 14、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。 15、等差数列{an}中,若m+n=p+q,则 16、等比数列{an}中,若m+n=p+q,则 17、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。 18、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 19、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、 、 仍为等比数列。 20、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 21、等比数列{an}的任意等距离的项构成的数列仍为等比数列。 22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 23、三个数成等比的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 24、{an}为等差数列,则 (c>0)是等比数列。 25、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。 26. 在等差数列 中: (1)若项数为 ,则 (2)若数为 则, , 27. 在等比数列 中: (1) 若项数为 ,则 (2)若数为 则, 四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。 28、分组法求数列的和:如an=2n+3n 29、错位相减法求和:如an=(2n-1)2n 30、裂项法求和:如an=1/n(n+1) 31、倒序相加法求和:如an= 32、求数列{an}的最大、最小项的方法: ① an+1-an=…… 如an= -2n2+29n-3 ② (an>0) 如an= ③ an=f(n) 研究函数f(n)的增减性 如an= 33、在等差数列 中,有关Sn 的最值问题——常用邻项变号法求解: (1)当 >0,d<0时,满足 的项数m使得 取最大值. (2)当 <0,d>0时,满足 的项数m使得 取最小值。 在解含绝对值的数列最值问题时,注意转化思想的应用。 六、平面向量 1.基本概念: 向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。 2. 加法与减法的代数运算: (1) . (2)若a=( ),b=( )则a b=( ). 向量加法与减法的几何表示:平行四边形法则、三角形法则。 以向量 = 、 = 为邻边作平行四边形ABCD,则两条对角线的向量 = + , = - , = - 且有| |-| |≤| |≤| |+| |. 向量加法有如下规律: + = + (交换律); +( +c)=( + )+c (结合律); +0= +(- )=0. 3.实数与向量的积:实数 与向量 的积是一个向量。 (1)| |=| |·| |; (2) 当 >0时, 与 的方向相同;当 <0时, 与 的方向相反;当 =0时, =0. (3)若 =( ),则 · =( ). 两个向量共线的充要条件: (1) 向量b与非零向量 共线的充要条件是有且仅有一个实数 ,使得b= . (2) 若 =( ),b=( )则 ‖b . 平面向量基本定理: 若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量 ,有且只有一对实数 , ,使得 = e1+ e2. 4.P分有向线段 所成的比: 设P1、P2是直线 上两个点,点P是 上不同于P1、P2的任意一点,则存在一个实数 使 = , 叫做点P分有向线段 所成的比。 当点P在线段 上时, >0;当点P在线段 或 的延长线上时, <0; 分点坐标公式:若 = ; 的坐标分别为( ),( ),( );则 ( ≠-1), 中点坐标公式: . 5. 向量的数量积: (1).向量的夹角: 已知两个非零向量 与b,作 = , =b,则∠AOB= ( )叫做向量 与b的夹角。 (2).两个向量的数量积: 已知两个非零向量 与b,它们的夹角为 ,则 ·b=| |·|b|cos . 其中|b|cos 称为向量b在 方向上的投影. (3).向量的数量积的性质: 若 =( ),b=( )则e· = ·e=| |cos (e为单位向量); ⊥b ·b=0 ( ,b为非零向量);| |= ; cos = = . (4) .向量的数量积的运算律: ·b=b· ;( )·b= ( ·b)= ·( b);( +b)·c= ·c+b·c. 6.主要思想与方法: 本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。 七、立体几何 1.平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 能够用斜二测法作图。 2.空间两条直线的位置关系:平行、相交、异面的概念; 会求异面直线所成的角和异面直线间的距离;证明两条直线是异面直线一般用反证法。 3.直线与平面 ①位置关系:平行、直线在平面内、直线与平面相交。 ②直线与平面平行的判断方法及性质,判定定理是证明平行问题的依据。 ③直线与平面垂直的证明方法有哪些? ④直线与平面所成的角:关键是找它在平面内的射影,范围是{00.900} ⑤三垂线定理及其逆定理:每年高考试题都要考查这个定理. 三垂线定理及其逆定理主要用于证明垂直关系与空间图形的度量.如:证明异面直线垂直,确定二面角的平面角,确定点到直线的垂线. 4.平面与平面 (1)位置关系:平行、相交,(垂直是相交的一种特殊情况) (2)掌握平面与平面平行的证明方法和性质。 (3)掌握平面与平面垂直的证明方法和性质定理。尤其是已知两平面垂直,一般是依据性质定理,可以证明线面垂直。 (4)两平面间的距离问题→点到面的距离问题→ (5)二面角。二面角的平面交的作法及求法: ①定义法,一般要利用图形的对称性;一般在计算时要解斜三角形; ②垂线、斜线、射影法,一般要求平面的垂线好找,一般在计算时要解一个直角三角形。 ③射影面积法,一般是二面交的两个面只有一个公共点,两个面的交线不容易找到时用此法? 具体的公式 http://www.ggjy.net/xspd/xsbk/200408/815.html 高中数学公式大全 http://www.xyjy.cn/Article/UploadFiles/200510/20051013100307519.doc 高中数学常用公式及常用结论 高中数学常用公式及常用结论 1. 元素与集合的关系 , . 2.德摩根公式 . . 5.集合 的子集个数共有 个;真子集有 –1个;非空子集有 –1个;非空的真子集有 –2个. 6.二次函数的解析式的三种形式 (1)一般式 ; (2)顶点式 ; (3)零点式 . 7.解连不等式 常有以下转化形式 . 8.方程 在 上有且只有一个实根,与 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程 有且只有一个实根在 内,等价于 ,或 且 ,或 且 . 9.闭区间上的二次函数的最值 二次函数 在闭区间 上的最值只能在 处及区间的两端点处取得,具体如下: (1)当a>0时,若 ,则 ; , , . (2)当a<0时,若 ,则 ,若 ,则 , . 10.一元二次方程的实根分布 依据:若 ,则方程 在区间 内至少有一个实根 . 设 ,则 (1)方程 在区间 内有根的充要条件为 或 ; (2)方程 在区间 内有根的充要条件为 或 或 或 ; (3)方程 在区间 内有根的充要条件为 或 . 教育网站大全http://www.hongru.org/jywz.htm http://www.shuxueweb.com/ 延安数学教育网站 http://www.aoshu.com/ 数学网站联盟 http://www.hsdczsx.com/Article_Index.asp 快乐数学 http://www.shuxue123.com/ 数学教育教学资源中心 http://www.wxws.cn/ 数学中国 http://www.shmaths.cn/Index.html 麦斯数学网
再也不做站长了2023-06-03 14:31:072

