帮忙求下三角函数的值域求函数y=cos^2x-sinx的值域.特别是求值域的那几步?
由y=cos^2x-sinx y=1-sin^2x-sinx =-(sin^2x+2*(1/2)*sinx+1/4)+5/4 =-(sinx+(1/2))^2+(5/4) 而:-1≤sinx≤1 -1/2≤sinx+(1/2)≤3/2 所以:0≤|sinx+(1/2)|≤3/2 所以:-(3/2)^2≤-(sinx+(1/2))^2)≤0 所以:-(3/2)^2+(5/4)≤-(sinx+(1/2))^2)+(5/4)≤5/4 即:-1≤y≤5/4,9,很简单,但是要画图就麻烦了,我也不是求分数来的,跟你说下你应该明白。 原式=1-sin^2x-sinx 令sinx=t,则原式=1-t^2-t,这是一个二元一次方程,也就是一条抛物线,而t=sinx属于(-1,1)。 本题就变为求二次函数在给定区间上求最值为题,这个你应该会吧。 求出来的最值就是值域...,0,这写过程就太麻烦了啊 想用音频教你,0,善士六合2023-06-27 09:51:061
三角函数在某一区间求值域?
先熟悉各个三角函数的图象及其性质,比如定义域、值域等。然后可用整体代换法来求解,比如求y=sin(2x+π/6)在区间π/4到π/3的值域,先求出2x+π/6的范围,可求得范围为2π/3到5π/6之间,接下来就是应用三角函数图象的时候了。把2x+π/6看做一个整体t,问题就转换为求sint的在区间2π/3到5π/6的值域,这在三角函数图象上可以求出。如果函数前面有常数A,比如y=2sin(2x+π/6),那就在所求结果左右两边同乘以2,即是最后结果。人类地板流精华2023-06-27 09:51:051
三角函数的定义域是什么?
sin(x),cos(x)的定义域为R,值域为〔-1,1〕。tan(x)的定义域为x不等于π/2+kπ,值域为R。cot(x)的定义域为x不等于kπ,值域为R。y=a·sin(x)+b·cos(x)+c的值域为[c-√(a²+b²),c+√(a²+b²)]。简介三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。陶小凡2023-06-27 09:51:041
三角函数的定义域,值域,单调区间,周期,奇偶性怎么求?
、函数的定义 (1)传统定义:如果在某个变化过程中有两个变量x和y,并且对于x在某个范围内的每一个确定的值,按照某个对应法则,y都有唯一确定的值和它对应,那么把y叫做x的函数,x叫做自变量,和x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。y是x 的函数,可以记作y =f(x)(f表示对应法则)。 (2)近代定义:设A、B都是非空的数的集合,f是从A到B的一个对应法则,那么A到B的映射f : A→B就叫做A到B的函数,记作y =f(x),其中x 83 A ,y83B。原象的集合A叫做函数f(x)的定义域,象的集合C叫做函数f(x)的值域,显然C82 B。 注意①由函数的近代定义可知,函数是数集间的映射。 ②对应法则f是联系x、y的纽带,是函数的核心,常用一个解析式表示,但在不少问题中,对应法则f也可能不便用或不能用上个解析式来表示,而是采用其他方式(如数表或图象等)。定义域(或原象集合)是自变量的取值范围,它是函数的一个不可缺少的组成部分,它和对应法则是函数的两个重要因素。定义域不同而解析式相同的函数,应看作是两个不同的函数。 ③f(a)与f(x)的涵义是不同的,f(a)表示自变量x=a时所得的函数值,它是一个常量,而f(x)是x的函数,是表示对应关系的。 2、函数的性质 (1)函数的单调性 设y =f(x)是给定区间上的一个函数, 是给定区间上的任意两个值,且x1<x2,如果都有f(x1)<f(x2),则称f(x)在这个区间上是增函数(也称f(x)在这个区间上单调递增);如果都有f(x1)f(x2),则称f(x)在这个区间上是减函数(也称f(x)在这个区间上单调递减)。 如果函数y =f(x)在某个区间上是增函数或减函数,就说f(x)在这一区间上具有(严格)单调性,这一区间叫做f(x)的单调区间。 (2)函数的奇偶性 ①如果对于函数定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 ②如果对于函数定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 奇函数的图象关于原点成中心对称图形;偶函数的图象关于y轴成轴对称图形。 3、反函数(1)逆映射:设f : A→B是集合A到集合B上的一一映射,如果对于B中的每一个元素b,使b在A的原象a和它对应;这样所得的映射叫做映射f : A→B的逆映射,记作:f ^-1: A→B。 注:映射f : A→B也是映射f ^-1: A→B的逆映射,而且f ^-1: A→B 也是一一映射(从B到A上的一一映射)。 (2)如果确定函数y =f(x)的映射f : A→B是f(x)的定义域A到值域B上的一一映射,那么这个映射的逆映射f ^-1: A→B所确定的函数x=f^-1(y)叫做函数y =f(x)的反函数。 函数y =f(x)的定义域、值域分别是函数x=f^-1(y)的值域、定义域。 函数y =f(x)的反函数,习惯上写成y=f^-1(x)。 一般地,求函数y =f(x)的反函数的方法是先由y =f(x)解出x=f^-1(y),然后把x=f^-1(y)改写成y=f^-1(x)。 函数y =f(x)和其反函数y=f^-1(x)的图象关于直线y=x对称。 三角函数的图象和性质是平面三角的主体内容,它是代数中学过的函数的重要补充.本章复习的重点是进一步熟练和运用代数中已学过的研究函数的基本理论和方法,与三角变换配合由三角函数组成的较复杂函数的性质,在诸多性质中,三角函数的周期性和对应法则的“多对一”性,又是这里的特点所在,复习中不仅要注意知识、方法的综合性,还要注意它们在数学、生产、生活中的应用. 周期函数和最小正周期是函数性质研究的新课题,不仅要了解它们的意义,明确周期函数,函数值的变化规律,还要掌握周期性的研究对周期函数性质研究的意义,并会求函数的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期. 三角函数指的是,,,等函数,了解它们的图象的特征,会正确使用“五点法”作出它们的图象,并依据图象读出它们的性质,是本章的基础.对于性质的复习,不要平均使用力量,只要强调已学函数理论、方法的运用,强调数形结合的思想,而要把重点放在周期函数表达某些性质的规范要求上.例如,对于,怎么表述它的递增(减)区间,怎么表述它取最大(小)值时的取值集合,怎么由已知的函数值的取值范围,写出角的取值范围来,等等.还可对性质作些延伸,例如,研究它们的无数条对称轴的表示,无数个对称中心的表示等等. 正弦型函数是这里研究的又一个重点,除了会用“五点法”画出它的简图外,还要从图象变换的角度认识它与的图象的关系,对于三种基本的图象变换(平移变换,伸缩变换,对称变换)进一步进行复习和适当提交. 本章复习还要注意适当提交起点,注意把简单的三角变换与有关函数的性质结合起来,注意把三角函数和代数函数组合起来的综合性研究,注意在函数图象和单位圆函数线这两工具中的综合,择优使用.注意从数学或实际问题中概括出来的与正弦曲线有关的问题的研究,并注意立体几何、复数、解析几何等内容,对平面三角要求的必要准备的复习. 本章中数学思想最重要的是数形结合,另外换元的思想,等价变换和化归的思想,以及综合法、分析法、待定系数法等等,在复习中应有所体现. 反函数总是相对原函数而言的,原函数如果单调,反函数也单调(当然并不是单调性完全相同),原函数定义域就是反函数的值域,原函数的值域就是反函数的定义域。其他还有周期性,对称性,都要针对原函数来考虑。 煌枷窬⑺南笙铁血嘟嘟2023-06-27 09:51:031
求 高中,必修4,三角函数,sin,cos,tan的定义域,值域,奇偶性,周期,单调性,零点…
1、sinx,定义域:x∈(-∞,∞);值域:sinx∈[-1,1];奇偶性:奇函数;最小正周期:2π;单调增区间:x∈(2kπ-π/2,2kπ+π/2)、单调减区间:x∈(2kπ+π/2,2kπ+3π/2),其中k∈Z(下同);零点:x=kπ。2、cosx,定义域:x∈(-∞,∞);值域:cosx∈[-1,1];奇偶性:偶函数;最小正周期:2π;单调减区间:x∈(2kπ,2kπ+π)、单调增区间:x∈(2kπ+π,2kπ+2π);零点:x=kπ+π/2。3、tanx,定义域:x∈(kπ-π/2,kπ+π/2);值域:tanx∈(-∞,∞);奇偶性:奇函数;最小正周期:π;单调减区间:x∈(kπ-π/2,kπ+π/2);零点:x=kπ。铁血嘟嘟2023-06-27 09:51:032
三角函数最值的求法?
