函数

三角函数的概念公式

三角函数的解释设以θ为一锐角的 直角 三角形的三边为a、b、c(如图),比各边长度两两 之间 的比,如a/c、b/c、a/b、b/a、c/b、c/a分别称为角θ的正弦、余弦、正切、余切、正割、余割,并依次记为sinθ、cosθ、tgθ(或tanθ)、ctgθ(或cotθ)、secθ、cscθ(或cosecθ)。当θ变化时,它们都随之而变化,因而每一个都是θ的 函数 ,称为“三角函数”。用 坐标 法还可以把三角函数的 概念 推广到 任意 角。 词语分解 三角的解释 ∶指外形像三角形的物品面三角枕三角镍铬三角 ∶三角学的简称详细解释.三只角。《 山海 经·南山经》“东五百里,曰 祷过之山 ,其上多 金玉 ,其下多犀、兕” 晋 郭璞 注:“犀似水牛……三角:一在顶上,一 函数的解释 彼此 相关的两个量 之一 ,他们的关系是一个量的诸值与另外一个量的诸值 相对 应详细解释称因变数。数学 名词 。在互相关联的两个数中,如甲数变化,乙数亦随甲数的变化而变化,则乙数称为甲数的函数。如 某种 布每尺价格一
拌三丝2023-06-22 16:28:531

三角函数的定义是什么?

三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx,一/+、二/-、三/-、四/+;正切函数:y=tanx,一/+、二/-、三/+、四/-;余切函数:y=cotx,一/+、二/-、三/+、四/-;正割函数:y=secx,一/+、二/-、三/-、四/+;余割函数:y=cscx,一/+、二/+、三/-、四/-。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。扩展资料:诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值,当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 k,b与函数图象所在象限。当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大;当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小;当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。六边形的六个角分别代表六种三角函数,存在如下关系:1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近正无穷,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。参考资料来源:百度百科——三角函数参考资料来源:百度百科——函数图像
余辉2023-06-22 16:28:501

三角函数公式

http://www.wen8.net/science/maths/3jiaohs.htm去看看,很全的。
bikbok2023-06-22 16:28:492

三角函数的定义域是什么?

三角函数的定义域如下:1、sin(x),cos(x)的定义域为R,值域为〔-1,1〕。2、tan(x)的定义域为x不等于π/2+kπ,值域为R。3、cot(x)的定义域为x不等于kπ,值域为R。4、y=a·sin(x)+b·cos(x)+c的值域为[c-√(a2+b2),c+√(a2+b2)]。三角函数如下:正弦sin=对边比斜边。余弦cos=邻边比斜边。正切tan=对边比邻边。1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。2、余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。3、在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
陶小凡2023-06-22 16:28:491

三角函数加减法公式是什么?

应该是三角函数的和差化积公式吧?没有加减法公式。
拌三丝2023-06-22 16:28:484

三角函数的定义

三角函数的解释 设以θ为一锐角的 直角 三角形的三边为a、b、c(如图),比各边长度两两 之间 的比,如a/c、b/c、a/b、b/a、c/b、c/a分别称为角θ的正弦、余弦、正切、余切、正割、余割,并依次记为sinθ、cosθ、tgθ(或tanθ)、ctgθ(或cotθ)、secθ、cscθ(或cosecθ)。当θ变化时,它们都随之而变化,因而每一个都是θ的 函数 ,称为“三角函数”。用 坐标 法还可以把三角函数的 概念 推广到 任意 角。 词语分解 三角的解释 ∶指外形像三角形的物品面三角枕三角镍铬三角 ∶三角学的简称详细解释.三只角。《 山海 经·南山经》“东五百里,曰 祷过之山 ,其上多 金玉 ,其下多犀、兕” 晋 郭璞 注:“犀似水牛……三角:一在顶上,一 函数的解释 彼此 相关的两个量 之一 ,他们的关系是一个量的诸值与另外一个量的诸值 相对 应详细解释称因变数。数学 名词 。在互相关联的两个数中,如甲数变化,乙数亦随甲数的变化而变化,则乙数称为甲数的函数。如 某种 布每尺价格一
hi投2023-06-22 16:28:471

三角函数是什么啊?

三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。三角函数常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。以上内容参考:百度百科——三角函数
大鱼炖火锅2023-06-22 16:28:471

sin三角函数公式有哪些,怎么计算?