求高一函数这两部分的详细笔记,100分~~~~~谢!

阿啵呲嘚2023-06-03 14:31:053

函数二阶可导,可以用洛必达法则吗?

这句话总体上是正确的。原因:1、洛必达法则3个使用条件:分子分母同趋向于0或无穷大;分子分母在限定的区域内是否分别可导;当两个条件都满足时,再求导并判断求导之后的极限是否存在。2、为什么函数二阶可导却不能用两次洛必达法则? f(x)二阶可导说明存在f(x)二阶导数存在,但它不一定连续,不连续的话二阶导数的极限就不存在,但是f(x)二阶可导说明f(x)一阶导数存在且连续,它的极限也就可以求的。所以只能求一次。求极限的其他方法1、夹逼定理:主要对付的是数列极限,这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。2、两个重要极限的应用:对第一个而言是x趋近0时候的sinx与x比值。第二个就如果x趋近无穷大无穷小都有对有对应的形式,第二个实际上是用于函数是1的无穷的形式,当底数是1的时候要特别注意可能是用第二个重要极限。3、求左右求极限的方式:对付数列极限。例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下,Xn的极限与Xn+1的极限是一样的,应为极限去掉有限项目极限值不变化。以上内容参考:百度百科——洛必达法则
陶小凡2023-06-03 14:31:051

想问一下有没有人知道怎么求狄拉克δ函数的导数

狄拉克δ函数的导数是广义函数(分布函数),其对任何“充分光滑”的且紧支的函数f(x), 狄拉克δ函数的导数乘f(x)的积分等于-f"(0)
九万里风9 2023-06-03 14:30:583