我想楼主是高二理科生吧,本人今年毕业,对于数学也可以吧!三角函数值域(最值)的几种求法有关三角函数的值域(最值)的问题是各级各类考试的热点之一,这类问题的解决涉及到化归、转换、类比等重要的数学思想,采取的数学方法包括易元变换、问题转换、等价化归等常用方法。掌握这类问题的解法,不仅能加强知识的纵横联系,巩固基础知识和基本技能,还能提高数学思维能力和运算能力。一、 合理转化,利用有界性求值域例1、求下列函数的值域:(1) (2)(3) (4) 解析:(1)根据 可知:(2)将原函数的解析式化为: ,由 可得:(3) 原函数解析式可化为: 可得:(4)根据 可得:二、单调性开路,定义回归例2、求下列函数的值域:(1) (2)(3) (4)三、 抓住结构特征,巧用均值不等式例4、四、易元变换,整体思想求解五、巧妙变形,利用函数的单调性六、运用模型、数形结合,还有些小技巧,降次,辅助角公式变换,还有单调性求法,希望能帮到你哦!望采纳!纯手打。hi投2023-06-27 09:51:012
三角函数的值域
如图所示:三角函数值(trigonometric function)是数学中属于初等函数中的超越函数的一类函数。其本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。它有六种基本函数。函数名正弦余弦正切余切正割余割。符号 sin cos tan cot sec csc。正弦函数sin(A)=a/c。余弦函数cos(A)=b/c。正切函数tan(A)=a/b。余切函数cot(A)=b/a。其中a为对边,b为邻边,c为斜边。余辉2023-06-27 09:51:001
已知三角函数,求x的值域?
解:1、sinx+cosx=√2(sinx*√2/2+cosx*√2)因为cosx=√2/2,sinx=√2/2所以sinx+cosx=√2(sinxcosπ/4+cosxsinπ/4)=√2sin(x+π/4)2、sinx+cosx=√2(√2/2 * sinx+√2/2 * cosx)=√2(sinxcos45度+cosxsin45度)=√2sin(x+45度)三角函数定义域正弦函数y=sinx·x∈R余弦函数y=cosx·x∈R正切函数y=tanx·x≠kπ+π/2,k∈Z余切函数y=cotx·x≠kπ,k∈Z正割函数y=secx·x≠kπ+π/2,k∈Z余割函数y=cscx·x≠kπ,k∈Z康康map2023-06-27 09:50:591
三角函数的值域都是什么意思?
三角函数的定义域如下:1、sin(x),cos(x)的定义域为R,值域为〔-1,1〕。2、tan(x)的定义域为x不等于π/2+kπ,值域为R。3、cot(x)的定义域为x不等于kπ,值域为R。4、y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]。相关信息:常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。苏州马小云2023-06-27 09:50:591
怎么求三角函数的极值以及值域和定义域
解:三角函数的定义域,必定保证三角函数有意义。如y=tanx定义域为{x|x≠kπ+π/2},又如y=1/sinx定义域满足sinx≠0,即定义域为{x|x≠kπ}至于三角函数极值,则在定义域内,导函数y"=0时,x的取值为x=a,极值为y=f(a).三角函数值域,则先明确定义域,在定义域内,分别计算出极值和端点值,进行比较,即可得到值域。(对于连续可导函数有效,连续非可导函数,转化为几段函数,分别求取值域,再取交集)北有云溪2023-06-27 09:50:581
三角函数值域是哪里啊?
三角函数的定义域如下:1、sin(x),cos(x)的定义域为R,值域为〔-1,1〕。2、tan(x)的定义域为x不等于π/2+kπ,值域为R。3、cot(x)的定义域为x不等于kπ,值域为R。4、y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]。三角函数如下:正弦sin=对边比斜边。余弦cos=邻边比斜边。正切tan=对边比邻边。1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。2、余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。3、在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。黑桃花2023-06-27 09:50:581
怎么求三角函数的值域和最值?
先用辅助角公式,在求CarieVinne 2023-06-27 09:50:574
如何求三角函数的值域?