一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号3扩展资料:1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。参考资料:三角函数公式百度百科
Chen2023-06-22 16:28:471

三角函数的定义是什么

三角函数的定义:当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对于AB与AC的夹角∠BAC而言:对边(opposite)a=BC;斜边(hypotenuse)h=AB;邻边(adjacent)b=AC。 三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
水元素sl2023-06-22 16:28:461

三角函数的转换公式

三角函数转换公式1、诱导公式:sin(-α)= -sinα;cos(-α) = cosα;sin(π/2-α)= cosα;cos(π/2-α) =sinα;  sin(π/2+α) = cosα;cos(π/2+α)= -sinα;sin(π-α) =sinα;cos(π-α) = -cosα;  sin(π+α)= -sinα;cos(π+α) =-cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:  sin(AB) = sinAcosBcosAsinB  cos(AB) = cosAcosBsinAsinB  tan(AB) = (tanAtanB)/(1tanAtanB)  cot(AB) = (cotAcotB1)/(cotBcotA) ue1173、倍角公式  sin2A=2sinAu2022cosA  cos2A=cosA2-sinA2=1-2sinA2=2cosA2-1  tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.  sin^2(a/2)=(1-cos(a))/2  cos^2(a/2)=(1+cos(a))/2  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 5、和差化积  sinθ+sinφ= 2 sin[(θ+φ)/2] cos[(θ-φ)/2]  sinθ-sinφ = 2 cos[(θ+φ)/2]sin[(θ-φ)/2]  cosθ+cosφ = 2 cos[(θ+φ)/2]cos[(θ-φ)/2]  cosθ-cosφ = -2 sin[(θ+φ)/2]sin[(θ-φ)/2]  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)6、积化和差  sinαsinβ= -1/2*[cos(α-β)-cos(α+β)]  cosαcosβ =1/2*[cos(α+β)+cos(α-β)]  sinαcosβ =1/2*[sin(α+β)+sin(α-β)]  cosαsinβ = 1/2*[sin(α+β)-sin(α-β)]万能公式
墨然殇2023-06-22 16:28:465

数学三角函数的所有公式

三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosa cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb tan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga) 倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa)) 和差化积2sinacosb=sin(a+b)+sin(a-b) 2cosasinb=sin(a+b)-sin(a-b) 2cosacosb=cos(a+b)-sin(a-b) -2sinasinb=cos(a+b)-cos(a-b) sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosb ctga+ctgbsin(a+b)/sinasinb -ctga+ctgbsin(a+b)/sinasinb 正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角
hi投2023-06-22 16:28:452

三角函数的定义

题库内容:三角函数的解释设以θ为一锐角的 直角 三角形的三边为a、b、c(如图),比各边长度两两 之间 的比,如a/c、b/c、a/b、b/a、c/b、c/a分别称为角θ的正弦、余弦、正切、余切、正割、余割,并依次记为sinθ、cosθ、tgθ(或tanθ)、ctgθ(或cotθ)、secθ、cscθ(或cosecθ)。当θ变化时,它们都随之而变化,因而每一个都是θ的 函数 ,称为“三角函数”。用 坐标 法还可以把三角函数的 概念 推广到 任意 角。 词语分解 三角的解释 ∶指外形像三角形的物品面三角枕三角镍铬三角 ∶三角学的简称详细解释.三只角。《 山海 经·南山经》“东五百里,曰 祷过之山 ,其上多 金玉 ,其下多犀、兕” 晋 郭璞 注:“犀似水牛……三角:一在顶上,一 函数的解释 彼此 相关的两个量 之一 ,他们的关系是一个量的诸值与另外一个量的诸值 相对 应详细解释称因变数。数学 名词 。在互相关联的两个数中,如甲数变化,乙数亦随甲数的变化而变化,则乙数称为甲数的函数。如 某种 布每尺价格一
Chen2023-06-22 16:28:451

三角函数包括哪些?

三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx,一/+、二/-、三/-、四/+;正切函数:y=tanx,一/+、二/-、三/+、四/-;余切函数:y=cotx,一/+、二/-、三/+、四/-;正割函数:y=secx,一/+、二/-、三/-、四/+;余割函数:y=cscx,一/+、二/+、三/-、四/-。扩展资料奇偶性的判定:(1)定义法用定义来判断函数奇偶性,是主要方法 . 首先求出函数的定义域,观察验证是否关于原点对称. 其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。f(-x)=-f(x)奇函数,如:sin(-x)=-sinx。f(-x)=f(x)偶函数,如:cos(-x)=cosx。(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。参考资料来源:百度百科——三角函数参考资料来源:百度百科——函数图像
hi投2023-06-22 16:28:431

三角函数是什么?