什么是积分上限函数的导数公式

[∫[0,x] f(t)dt]"=f(x)即:变动上限积分对变动上限的导数,等于将变动上限带入被积函数。例:F(x)=∫[0,x] sint/t dt 尽管 sint/t 的原函数 F(x) 无法用初等函数表示,但F(x)的导数却可以根据【变动上限积分求导法则】算出:[F(x)]"=[∫[0,x] sint/t dt ]"=sinx/x一般形式的【变动上限积分求导法则】为:【∫[φ(x) ,ψ(x)] f(t)dt】" = f(φ(x))φ"(x)-f(ψ(x))ψ"(x)设函数y=f(x) 在区间[a,b]上可积,对任意x∈[a,b],y=f(x)在[a,x] 上可积,且它的值与x构成一种对应关系(如概述中的图片所示),称Φ(x)为变上限的定积分函数。扩展资料:如果一个函数的积分存在,并且有限,就说这个函数是可积的。一般来说,被积函数不一定只有一个变量,积分域也可以是不同维度的空间,甚至是没有直观几何意义的抽象空间。定义某些特殊的函数:在某些积分的定义下这些函数不可积分,但在另一些定义之下它们的积分存在。然而有时也会因为教学的原因造成定义上的差别。最常见的积分定义是黎曼积分和勒贝格积分。参考资料来源:百度百科——积分上限函数
水元素sl2023-06-03 14:30:521

不定积分 定积分 和 导数 导函数的关系怎么理解

不定积分就是算原函数,故和求导是相反的过程. 而定积分是一种无限求和.或者你学多一点就会发现这种求和可以归结为到一种叫网的极限中去,所以其实是一种极限过程.
wpBeta2023-06-03 14:30:482

指数函数的定积分的导数的值,是原函数在给定积分区域的上下限的值相

对有积分上下限函数的求导有以下公式:[∫(a,c)f(x)dx]"=0,a,c为常数。解释:对于积分上下限为常数的积分函数,其导数=0.[∫(g(x),c)f(x)dx]"=f(g(x))*g"(x),a为常数,g(x)为积分上限函数,解释:积分上限为函数的求导公式=被积函数以积分上限为自变量的函数值乘以积分上限的导数。[∫(g(x),p(x))f(x)dx]"=f(g(x))*g"(x)-f(p(x))*p"(x),a为常数,g(x)为积分上限函数,p(x)为积分下限函数。解释:积分上下限为函数的求导公式=被积函数以积分上限为自变量的函数值乘以积分上限的导数-被积函数以积分下限为自变量的函数值乘以积分下限的导数。
豆豆staR2023-06-03 14:30:461

什么是积分上限函数的导数公式

F(x)=(1/2)*∫(0,x) (x^2-2xt+t^2)*g(t)dt=(1/2)*[x^2*∫(0,x) g(t)dt-2x*∫(0,x) tg(t)dt+∫(0,x)t^2*g(t)dt]F"(x)=(1/2)*[2x*∫(0,x) g(t)dt+x^2*g(x)-2∫(0,x) tg(t)dt-2x^2*g(x)+x^2*g(x)]=(1/2)*[(2x-2)*∫(0,x) g(t)dt]=(x-1)*∫(0,x) g(t)dt
豆豆staR2023-06-03 14:30:463

函数怎么求导?步骤是怎样的?

展开全部求导公式
北有云溪2023-06-03 14:30:277

怎么求函数的导数?