sin(A)=B 则 A=arcsin(B)cos(A)=B 则 A=arccos(B)tan(A)=B 则 A=arctan(B)rccosx=arctanx=t则有cost=tant=x,即sint/cost=sint/x=x可得sint=x^2根据(sint)^2+(cost)^2=1得:x^2+x-1=0解得x=(-1+根号5)/2 或 x=(-1-根号5)/2同角三角函数(1)平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)(2)积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα北有云溪2023-06-27 09:50:561
怎样求三角函数的值域
问题一:如何求三角函数的值域 通过画图或者观察表达式和定义域。不过在这一切之前你得记住一些基本的 比如sinx,cosx当定义域为R的时候值域为【-1,1】,tanx的值域为负无穷到正无穷之类的,还有各个特值点对应的数字比如sinπ/3啊sinπ/6之类的。 然后遇到像Asin(wx+&)这样的,如果定义域没有限制就是【-A,A】啦 如果有限制的话,可以采取先算特值点,画图,然后判断值域的方法。 如果熟练的话,直接观察也就可以出答案的 tan的如法炮制 问题二:三角函数定义域值域怎么求的? 一般来说 sinx cosx 的值域为R,tanx为 x不等于2kπ+π/2. 其中k为整数,复合函数将三角函数后的函数看做x即可,值域的话,没有特殊说明sinx cosx 是[-1,1] tanx是R,有定义域的话,结合图像,复合函数的话,应将三角函数里的一元函数的值域看成其定义域 问题三:三角函数的值域怎么求 哪个三角函数的?九万里风9 2023-06-27 09:50:551
如何求三角函数的值域
通过画图或者观察表达式和定义域。不过在这一切之前你得记住一些基本的比如sinx,cosx当定义域为R的时候值域为【-1,1】,tanx的值域为负无穷到正无穷之类的,还有各个特值点对应的数字比如sinπ/3啊sinπ/6之类的。然后遇到像Asin(wx+&)这样的,如果定义域没有限制就是【-A,A】啦如果有限制的话,可以采取先算特值点,画图,然后判断值域的方法。如果熟练的话,直接观察也就可以出答案的tan的如法炮制wpBeta2023-06-27 09:50:551
如何求三角函数值域
求三角函数值域方法如下:一般来说sinx cosx的值域为R,tanx为x不等于2kπ+π/2.其中k为整数,复合函数将三角函数后的函数看做x即可,值域的话,没有特殊说明sinx cosx是[-1,1]tanx是R,有定义域的话,结合图像,复合函数的话,应将三角函数里的一元函数的值域看成其定义域。拓展资料如下:三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。wpBeta2023-06-27 09:50:471
三角函数值域
这里考察了函数的有界性最大值3 最小值1meira2023-06-27 09:50:463
三角函数值值域咋求
你最好画个图像来分析meira2023-06-27 09:50:454
三角函数求值域.最值和单调性
依据图象,要记住正弦函数y=sinz的值域,单调性,最值。对于y=sin^2ωx+√3sinωxcosωx,化成y=Asin(ωx+φ)(A>0,ω>0)的形式,再求值域,最值、单调性,依据正弦函数y=sinz的值域,最值、单调性。例如,求sin(ωx+φ)的增区间,由于sinz单调递增区间是[2kπ-π/2,2kπ+π/2]. k∈Z, 令z=ωx+φ,则sin(ωx+φ)的单调递增区间是2kπ-π/2≤ωx+φ≤2kπ+π/2. k∈Z,亲,解出x得单调区间.同理,余弦,余弦型。真颛2023-06-27 09:50:441
求三角函数的值域问题函数y=cos^2x
因为:-1≤cosx≤1所以:0≤(cosx)^2≤1故,所求值域为y∈[0,1]。无尘剑 2023-06-27 09:50:441
三角函数及反三角函数的定义域和值域怎么确定
三角函数主要是三个,正弦函数的定义域是(0~∞),他的值域是(-1~1);余弦函数的定义域也是(0~∞),值域为(-1~1);正切函数的定义域是{x≠kπ+π/2},值域是(0~∞),但具体问题还是要具体分析。反三角函数的定义域和值域与三角函数的定义域和值域正好相反,但是在具体的问题中还是具体分析哦!LuckySXyd2023-06-27 09:50:431
三角函数求值域怎么做呀?
解:这是典型的有和有积的关于求三角函数的值域题,步骤如下:先令t=sinx+cosx,则sinxcosx=(t^2-1)/2,,之后再用判别式法即可求解答案!(这应该是最简单的方法!不信你试试^-^)不懂追问...康康map2023-06-27 09:50:422
三角函数定义域是什么?
1.sin(x),cos(x)的定义域为R,值域为〔-1,1〕。2.tan(x)的定义域为x不等于π/2+kπ,值域为R。3.cot(x)的定义域为x不等于kπ,值域为R。4.y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]。凡尘2023-06-27 09:50:412
反三角函数的定义域和值域?
f(x)=arccos(3x+5)-1<=3x+5<=1得-2<=x<=-4/3所以f(x)的定义域是[-2,-4/3]根据反三角函数定义可知,f(x)必须单调所以令0<=3x+5<=π得到-5/3<=x<=(π-5)/3所以f(x)的值域是[-5/3,(π-5)/3]Jm-R2023-06-27 09:50:402
高一三角函数求值域问题
[0,2]meira2023-06-27 09:50:397
三角函数的定义域、值域、周期性及图表
我这里有一份是人家考研的网站上下下来的收集的还挺全的.是基本初等函数的.你看看行不行..呵呵...还有需要的可以发邮件到我邮箱我可以传给你们chenxiaohuan@yahoo.cnhi投2023-06-27 09:50:392
求解三角函数区间、定义域
第一个题目你要知道先提出负号,然后结合标准正弦的增减区间,实际上也就是把π/3-2X看做一个整体,解不等式就可以了。(1)∵Y=sin(π/3-2X)=-sin(2X-π/3),∴Y=sin(π/3-2X)的单调递减区间就是Y=sin(2X-π/3)的递增区间,由2kπ-π/2≤2X-π/3≤2kπ+π/2(k∈Z)得kπ-π/12≤X≤kπ+5π/12(k∈Z),∴Y=sin(π/3-2X)的单调递减区间为[kπ-π/12,kπ+5π/12](k∈Z).(2)1-tan2x不等于0即tan2x不等于12x不等于憨户封鞠莩角凤携脯毛kπ+π/4x不等于kπ/2+π/8小菜G的建站之路2023-06-27 09:50:332
三角函数及反三角函数的定义域和值域怎么确定
由反三角函数的定义即可推知:1)设sinx=a,x∈[-pai/2,pai/2],a∈[-1,1],则x=arcsina所以y=arcsinx的定义域:[-1,1],值域:[-pai/2,pai/2]2)同样反余弦值域是:[0,pai],反正切值域:(-pai/2,pai/2)再回答:只有单调函数才可能有反函数,准确地说,只有一一映射才有逆映射若x∈r,那么a=0时,arcsina=0,派,还是…这时y=arcsinx对于同一个x的值,就有多个y和他对应,这不满足函数定义。Chen2023-06-27 09:50:321
如何求规定定义域上的三角函数的值域
如下为标准式: sin(x),cos(x)的定义域为R,值域为〔-1,1〕 tan(x)的定义域为x不等于π/2kπ,值域为R cot(x)的定义域为x不等于kπ,值域为R这只是标准的定义.其中的X是变量.只要把变量X带入以上定义域中.求出真正的X就行!还是给你举个例子吧!sin(3X),求这个的定义域.的话.只要3X属于R,求出X也属于R求这个值域:如果X有定义域限制,比如说.X属于(π/2,π)]那就是说3X属于(3π/2,3π),那么画正弦函数图.就可以知道定义域在(-1,1)不知道你能理解不.不理解可以加QQ,再教你FinCloud2023-06-27 09:50:321
求三角函数的值域
y^2=sin^2(x)/(5+4cosx), 令t=(5+4cosx),∵cosx∈[-1,1],∴t∈[1,9]则cosx=(t-5)/4,sin^2(x)=1- cos^2(x)=1-(t-5)^2/16,y^2=sin^2(x)/(5+4cosx)=[ 1-(t-5)^2/16]/t,16y^2=[ 16-(t-5)^2]/t,16y^2=(-t^2+10t-9)/t,16y^2=10-(t+9/t))因为函数t+9/t的图像是个“√”,它在(1,3)上递减,(3,+∞)上递增,∴t∈[1,9]时,函数t+9/t的最小值是6(t=3时取到),最大值是10(t=1或9时取到)从而可知10-(t+9/t))∈[0,4]即16y^2∈[0,4]y∈[-1/2,1/2]。LuckySXyd2023-06-27 09:50:281
三角函数求值域问题,需要详细解析及答案
x∈【-π/4,π/4】-π/3≤2x+π/6≤2π/3当2x+π/6=π/2,即x=π/6时,sin(2x+π/6)取得最大值为1,f(x)max=√3当2x+π/6=-π/3,即x=-π/4时,sin(2x+π/6)取得最小值-√3/2,f(x)min=-3/2值域为【-3/2,√3】真颛2023-06-27 09:50:281
高一三角函数问题 值域问题
原式=cos2x值域:【-1,1】康康map2023-06-27 09:50:284
三角函数值域怎么求
y是x 的函数,可以记作y =f(x)(f表示对应法则)。 (2)近代定义:设A、B都是非空的数的集合,f是从A到B的一个对应法则,那么A到B的映射f : A→B就叫做A到B的函数,记作y =f(x),其中x 83 A ,y83B。原象的集合A叫做函数f(x)的定义域,象的集合C叫做函数f(x)的值域,显然C82 B。 注意①由函数的近代定义可知,函数是数集间的映射。 ②对应法则f是联系x、y的纽带,是函数的核心,常用一个解析式表示,但在不少问题中,对应法则f也可能不便用或不能用上个解析式来表示,而是采用其他方式(如数表或图象等)。定义域(或原象集合)是自变量的取值范围,它是函数的一个不可缺少的组成部分,它和对应法则是函数的两个重要因素。定义域不同而解析式相同的函数,应看作是两个不同的函数。 ③f(a)与f(x)的涵义是不同的,f(a)表示自变量x=a时所得的函数值,它是一个常量,而f(x)是x的函数,是表示对应关系的。 2、函数的性质 (1)函数的单调性 设y =f(x)是给定区间上的一个函数, 是给定区间上的任意两个值,且x1<x2,如果都有f(x1)<f(x2),则称f(x)在这个区间上是增函数(也称f(x)在这个区间上单调递增);如果都有f(x1)>f(x2),则称f(x)在这个区间上是减函数(也称f(x)在这个区间上单调递减)。 如果函数y=f(x)在某个区间上是增函数或减函数,就说f(x)在这一区间上具有(严格)单调性,这一区间叫做f(x)的单调区间。 (2)函数的奇偶性 ①如果对于函数定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。 ②如果对于函数定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。 奇函数的图象关于原点成中心对称图形;偶函数的图象关于y轴成轴对称图形。 3、反函数(1)逆映射:设f : A→B是集合A到集合B上的一一映射,如果对于B中的每一个元素b,使b在A的原象a和它对应;这样所得的映射叫做映射f : A→B的逆映射,记作:f ^-1: A→B。 注:映射f : A→B也是映射f ^-1: A→B的逆映射,而且f ^-1: A→B 也是一一映射(从B到A上的一一映射)。 (2)如果确定函数y=f(x)的映射f : A→B是f(x)的定义域A到值域B上的一一映射,那么这个映射的逆映射f ^-1: A→B所确定的函数x=f^-1(y)叫做函数y=f(x)的反函数。 函数y=f(x)的定义域、值域分别是函数x=f^-1(y)的值域、定义域。 函数y=f(x)的反函数,习惯上写成y=f^-1(x)。 一般地,求函数y=f(x)的反函数的方法是先由y =f(x)解出x=f^-1(y),然后把x=f^-1(y)改写成y=f^-1(x)。 函数y=f(x)和其反函数y=f^-1(x)的图象关于直线y=x对称。 三角函数的图象和性质是平面三角的主体内容,它是代数中学过的函数的重要补充.本章复习的重点是进一步熟练和运用代数中已学过的研究函数的基本理论和方法,与三角变换配合由三角函数组成的较复杂函数的性质,在诸多性质中,三角函数的周期性和对应法则的“多对一”性,又是这里的特点所在,复习中不仅要注意知识、方法的综合性,还要注意它们在数学、生产、生活中的应用. 周期函数和最小正周期是函数性质研究的新课题,不仅要了解它们的意义,明确周期函数,函数值的变化规律,还要掌握周期性的研究对周期函数性质研究的意义,并会求函数的周期,或者经过简单的恒等变形可化为上述函数的三角函数的周期. 三角函数指的是,,,等函数,了解它们的图象的特征,会正确使用“五点法”作出它们的图象,并依据图象读出它们的性质,是本章的基础.对于性质的复习,不要平均使用力量,只要强调已学函数理论、方法的运用,强调数形结合的思想,而要把重点放在周期函数表达某些性质的规范要求上.例如,对于,怎么表述它的递增(减)区间,怎么表述它取最大(小)值时的取值集合,怎么由已知的函数值的取值范围,写出角的取值范围来,等等.还可对性质作些延伸,例如,研究它们的无数条对称轴的表示,无数个对称中心的表示等等. 正弦型函数是这里研究的又一个重点,除了会用“五点法”画出它的简图外,还要从图象变换的角度认识它与的图象的关系,对于三种基本的图象变换(平移变换,伸缩变换,对称变换)进一步进行复习和适当提交. 本章复习还要注意适当提交起点,注意把简单的三角变换与有关函数的性质结合起来,注意把三角函数和代数函数组合起来的综合性研究,注意在函数图象和单位圆函数线这两工具中的综合,择优使用.注意从数学或实际问题中概括出来的与正弦曲线有关的问题的研究,并注意立体几何、复数、解析几何等内容,对平面三角要求的必要准备的复习. 本章中数学思想最重要的是数形结合,另外换元的思想,等价变换和化归的思想,以及综合法、分析法、待定系数法等等,在复习中应有所体现. 反函数总是相对原函数而言的,原函数如果单调,反函数也单调(当然并不是单调性完全相同),原函数定义域就是反函数的值域,原函数的值域就是反函数的定义域。其他还有周期性,对称性,都要针对原函数来考虑。 煌枷窬⑺南笙小菜G的建站之路2023-06-27 09:50:271
三角函数的值域是?
sin30°=1/2;sin30=-0.988cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0tan90=-1.995;tan90°不存在扩展资料:由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA即tanA=角A 的对边/角A的邻边同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA即sinA=角A的对边/角A的斜边同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA即cosA=角A的邻边/角A的斜边真颛2023-06-27 09:50:271
怎么求三角函数的极值以及值域和定义域
解: 三角函数的定义域,必定保证三角函数有意义。如 y=tanx 定义域为 {x|x≠kπ+π/2},又如 y=1/sinx 定义域满足 sinx≠0,即 定义域为 {x|x≠kπ} 至于三角函数极值,则在定义域内,导函数y"=0时,x的取值为 x=a,极值为 y=f(a).三角函数值域,则先明确定义域,在定义域内,分别计算出极值和端点值,进行比较,即可得到值域。(对于连续可导函数有效,连续非可导函数,转化为几段函数,分别求取值域,再取交集)阿啵呲嘚2023-06-27 09:50:261
求三角函数值域问题该怎么求,常用的
对任意x∈R,存在k∈Z和t∈[0,π/2],使x=kπ+t或x=kπ-t.则f(x)=|sinx|+2|cosx|=|sint|+2|cost|=sint+2cost,t∈[0,π/2]得f(x)的值域与g(t)=sint+2cost,t∈[0,π/2]的值域相同.而t∈[0,π/2]时:g(t)=(√5)sin(t+φ),其中tanφ=2,φ∈(π/3,π/2)t+φ∈[φ,π/2+φ]当t+φ=π/2时g(t)有最大值√5当t+φ=π/2+φ,即t=π/2时g(t)有最小值1得g(t)的值域是[1,√5]所以f(x)的值域是[1,√5]kikcik2023-06-27 09:50:251
三角函数求定义域值域
正弦型函数的和余弦型函数的定义域为R,求y=Asin(wx+a)的值域为[-A,A]。求正切型函数y=Atan(wx+a)的定义域,wx+a≠k兀+兀/2,解出x即可。西柚不是西游2023-06-27 09:50:242
怎么求三角函数的值域??