求导的方法 :(1)求函数y=f(x)在x0处导数的步骤: ① 求函数的增量Δy=f(x0+Δx)-f(x0) ② 求平均变化率 ③ 取极限,得导数。 (2)几种常见函数的导数公式: ① C"=0(C为常数);② (x^n)"=nx^(n-1) (n∈Q); ③ (sinx)"=cosx; ④ (cosx)"=-sinx; ⑤ (e^x)"=e^x;⑥ (a^x)"=a^xIna (ln为自然对数) ⑦ loga(x)"=(1/x)loga(e) (3)导数的四则运算法则: ①(u±v)"=u"±v"②(uv)"=u"v+uv" ③(u/v)"=(u"v-uv")/ v^2 ④[u(v)]"=[u"(v)]*v" (u(v)为复合函数f[g(x)]) (4)复合函数的导数:复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。扩展资料:求导是微积分的基础,同时也是微积分计算的一个重要的支柱。物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如导数可以表示运动物体的瞬时速度和加速度、可以表示曲线在一点的斜率、还可以表示经济学中的边际和弹性。数学中的名词,即对函数进行求导,用  表示。反函数求导法则:若函数  严格单调且可导,则其反函数  的导数存在且  。复合函数求导法则:若  在点x可导  在相应的点u也可导,则其复合函数  在点x可导且  。隐函数求导法则:若  中存在隐函数  ,这里仅是说y为一个x的函数并非说y一定被反解出来为显式表达。即  ,尽管y未反解出来,只要y关于x的隐函数存在且可导,我们利用复合函数求导法则则仍可以求出其反函数。参考资料:百度百科——求导
余辉2023-06-03 14:30:261

如何求函数的导数?

Ntou1232023-06-03 14:30:252

函数在点x0没导数吗?

看了这么多的其他的回答,只有一个回答是正确的,但是太短,还被人说是错的。。。建议思考这个问题的同学,把思维导图画一画,到底是哪一个地方存在矛盾?想清楚了,然后去解决它。会思考这个问题的同学,一般脑海里有几张存在疑问的函数图像,即包含第一类间断点的函数图像,可去间断点和跳跃间断点统称第一类间断点,首先说一下可去间断点,函数在某点的左导数,右导数亦或是导数,定义里面都含有一个fx 0,如果fx在x0点没有定义都用不了,更不用谈导数是多少。之前认为存在导数值的同学一定是惯性思维使用了基本求导公式,认为其存在,如果题目做得多的同学应该会接触到分段函数的求导问题,分段点求导只能用定义去求导,是不能用基本求导公式的。和此问题类似。然后是跳跃间断点,跳跃间断点,虽然可能在fx 0处有定义,但是左右导数必有一个求不出来,不要问我为什么了,自己用定义去求就知道了。那么综上所述,包含第一类间断点的函数在间断点处不存在导数的。那么现在解决了这一个疑问了,实际上会证明可导必连续的同学,那么在左右导数存在时,甚至不需要相等就可以证明函数该点连续。所以以后思考问题的时候就要想,如果在该点不连续,那么左右导数肯定不会都存在。如果你觉得存在了,那肯定是你求导数的方法错了。回答就到此为止了。
苏萦2023-06-03 14:30:201

函数可导必连续,为什么包含第一类间断点的函数不连续?

看了这么多的其他的回答,只有一个回答是正确的,但是太短,还被人说是错的。。。建议思考这个问题的同学,把思维导图画一画,到底是哪一个地方存在矛盾?想清楚了,然后去解决它。会思考这个问题的同学,一般脑海里有几张存在疑问的函数图像,即包含第一类间断点的函数图像,可去间断点和跳跃间断点统称第一类间断点,首先说一下可去间断点,函数在某点的左导数,右导数亦或是导数,定义里面都含有一个fx 0,如果fx在x0点没有定义都用不了,更不用谈导数是多少。之前认为存在导数值的同学一定是惯性思维使用了基本求导公式,认为其存在,如果题目做得多的同学应该会接触到分段函数的求导问题,分段点求导只能用定义去求导,是不能用基本求导公式的。和此问题类似。然后是跳跃间断点,跳跃间断点,虽然可能在fx 0处有定义,但是左右导数必有一个求不出来,不要问我为什么了,自己用定义去求就知道了。那么综上所述,包含第一类间断点的函数在间断点处不存在导数的。那么现在解决了这一个疑问了,实际上会证明可导必连续的同学,那么在左右导数存在时,甚至不需要相等就可以证明函数该点连续。所以以后思考问题的时候就要想,如果在该点不连续,那么左右导数肯定不会都存在。如果你觉得存在了,那肯定是你求导数的方法错了。回答就到此为止了。
水元素sl2023-06-03 14:30:161