先把Y化为与y同名的三角函数(即化为正弦函数):Y=cos(x-π/3)=sin(π/2+(x-π/3))=sin(x+π/6)。考虑平移,sin(x+π/6)要平移为sinx,需要减去π/6,根据“加向左,减向右”的原则,需要向右平移π/6个单位,故而选A.或者你可以逆向考虑——sinx到sin(x+π/6)需要向左平移π/6个单位,那么反过来,sin(x+π/6)到sinx则需要向右平移π/6个单位。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。墨然殇2023-06-27 09:50:231
怎么求三角函数的值域和最值?
三角函数最值求法归纳: 一、一角一次一函数形式 即将原函数关系式化为:y=Asin(wx+φ)+b或y=Acos(wx+φ)+b或y=Atan(wx+φ)+b的形式即可利用三角函数基本图像求出最值. 如: 二、一角二次一函数形式 如果函数化不成同一个角的三角函数,那么我们就可以利用三角函数内部的关系进行换元,以简化计算.最常见的是sinx+cosx和sinxcosx以及sinx-cosx之间的换元.例如: 三、利用有界性 即:利用-1<cosx<1和-1<sinx<1的性质进行计算:例如: 四、利用一元二次方程 即将原来的用三角函数表示y改写成用y表示某一个三角函数的形式,利用一元二次方程的有根的条件,即△的与0的大小关系,进行计算,这里可以参考《高中数学必修1 》中的基本初等函数的值域计算. 五、利用直线的斜率,如下面的例子: 六、利用向量求 首先,我们必须掌握求解的工具: 进而我们可以将原函数写成两个向量点乘的形式,利用向量的基本性质求解!凡尘2023-06-27 09:50:221
怎么求三角函数的定义域和值域
分母不为零,根号里大于零kikcik2023-06-27 09:50:224
三角函数的值域定义域怎么求
不论任何式子,你都要把其化为:y=Asin(wx+φ)或者y=Acos(wx+φ)的形式 之后根据题目的要求得出sin(wx+φ)或者cos(wx+φ)的取值范围(这中间注意最大最小值) 当然这个取值范围一定是[-1,1]之间的,不然就是你算错了 之后给你得出的取值范围上,分别乘以A的数据.这样值域就算出来了kikcik2023-06-27 09:50:211
求三角函数的值域!!拜托了
自己的作业自己做。。。。。。u投在线2023-06-27 09:50:204
三角函数值域求法
三角函数的值域,根据三角函数的定义,列出解析式,在定义域的范围内,求得值域。其结果是:正弦函数,[-1,1]余弦函数,[-1,1]正切函数,实数余切函数,实数正割函数,(-∞,-1]或[1,+∞)余割函数,(-∞,-1]或[1,+∞)CarieVinne 2023-06-27 09:50:201
三角函数的值域是多少?
三角函数的定义域如下:1、sin(x),cos(x)的定义域为R,值域为〔-1,1〕。2、tan(x)的定义域为x不等于π/2+kπ,值域为R。3、cot(x)的定义域为x不等于kπ,值域为R。4、y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]。相关信息:常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。小白2023-06-27 09:50:191
三角函数的值域怎么求?
问题一:如何求三角函数的值域 通过画图或者观察表达式和定义域。不过在这一切之前你得记住一些基本的 比如sinx,cosx当定义域为R的时候值域为【-1,1】,tanx的值域为负无穷到正无穷之类的,还有各个特值点对应的数字比如sinπ/3啊sinπ/6之类的。 然后遇到像Asin(wx+&)这样的,如果定义域没有限制就是【-A,A】啦 如果有限制的话,可以采取先算特值点,画图,然后判断值域的方法。 如果熟练的话,直接观察也就可以出答案的 tan的如法炮制 问题二:三角函数的值域怎么求 哪个三角函数的? 问题三:三角函数定义域值域怎么求的? 一般来说 sinx cosx 的值域为R,tanx为 x不等于2kπ+π/2. 其中k为整数,复合函数将三角函数后的函数看做x即可,值域的话,没有特殊说明sinx cosx 是[-1,1] tanx是R,有定义域的话,结合图像,复合函数的话,应将三角函数里的一元函数的值域看成其定义域 问题四:三角函数求定义域值域 如下为标准式: sin(x),cos(x)的定义域为R,值域为〔-1,1〕 tan(x)的定义域为x不等于π/2+kπ,值域为R cot(x)的定义域为x不等于kπ,值域为R 这只是标准的定义.其中的X是变量.只要把变量X带入以上定义域中.求出真正的X就行! 还是给你举个例子吧! sin(3X),求这个的定义域.的话. 只要3X属于R ,求出X也属于R 求这个值域: 如果X有定义域限制,比如说.X属于(π/2,π)] 那就是说3X属于 (3π/2,3π),那么画正弦函数图. 就可以知道定义域在(-1,1) 不知道你能理解不.不理解可以加QQ,再教你 问题五:如何求三角函数的值域 通过画图或者观察表达式和定义域。不过在这一切之前你得记住一些基本的 比如sinx,cosx当定义域为R的时候值域为【-1,1】,tanx的值域为负无穷到正无穷之类的,还有各个特值点对应的数字比如sinπ/3啊sinπ/6之类的。 然后遇到像Asin(wx+&)这样的,如果定义域没有限制就是【-A,A】啦 如果有限制的话,可以采取先算特值点,画图,然后判断值域的方法。 如果熟练的话,直接观察也就可以出答案的 tan的如法炮制 问题六:三角函数的值域怎么求 哪个三角函数的? 问题七:三角函数定义域值域怎么求的? 一般来说 sinx cosx 的值域为R,tanx为 x不等于2kπ+π/2. 其中k为整数,复合函数将三角函数后的函数看做x即可,值域的话,没有特殊说明sinx cosx 是[-1,1] tanx是R,有定义域的话,结合图像,复合函数的话,应将三角函数里的一元函数的值域看成其定义域LuckySXyd2023-06-27 09:50:181
反三角函数的导数是什么?
1、反三角函数求导公式反正弦函数的求导:(arcsinx)"=1/√(1-x^2)反余弦函数的求导:(arccosx)"=-1/√(1-x^2)反正切函数的求导:(arctanx)"=1/(1+x^2)反余切函数的求导:(arccotx)"=-1/(1+x^2)2、反三角函数负数关系公式arcsin(-x)=-arcsin(x)arccos(-x)=π-arccos(x)arctan(-x)=-arctan(x)arccot(-x)=π-arccot(x)3、反三角函数倒数关系公式arcsin(1/x)=arccsc(x)arccos(1/x)=arcsec(x)arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)4、反三角函数余角关系公式arcsin(x)+arccos(x)=π/2arctan(x)+arccot(x)=π/2arcsec(x)+arccsc(x)=π/2LuckySXyd2023-06-27 09:47:041
函数y=secx值域是多少
secx是cosx的倒数cosx值域[-1,1]secx值域也就是(负无穷,正无穷)Chen2023-06-27 09:45:462
secx等于什么 解析三角函数secx的定义和值?
除此之外,secx的值还可以用三角函数的基本关系式来表示:通过这个式子,我们可以推导出很多secx的性质和应用。例如,当x = π / 2时(即90度),cosx = 0,因此secx不存在。这个结论在三角函数的计算中是非常重要的。- 当x = 60度时,cosx = 1 / 2,因此secx = 1 / cosx = 2。secx = 1 / cosx = 1 / (sin^2x + cos^2x)^0.5其中,x表示任意角度。cosx表示余弦函数,表示直角三角形中的邻边与斜边的比值。因此,secx表示直角三角形中的斜边与邻边的比值的倒数。gitcloud2023-06-27 09:45:451
secx是什么函数?
secx是正割函数。在直角三角形中其意义是斜边比邻边,也就是说secx=1/cosx。初等三角函数有六个,正、余弦,正、余切以及正、余割。正割指的是直角三角形,斜边与某个锐角的邻边的比,叫做该锐角的正割,用 f(x)=sec表示。正割是余弦函数的倒数。函数性质(1)定义域,x不能取90度,270度,-90度,-270度等值。(2)值域,secx≥1或secx≤-1,即为(-∞,-1]∪[1,+∞)。(3) y=secx是偶函数,即sec(-θ)=secθ,图像对称于y轴。(4) y=secx是周期函数,周期为2kπ(k∈Z,且k≠0),最小正周期T=2π。善士六合2023-06-27 09:45:411
secx是什么函数?
secx是正割函数。正割指的是直角三角形,斜边与某个锐角的邻边的比,叫做该锐角的正割,用 f(x)=sec(角)表示。正割是余弦函数的倒数。正割的数学符号为sec,出自英文secant。该符号最早由数学家吉拉德在他的著作《三角学》中所用。单位圆定义图像中给出了用弧度度量的某个公共角。逆时针方向的度量是正角而顺时针的度量是负角。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的y坐标等于sinθ。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度1,所以有了secθ=1/x。单位圆可以被认为是通过改变邻边和对边的长度并保持斜边等于1查看无限数目的三角形的一种方式。NerveM 2023-06-27 09:45:401
三角函数secx等于什么啊?
secx = 1/cosx人类地板流精华2023-06-27 09:45:392
三角函数secx是什么?sec-x等于什么?谢谢大神!
1/cosxkikcik2023-06-27 09:45:353
sect函数等于什么
secx等于1除以cosx。secx是正割函数,为直角三角形斜边与某个锐角的邻边的比,在数值上等于余弦函数的倒数。正割指的是直角三角形,斜边与某个锐角的邻边的比,叫做该锐角的正割,用 sec(角)表示。人类地板流精华2023-06-27 09:45:331
secx是什么函数?
secx是正割函数。secx是正割,是三角函数的一种。它的定义域不是整个实数集,值域是绝对值大于等于一的实数。它是周期函数,其最小正周期为2π。正割指的是直角三角形,斜边与某个锐角的邻边的比,叫做该锐角的正割,用sec(角)表示。正割是余弦函数的倒数。正割性质:y=secx的性质。(1)定义域,{x|x≠kπ+π/2,k∈Z}。(2)值域,|secx|≥1.即secx≥1或secx≤-1。(3)y=secx是偶函数,即sec(-x)=secx.图像对称于y轴。(4)y=secx是周期函数.周期为2kπ(k∈Z,且k≠0),最小正周期T=2π。西柚不是西游2023-06-27 09:45:301
excel达标率函数
=AVERAGE(LEFT(G17,3),MID(G17,5,3),RIGHT(G17,3))/F17用这个公式吧,下拉就可以了kikcik2023-06-27 09:33:181
Excel2007函数公式怎么用
具体问题,具体分析,你这是提问太笼统,只能告诉你函数的格式:=函数名(参数1,参数2,参数3,参数。。。。)例:求和函数回车后得出计算结果,然后向下填充拌三丝2023-06-27 09:33:182
开方函数在excel里怎么输入
开方函数在excel里的输入方法如下:工具/原料:华为MateBook、Windows10、WPS office11.1.0.113691、在表格中选中单元2、在公式栏输入公式=power(A1,B1),回车。3、这样就输入开方函数成功。wpBeta2023-06-27 09:24:061
三角函数是多少?如:sin30,cos30,tan30?
拌三丝2023-06-27 09:19:033
怎么算30度45度60度三角函数值
正切值 对边比邻边tan30=3分之根号3tan45=1tan60=根号3正弦值 对边比斜边sin30=2分之1sin45=2分之根号2sin60=2分之根号3余弦值 领边比斜边COS30=2分之根号3COS45=2分之根号2COS60=2分之1小白2023-06-27 09:18:583
三角函数的值等于多少 比如tan45度等于多少 要全面的
百度百科里面有全面解答,输入“三角函数值”真颛2023-06-27 09:18:569
三角函数30度的值是什么?
sin30°=1/2;sin30=-0.988cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0tan90=-1.995;tan90°不存在扩展资料:由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA即tanA=角A 的对边/角A的邻边同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA即sinA=角A的对边/角A的斜边同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA即cosA=角A的邻边/角A的斜边水元素sl2023-06-27 09:18:481
sin30度的三角函数公式是什么?
30度直角三角形对边是斜边的一半。所以1比2等于0.5 sin30°=0.5大鱼炖火锅2023-06-27 09:18:422
三角函数sin30°的值是多少?
义是什么呢?关注sin30°=1/2;sin30=-0.988cos30=0.154;cos30°=√3/2tan30=-6.405;tan30°=√3/3sin45=0.851;sin45°=√2/2cos45=0.525;cos45°=sin45°=√2/2tan45=1.620;tan45°=1sin60=-0.305;sin60°=√3/2cos60=-0.952;cos60°=1/2tan60=0.320;tan60°=√3sin90=0.894;sin90°=cos0°=1cos90=-0.448;cos90°=sin0°=0LuckySXyd2023-06-27 09:18:247
30度角的三角函数值是多少?
30°角的正弦函数值是sin30°=1/2,余弦函数是 cos30°=√3/2,正切函数是tan30°=√3/3。Ntou1232023-06-27 09:17:573
余弦函数的反函数是什么?
反余弦函数反余弦函数是数学上的术语。函数y=cosx(x∈[0,π])的反函数叫做反余弦函数。记作y=arccosx。假设:y=cosx。则:x=arccosy。一般来说设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。肖振2023-06-27 08:51:201
什么是复变函数的反函数或逆映射?
如果函数y=f(x) 是从定义域到值域上的一一映射,则它的逆映射所确定的函数y=f^(-1)(x) 称为该函数的反函数。反函数是逆映射,逆映射不一定是反函数函数只是一种特别的映射。映射是指镜像,你照镜子你和镜子里的...黑桃花2023-06-27 08:51:193
反函数与其导数的联系和区别是什么呢?