数学函数思维导图怎么画

以下回答就以思维导图软件MindManager为例给大家分享以下数学函数思维导图怎么画:这里主要以高中生所学的函数知识为蓝本,在高中里面,学生需要学习函数的概念、性质与微积分这三大块。 图1:函数思维导图框架在概念里面需要明白是它的定义与表示的方法。定义首先要明白它的方程式是y=f(x),x∈A,函数的零点与方程的根是需要掌握的,还有函数、方程以及不等式的思想也是需要牢记。在表示里面,有三个点,分别是解析式、列式、图示。解析式这一块中有待定系数法、构造法、方程组法等方法去求相应的解析式,图示主要是描点法、变化法、性质法等。图2:函数概念思维导图在性质这一块中,区分普通性质和特殊性质,普通性质主要从定义域与值域这两块展开来说,值域主要是求二次函数、分式函数、根式函数等的值域,特殊性就是奇偶性、单调性、对称性与周期性。写到这里,这个用MindManager2020做出来的函数思维导图就快要完成了图3:函数性质思维导图微积分这里就会更难一些,一个很难得点就是导数,还有定积分也会有涉及到。在导数这里,首先需要知道的是它的定义,要明白它的意义是什么,包括几何意义与物理意义,要会在单调性与极值上面去应用导数。图4:函数思维导图高中里面所主要学习的知识点在我们的函数思维导图已经列举的差不多了,但是数学这门学科,需要我们花更多的时间去练习,用MindManager这个软件做一个数学思维导图能够帮助我们理清思路,明白哪些东西是重点,但更多地是需要针对这些重点去练习。
CarieVinne 2023-06-03 14:30:155

函数既有乘法又有除法怎么求导

将分子当做复合函数
阿啵呲嘚2023-06-03 14:30:132

怎样求函数的导数?

(x^n)"=nx^n-1。(x^n)"=nx^n-1是一个公式。当N大于0等于Xn,当N等于0等于1,当N小于0等于X的n绝对值方分之1。导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。常用导数公式:1.y=c(c为常数)y"=0。2.y=x^n y"=nx^(n-1)。3.y=a^x y"=a^xlna,y=e^x y"=e^x。4.y=logax y"=logae/x,y=lnx y"=1/x。5.y=sinx y"=cosx。6.y=cosx y"=-sinx。
豆豆staR2023-06-03 14:30:111

函数f=lnx的导数?

答案是是1/x,就是套公式
NerveM 2023-06-03 14:30:113

求函数的导数公式

导数定义:f"(x)=lim(h->0)[f(x+h)-f(x)]/h,lim(h→0)[f(x+h)-f(x-h)]/2h,lim(h→0)[f(x+2h)-f(x)]/2hlim(h→0)[f(0+h)-f(0-h)]/2h=2lim(h→0)[f(0-h+2h)-f(0-h)]/2h=lim(h->0)2f"(0-h)当f"(x)在x=0处连续才有lim(h->0)2f"(0-h)=2f"(0)扩展资料常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^210、y=arccosx y"=-1/√1-x^2
拌三丝2023-06-03 14:30:101

高中常用函数的导函数。

函数导数公式这里将列举几个基本的函数的导数以及它们的推导过程:1.y=c(c为常数)y"=02.y=x^ny"=nx^(n-1)3.y=a^xy"=a^xlnay=e^xy"=e^x4.y=logaxy"=logae/xy=lnxy"=1/x5.y=sinxy"=cosx6.y=cosxy"=-sinx7.y=tanxy"=1/cos^2x8.y=cotxy"=-1/sin^2x9.y=arcsinxy"=1/√1-x^210.y=arccosxy"=-1/√1-x^211.y=arctanxy"=1/1+x^212.y=arccotxy"=-1/1+x^2在推导的过程中有这几个常见的公式需要用到:1.y=f[g(x)],y"=f"[g(x)]&8226;g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』2.y=u/v,y"=(u"v-uv")/v^23.y=f(x)的反函数是x=g(y),则有y"=1/x"证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^xy"=e^x和y=lnxy"=1/x这两个结果后能用复合函数的求导给予证明。3.y=a^x,⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)⊿y/⊿x=a^x(a^⊿x-1)/⊿x如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。可以知道,当a=e时有y=e^xy"=e^x。4.y=logax⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有lim⊿x→0⊿y/⊿x=logae/x。可以知道,当a=e时有y=lnxy"=1/x。这时可以进行y=x^ny"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,所以y"=e^nlnx&8226;(nlnx)"=x^n&8226;n/x=nx^(n-1)。5.y=sinx⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)&8226;lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx6.类似地,可以导出y=cosxy"=-sinx。7.y=tanx=sinx/cosxy"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x8.y=cotx=cosx/sinxy"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x9.y=arcsinxx=sinyx"=cosyy"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^210.y=arccosxx=cosyx"=-sinyy"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^211.y=arctanxx=tanyx"=1/cos^2yy"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^212.y=arccotxx=cotyx"=-1/sin^2yy"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与4.y=u土v,y"=u"土v"5.y=uv,y=u"v+uv"
FinCloud2023-06-03 14:30:101