反函数的定义域与原函数的值域一致;值域与原函数的定义域一样对于三角函数和反三角函数:反三角函数并不能狭义的理解为三角函数的反函数,是个多值函数。它是反正弦Arcsin x,反余弦Arccos x,反正切Arctan x,反余切Arccot x这些函数的统称,各自表示其正弦、余弦、正切、余切为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了【arc+函数名】的形式表示反三角函数,而不是f-1(x)。反三角函数主要是三个:y=arcsin(x),定义域[-1,1] ,值域[-π/2,π/2]y=arccos(x),定义域[-1,1] , 值域[0,π]y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2)y=arccot(x),定义域(-∞,+∞),值域(0,π)bikbok2023-06-27 08:51:161
什么函数才有反函数?
单调行为一就行!小白2023-06-27 08:51:129
反函数的定义是什么??
一、揭示课题师:今天我们将学习函数中一个重要的概念——反函数.(板书:反函数 1.反函数的概念)二、讲解新课三、师:什么是反函数呢?让我们一起来思考这样一个问题:在函数中,如果当作因变量,把y当作自变量,能否构成一个函数呢?生:可以构成一个函数.师:为什么是个函数呢?生:在y允许取值范围内的任一值,按照法则→都有唯一的x与之相应.师;根据这位同学的表述,这是符合函数定义的,也就是说,按照上述原则,函数是存在反函数的.这个反函数的解析式是怎样的呢?生:应该是.师:这种表示方法是没有问题的,但不符合我们的习惯,按习惯用字母x表示自变量,用字母y表示因变量,故这个函数的解析式又可以写成这样改动之后,带来这样一个问题,即和是不是同一函数呢?生:是.师:能具体解释一下吗?生:从函数三要素的角度看,和具有相同的定义域和值域,皆为R,同时对应法则都是自变量减1除以2得因变量,也是相同的,所以它们是相同的函数.师:既然是相同的,我们就把称作函数的反函数,同样,函数y=x-1 2有没有反函呢?生:有.就是.师:对.也就是说函数与函数是互为反函数的.那么,是不是所有函数都会有反函数呢?生:不是所有函数都有反函数.师:能举个例子说明吗?生:如函数,将y当作自变量,x当作因变量,在y允许取值范围内,一个y可能对应两个x,如y=1则x=±1,因此不能构成函数,说明它没反函数.师:说得非常好.如果从形的角度来解释,会看得更清楚,见图1,从图中可看出给出一个y能对应两个x.缺图1通过对几个具体函数的研究,了解了什么是反函数,把前面对函数y=2x+1的反函数的研究过程一般化,概括起来就可以得到反函数的定义.由于这个定义比较长,所以我们一起阅读书上相关内容.(板书:(1)反函数的定义)(要求学生打开书第60页第二自然段,请一名同学朗读这一段内容.)为帮助学生理解定义中的描述,教师可以再以一上具体函数为例解释y=f(x)和x=j(y)之间的关系,同时应指出定义中"如果"二字的含义表示不是所有函数都有反函数.) 对于反函数有了初步的了解之后,下面进一步对这个特殊的函数概念作点深入研究.(板书:(2)对概念的理解.)师:反函数的“反”字应当是相对原来给出的函数而言的,那么它们之间有什么关呢?不妨以刚才的两个函数y=2x+1和为例加以研究.生:对应法则不同.师:能否说得再具体点,怎么不同?生:这两个函数的对应法则中,x与y的位置换位.(研究两函数间的关系应从函数三要素角度入手研究,老师可适当引导学生向三要素靠拢.)师:还有什么联系吗?生:当的定义域和值域分别是y=2x+1的值域和定义域.师:根据刚才我们的讨论,可以发现反函数的三要素是由原来函数决定的,当给出的函数确定下来后,其反函数的三要素也就确定下来了,可以简记为“三定”.把这种确定关系具体化,也就是反函数的“反”字体现在什么地方呢?生:反函数的定义域就是原来函数的值域;反函数的值域就是原来函数的定义域;反函数的对应法则就是把原来函数对应法则中x与y的位置互换.师:由此我们可以看到反函数的“反”实际体现为“三反”.在这“三反”中,起决定作用的就是x与y的反置,正是由于它们位置的改变,才把相应取值反置,从而引起另外两“反”.(板书:a.“三定”,b.“三反”)师:从函数概念的角度来看,我们明确了原来函数与其反函数间的关系,当然还可以从其它方面入手进行研究,如:一个函数有没有反函数?若有反函数,它的性质如何?与原来函数的性质有什么关系?通过前面几个例子可以发现,上述问题中,原来函数的性质起着决定性作用,而且反函数的性质也与原来函数的性质相关.由于函数和反函数有如此密切的关系,它已成为进一步研究函数的重要方面.当我们研究某个函数性质时,如果这个函数有反函数,就可以在两者中择其简而研究之,这就增加了函数的研究方法.师:对反函数概念作了较全面认识之后,自然提出这样一个问题:如果一个函数存在反函数,如何去求这个函数的反函数呢?一起看这样二个题目.例1 求的反函数.生:(板书)解 由, 得 所以,所求反函数为(在表述上不规范之处,先暂时不追究,待例2解完之后再一起讲评.)例2 求的反函数.生:(板书)解 由y=得又所以故 .师:下面请同学对两个例题的表述作个评价.生:例2所求的反函数是错误的,应为 (x≥2)师:这和黑板上所得的函数有什么不同吗?生:两个函数的定义域分别是x≥1和x≥2,所以是不同的两个函数.师:为什么是(x≥2)呢?生:因为反函数的定义域应是原来给出函数f(x)的值域,而f(x)的值域应为y≥2,故所求反函数应为 (x≥2).师:说得很好.根据我们对反函数的认识,反函数的定义域就是原来给出函数的值域.所以,要求出反函数的定义域,就必须先求出原来函数的值域.那么例2的求解过程应当怎样调整呢?生:由得,又x≥1,所以.因为的值域为,所以 (x≥2).师:通过刚才的讨论,我们发现并解决了例2反函数的存在问题,同时也注意到求反函数必须明确指出其定义域,以保证结论的正确性.除此之外,还有什么问题吗?生:为什么没有在例1中求原来所给函数的值域呢?师:请同学们针对这个问题讨论一下.生:因为原来所给的函数的值域是y≠0,这和所求出的反函数的定义域是x≠0为结论是一致的,所以没有出错.师:此题出现的这种结论的一致性,应当说是一种偶然,而不是必然.因此,在求反函数的过程中,必须要求出原来所给函数的值域,并且在最后结果中注明反函数的定义域.那么,例1的规范书写过程应如何调整呢?生:(板书)解 由,所以,所求反函数为师:通过刚才对两个具体例子的讨论,能否总结一下求用解析式表达的函数的反函数的基本步骤呢?(板书:2.求反函数的步骤)生:首先从解析式中解出x,其次求出所给函数的值域,最后再改写为习惯的表示形式.师:把这几步用简单的几个字来概括一下:1.反解:即把解析式看作x的方程,求出反函数的解析式;2.互换:既求出所给函数的值域并把它改换为反函数的定义域;3.改写:将函数写成的形式.(板书:1.反解 2.互换 3.改写.)师:下面通过几个练习来看看同学们是否真正理解这三个基本步骤.三、巩固练习练习 求下列函数的反函数1. (由一个学生在黑板上完成.)解 由 x=3 2y-2.又f(x)=23x+3,x∈(-∞,3)的值域为 f(x)∈(-∞,4),所以f-1(x)=32x-2,x∈(-∞,4).2.y=x2-x+1(x≥12)(由一个学生在黑板上完成,两题同时进行,其余学生在笔记本上完成,教师巡视.)解 由 y=x2-x+1,得 x2-x+1-y=0,所以 x=1±4y-32,又 y=x2-x+1(x≥12)的值域为{y|y≥34},所以,f-1(x)1±4x-32(x≥34).(待全体学生完成之后,结合黑板上学生的表述及其它学生解答中出现的问题进行讲评.)师:先看黑板上同学的表述有没有问题,请加以纠正.(一学生在黑板上加以改正)由y=x2-x+1,得 x2-x+1-y=0,所以x=1±4y-32 又x≥12,所以 x=1+4y-32 又y=x2-x+1(x≥12)的值域为{y|y≥34},故所求反函数为y=1+4x-32 (x≥34). 师:经过改正,两个题目在表述上已经没有问题了.下面结合其它同学求解中出现的一些问题,谈几点注意.(1) 求反函数的过程中必有一步是求出原来所给函数的值域.求值域的方法有很多,如果所给函数是常见函数如一次函数、二次函数等,不妨从“形”的角度求值域会比较方便直观.(2) 解关于x的一元二次方程有两个根,必须根据题目所给条件对x进行取舍,保留符合条件的唯一解.(3) 这两个题目在反函数符号的使用上是有区别的,题目给出f(x)这个符号,则反函数可以用f-1(x)来表示,否则只能用文字叙述的形式.四、小结1.反函数是函数中一个重要的概念,它是从研究两个函数关系的角度产生的,因此认识它应从三要素角度进行研究.2.一个函数有没有反函数是由原来给出函数的性质决定的,且反函数的性质也是由原来给出的函数性质决定的.3.求反函数实际上就是办两件事,一是解一个关于自变量x的方程,二是求 一个函数的值域.meira2023-06-27 08:51:111
数字电子技术 什么是反函数?怎么求反函数?
反演规则。 将原函数的的与(·)换成(+),或(+)换成与(·);将原变量换为非变量(a→ā),非变量换为原变量;并将1换为0,0换为1。既得反函数。ardim2023-06-27 08:51:111
百度百科:什么是倒函数
反函数中原值域是现在的定义域真颛2023-06-27 08:51:102
请问函数与反函数分别是什么?
正比例函数,是形如y=kxk不等于0y比上x是定值反比例函数.是xy=kk不等于0凡尘2023-06-27 08:51:092
函数的反函数是什么意思
即1/y=(2^x+1)/2^x=1+1/2^x1/2^x=1/y-1=(1-y)/y2^x=y/(1-y)x=log2[y/(1-y)]所以反函数是y=log2[x/(1-x)]NerveM 2023-06-27 08:51:081
反函数的性质是什么
反函数的性质主要有:函数的定义域与值域是一一映射的;一个函数与它的反函数在相应区间上单调性一致等。下面我就带领大家详细盘点一下,供各位考生参考。 反函数的定义 一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x) 。反函数y=f-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。 反函数的性质 函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射等。反函数性质:函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称;函数存在反函数的充要条件是,函数的定义域与值域是一一映射的。 反函数和原函数之间的关系 1、反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。 2、互为反函数的两个函数的图像关于直线y=x对称。 3、原函数若是奇函数,则其反函数为奇函数。 4、若函数是单调函数,则一定有反函数,且反函数的单调性与原函数的一致。 5、原函数与反函数的图像若有交点,则交点一定在直线y=x上或关于直线y=x对称出现。拌三丝2023-06-27 08:51:071
函数存在反函数说明什么
则y=f(x)的反函数为y=f^-1(x)。 存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的) 【反函数的性质】 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)一般的偶函数一定不存在反函数(但一种特殊的偶函数存在反函数,例f(x)=a(x=0)它的反函数是f(x)=0(x=a)这是一种极特殊的函数),奇函数不一定存在反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。 (8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定)水元素sl2023-06-27 08:51:071
函数与反函数的关系是什么?
函数与反函数的关系:函数与反函数关于关于y=x对称。如果设(a,b)是y=f(x)的图像上任意一点,即b=f(a)。根据反函数的定义,有a=f-1(b),即点(b,a)在反函数y=f-1(x)的图像上。而点(a,b)和(b,a)关于直线y=x对称,由(a,b)的任意性可知f和f-1关于y=x对称。反函数的性质(1)函数f(x)与它的反函数f-1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称。(2)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。(3)一个函数与它的反函数在相应区间上单调性一致。(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。(5)一段连续的函数的单调性在对应区间内具有一致性。(6)严增(减)的函数一定有严格增(减)的反函数。(7)反函数是相互的且具有唯一性。(8)定义域、值域相反对应法则互逆(三反)。(9)反函数的导数关系:如果x=f(y)在开区间I上严格单调,可导,且f"(y)≠0,那么它的反函数y=f-1(x)在区间S={x|x=f(y),y∈I}内也可导。铁血嘟嘟2023-06-27 08:51:061
反函数的定义是什么? 请举几个例子!
反函数 一般地,如果确定函数y=f(x)的对应f是从函数的定义域到值域上的一一对应,那么由f的“逆”对应f-1所确定的函数就叫做函数的反函数,反函数x=f-1(x)的定义域、值域分别为函数y=f(x)的值域、定义域.gitcloud2023-06-27 08:51:051
反函数公式是什么?
反函数公式是x=f ^(-1)(y)。反函数求法:首先看这个函数是不是单调函数,如果不是则反函数不存在如果是单调函数,则只要把x和y互换,然后解出y即可。例如y=x^2,x=正负根号y,则f(x)的反函数是正负根号x,求完后注意定义域和值域,反函数的定义域就是原函数的值域,反函数的值域就是原函数的定义域。反函数性质(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。(2)一个函数与它的反函数在相应区间上单调性一致。(3)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。康康map2023-06-27 08:51:041
反函数定义是什么?
反函数定义:设函数y=f(x)的定义域是D,值域是f(D)。如果对于值域f(D)中的每一个y,在D中有且只有一个x使得g(y)=x,则按此对应法则得到了一个定义在f(D)上的函数,并把该函数称为函数y=f(x)的反函数。反函数存在定理:严格单调函数必定有严格单调的反函数,并且二者单调性相同。由于f的严格单增性,对D中任一x"<x,都有y"x,都有y"">y。总之能使f(x)=y的x只有一个,根据反函数的定义,f存在反函数f-1。反函数性质:1、函数存在反函数的充要条件是,函数的定义域与值域是一一映射;2、一个函数与它的反函数在相应区间上单调性一致;3、一段连续的函数的单调性在对应区间内具有一致性。阿啵呲嘚2023-06-27 08:51:041
什么是正函数,什么是反函数啊
正比例函数,是形如y=kx k不等于0 y比上x是定值 反比例函数. 是xy=k k不等于0豆豆staR2023-06-27 08:51:031