常用复合函数的导数公式

  .常用导数公式  1.y=c(c为常数) y"=0  2.y=x^n y"=nx^(n-1)  3.y=a^x y"=a^xlna  y=e^x y"=e^x  4.y=logax y"=logae/x  y=lnx y"=1/x  5.y=sinx y"=cosx  6.y=cosx y"=-sinx  7.y=tanx y"=1/cos^2x  8.y=cotx y"=-1/sin^2x  9.y=arcsinx y"=1/√1-x^2  10.y=arccosx y"=-1/√1-x^2  11.y=arctanx y"=1/1+x^2  12.y=arccotx y"=-1/1+x^2  在推导的过程中有这几个常见的公式需要用到:  1.y=f[g(x)],y"=f"[g(x)]•g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』  2.y=u/v,y"=u"v-uv"/v^2  3.y=f(x)的反函数是x=g(y),则有y"=1/x"  证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。  2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y"=e^x和y=lnx y"=1/x这两个结果后能用复合函数的求导给予证明。  3.y=a^x,  ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)  ⊿y/⊿x=a^x(a^⊿x-1)/⊿x  如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。  所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β  显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。  把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。  可以知道,当a=e时有y=e^x y"=e^x。  4.y=logax  ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x  ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x  因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有  lim⊿x→0⊿y/⊿x=logae/x。  可以知道,当a=e时有y=lnx y"=1/x。  这时可以进行y=x^n y"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,  所以y"=e^nlnx•(nlnx)"=x^n•n/x=nx^(n-1)。  5.y=sinx  ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)  ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)  所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx  6.类似地,可以导出y=cosx y"=-sinx。  7.y=tanx=sinx/cosx  y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x  8.y=cotx=cosx/sinx  y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x  9.y=arcsinx  x=siny  x"=cosy  y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2  10.y=arccosx  x=cosy  x"=-siny  y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2  11.y=arctanx  x=tany  x"=1/cos^2y  y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2  12.y=arccotx  x=coty  x"=-1/sin^2y  y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2  另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与  4.y=u土v,y"=u"土v"  5.y=uv,y=u"v+uv"  均能较快捷地求得结果。
可桃可挑2023-06-03 14:30:101

常用复合函数的导数公式

.常用导数公式  1.y=c(c为常数)y"=0  2.y=x^ny"=nx^(n-1)  3.y=a^xy"=a^xlna  y=e^xy"=e^x  4.y=logaxy"=logae/x  y=lnxy"=1/x  5.y=sinxy"=cosx  6.y=cosxy"=-sinx  7.y=tanxy"=1/cos^2x  8.y=cotxy"=-1/sin^2x  9.y=arcsinxy"=1/√1-x^2  10.y=arccosxy"=-1/√1-x^2  11.y=arctanxy"=1/1+x^2  12.y=arccotxy"=-1/1+x^2  在推导的过程中有这几个常见的公式需要用到:  1.y=f[g(x)],y"=f"[g(x)]•g"(x)『f"[g(x)]中g(x)看作整个变量,而g"(x)中把x看作变量』  2.y=u/v,y"=u"v-uv"/v^2  3.y=f(x)的反函数是x=g(y),则有y"=1/x"  证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。  2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到y=e^xy"=e^x和y=lnxy"=1/x这两个结果后能用复合函数的求导给予证明。  3.y=a^x,  ⊿y=a^(x+⊿x)-a^x=a^x(a^⊿x-1)  ⊿y/⊿x=a^x(a^⊿x-1)/⊿x  如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1+β)。  所以(a^⊿x-1)/⊿x=β/loga(1+β)=1/loga(1+β)^1/β  显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。  把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。  可以知道,当a=e时有y=e^xy"=e^x。  4.y=logax  ⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^x]/x  ⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x  因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有  lim⊿x→0⊿y/⊿x=logae/x。  可以知道,当a=e时有y=lnxy"=1/x。  这时可以进行y=x^ny"=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,  所以y"=e^nlnx•(nlnx)"=x^n•n/x=nx^(n-1)。  5.y=sinx  ⊿y=sin(x+⊿x)-sinx=2cos(x+⊿x/2)sin(⊿x/2)  ⊿y/⊿x=2cos(x+⊿x/2)sin(⊿x/2)/⊿x=cos(x+⊿x/2)sin(⊿x/2)/(⊿x/2)  所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x+⊿x/2)•lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx  6.类似地,可以导出y=cosxy"=-sinx。  7.y=tanx=sinx/cosx  y"=[(sinx)"cosx-sinx(cos)"]/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x  8.y=cotx=cosx/sinx  y"=[(cosx)"sinx-cosx(sinx)"]/sin^2x=-1/sin^2x  9.y=arcsinx  x=siny  x"=cosy  y"=1/x"=1/cosy=1/√1-sin^2y=1/√1-x^2  10.y=arccosx  x=cosy  x"=-siny  y"=1/x"=-1/siny=-1/√1-cos^2y=-1/√1-x^2  11.y=arctanx  x=tany  x"=1/cos^2y  y"=1/x"=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2  12.y=arccotx  x=coty  x"=-1/sin^2y  y"=1/x"=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2  另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与  4.y=u土v,y"=u"土v"  5.y=uv,y=u"v+uv"  均能较快捷地求得结果。
FinCloud2023-06-03 14:30:091

六个常用函数的导数

① C"=0(C为常数函数) ② (x^n)"= nx^(n-1) (n∈R);熟记1/X的导数 ③ (sinx)" = cosx (cosx)" = - sinx (tanx)"=1/(cosx)^2=(secx)^2=1+(tanx)^2 (cotx)"=-1/(sinx)^2=-(cscx)^2=-1-(cotx)^2 (secx)"=tanx·secx (cscx)"=-cotx·cscx (arcsinx)"=1/(1-x^2)^1/2 (arccosx)"=-1/(1-x^2)^1/2 (arctanx)"=1/(1+x^2) (arccotx)"=-1/(1+x^2) (arcsecx)"=1/(|x|(x^2-1)^1/2) (arccscx)"=-1/(|x|(x^2-1)^1/2) ④(sinhx)"=coshx (coshx)"=sinhx (tanhx)"=1/(coshx)^2=(sechx)^2 (coth)"=-1/(sinhx)^2=-(cschx)^2 (sechx)"=-tanhx·sechx (cschx)"=-cothx·cschx (arsinhx)"=1/(x^2+1)^1/2 (arcoshx)"=1/(x^2-1)^1/2 (artanhx)"=1/(x^2-1) (|x|1) (arsechx)"=1/(x(1-x^2)^1/2) (arcschx)"=1/(x(1+x^2)^1/2) ⑤ (e^x)" = e^x (a^x)" = (a^x)lna (ln为自然对数) (Inx)" = 1/x(ln为自然对数) (logax)" =x^(-1) /lna(a>0且a不等于1) (x^1/2)"=[2(x^1/2)]^(-1) (1/x)"=-x^(-2)
tt白2023-06-03 14:30:071

求几个常用函数的导数

y"=[(2x+5)^5]"=5(2x+1)^4(2x+1)"=10(2x+1)^4y"=[(x^2+a^2)^5]"=5(x^2+a^2)^4(x^2+a^2)"=5(x^2+a^2)^4*2x=10x(x^2+a^2)^4y"=[(a^2-x^2)^5]"=5(a^2-x^2)^4(a^2-x^2)"=5(a^2-x^2)^4*(-2x)=-10x(a^2-x^2)^4不懂的话欢迎追问满意的话别忘了采纳哦希望我说的对你有帮助
陶小凡2023-06-03 14:30:062

常用函数的导数表

)"= nx^(n-1) (n∈R);熟记1/X的导数 ③ (sinx)" = cosx (cosx)" = - sinx (tanx)"=1/(cosx)^2=(secx)^2
拌三丝2023-06-03 14:30:064

常用函数的导数都是什么?

常用函数的导数表如图:导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。扩展资料导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。资料来源:导数_百度百科
拌三丝2023-06-03 14:30:061

几种常见的导函数

导数基本公式
墨然殇2023-06-03 14:30:063

如何求一个函数的导数?

导数公式推导过程如下:y=a^x,△y=a^(x+△x)-a^x=a^x(a^△x-1),△y/△x=a^x(a^△x-1)/△x。如果直接令△x→0,是不能导出导函数的,必须设一个辅助的函数β=a^△x-1通过换元进行计算。由设的辅助函数可以知道:△x=loga(1+β)。所以(a^△x-1)/△x=β/loga(1+β)=1/loga(1+β)^1/β。显然,当△x→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。把这个结果代入lim△x→0△y/△x=lim△x→0a^x(a^△x-1)/△x后得到lim△x→0△y/△x=a^xlna。可以知道,当a=e时有y=e^x y"=e^x。常用导数:y = C(C为常数) , y" = 0。y=xn, y" = nxn-1。y = ax, y" = lna*ax。y = ex, y" = ex。y = logax , y" = 1 / (x*lna)。y = lnx , y" = 1/x。y = sinx , y" = cosx。y = cosx , y" = -sinx。y = tanx , y" = 1/cos2x = sec2x。y = cotx , y" = -1/sin2x= -csc2x。y = arcsinx , y" = 1 / √(1-x2)。y = arccosx , y" = - 1 /√(1-x2)。y = arctanx , y" = 1/(1+x2)。
阿啵呲嘚2023-06-03 14:30:041

常用函数的导数表有哪些?

常用函数导数表如下:拓展说明:1. 导数定义:导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。2. 几何意义函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
凡尘2023-06-03 14:30:041

有哪些常见函数的导数表达式?

常用函数导数表如下:拓展说明:1. 导数定义:导数(Derivative)是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f"(x0)或df(x0)/dx。2. 几何意义函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
LuckySXyd2023-06-03 14:30:041

基本函数导数表

基本函数的导数表的话,这个要看你那个函数是什么类型的函数是?是你这个函数的类型不同是正比例还是反比例都有一定关系的导数。
Ntou1232023-06-03 14:30:046

离散函数的二阶导数怎么求

步骤如下:1、二阶导数,是原函数导数的导数,将原函数进行二次求导。一般的,函数y=f(x)的导数yˊ=fˊ(x)仍然是x的函数,则y′′=f′′(x)的导数叫做函数y=f(x)的二阶导数。2、简单说,求导之后再求一次导就是2阶导数了.假如y=f(x),则一阶导数y"=dy/dx=df(x)/dx则二阶导数y“=dy‘/dx=[d(dy/dx)]/dx=d2y/dx2=d2f(x)/dx2
瑞瑞爱吃桃2023-06-03 14:29:561

一个函数是几阶导数咋求

所谓二阶导数,即原函数导数的导数.于是,假如一阶导数还能继续求导,那么当然就有二阶导数啦.你给的函数进行一阶求导以后,显然可以继续求导(它没有变成常数就可继续).二阶导数是比较理论的、比较抽象的一个量,它不像一阶导数那样有明显的几何意义,因为它表示的是一阶导数的变化率.在图形上,它主要表现函数的凹凸性,直观的说,函数是向上突起的,还是向下突起的.
hi投2023-06-03 14:29:541
 首页 上一页  70 71 72 73 74 75 76 77 78 79 80  下一页  尾页