三角函数目录·三角函数恒等变形公式·部分高等内容·特殊三角函数值·三角函数的计算三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。基本初等内容它有六种基本函数(初等基本表示):函数名正弦余弦正切余切正割余割正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ=1-cosθ余矢函数vercosθ=1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1
tt白2023-06-22 16:28:431

什么是三角函数?

单位圆与三角函数的关系:常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。三角函数的起源:早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
mlhxueli 2023-06-22 16:28:421

三角函数公式sin,cos,tan有哪些?

三角函数公式初中sin、cos、tan有如下:1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等。sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系。sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系。sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系。sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
小菜G的建站之路2023-06-22 16:28:411

三角函数的定义是什么

三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。(抄于百度百科)
九万里风9 2023-06-22 16:28:412

三角函数有哪些

  三角函数有正弦函数sinθ、余弦函数cosθ、正切函数tanθ、余切函数cotθ、正割函数secθ、余割函数cscθ、正矢函数versinθ、余矢函数vercosθ。θ是三角形的一个角度,其性质只是一个符号而已,代表一个任意的角度值。  三角函数简介   三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。  三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。  三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
u投在线2023-06-22 16:28:411

三角函数公式有哪些?

一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号3扩展资料:1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。参考资料:三角函数公式百度百科
tt白2023-06-22 16:28:401

三角函数公式是什么?

公式为sinA=a/c,cosA=b/c,tanA=a/b。在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边a=BC、斜边c=AB、邻边b=AC。扩展资料:在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。如:sin 30= 1/2sin 45=根号2/2sin 60= 根号3/2cos 30=根号3/2cos 45=根号2/2cos 60=1/2tan 30=根号3/3tan 45=1tan 60=根号3参考资料:百度百科—三角函数
meira2023-06-22 16:28:401

什么是三角函数

三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具常见的三角函数包括正弦函数、余弦函数和正切函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒常见的双曲函数
u投在线2023-06-22 16:28:391

三角函数包括哪些?

三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx,一/+、二/-、三/-、四/+;正切函数:y=tanx,一/+、二/-、三/+、四/-;余切函数:y=cotx,一/+、二/-、三/+、四/-;正割函数:y=secx,一/+、二/-、三/-、四/+;余割函数:y=cscx,一/+、二/+、三/-、四/-。扩展资料奇偶性的判定:(1)定义法用定义来判断函数奇偶性,是主要方法 . 首先求出函数的定义域,观察验证是否关于原点对称. 其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。f(-x)=-f(x)奇函数,如:sin(-x)=-sinx。f(-x)=f(x)偶函数,如:cos(-x)=cosx。(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。参考资料来源:百度百科——三角函数参考资料来源:百度百科——函数图像
真颛2023-06-22 16:28:391

三角函数的概念以及公式

概念:三角函数(Trigonometric)是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。它包含六种基本函数:正弦、余弦、正切、余切、正割、余割。由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。特殊值表:常用:sin30:tan30=1/2:√3/3=√3/2=cos30 sin45:tan45=√2/2:1=√2/2=cos45 sin60:tan60=√3/2:√3=1/2=sin60 即sina:tana=cosa说明对任意锐角a都成立 tana=sina/cosa sina:tana=sina:sina/cosa=cosa 所以对于任意锐角a都成立
NerveM 2023-06-22 16:28:381

什么是三角函数 三角函数是什么

1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。 2、常见的三角函数包括正弦函数(SinX)、余弦函数(Cosx)和正切函数(tanx).在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、半正矢函数等其他的三角函数.不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式.
瑞瑞爱吃桃2023-06-22 16:28:381

三角函数的公式大全

三角函数常用公式:(^表示乘方,例如^2表示平方)正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y以及两个不常用,已趋于被淘汰的函数:正矢函数versinθ=1-cosθ余矢函数vercosθ=1-sinθ同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形abc中,角a的正弦值就等于角a的对边比斜边,余弦等于角a的邻边比斜边正切等于对边比邻边,三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中sint=b/(a^2+b^2)^(1/2)cost=a/(a^2+b^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]赞同50|评论
CarieVinne 2023-06-22 16:28:372

常见的三角函数公式

同角三角函数的基本关系  倒数关系:  tanα ·cotα=1  sinα ·cscα=1  cosα·secα=1  商的关系:   sinα/cosα=tanα=secα/cscα  平方关系:平常针对不同条件的常用的两个公式一个特殊公式  (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)  证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]  =sin(a+θ)*sin(a-θ)坡度公式  我们通常把坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,  即 i=h / l,坡度的一般形式写成 l : m形式,如i=1:5.如果把坡面与水平面的夹角记作  a(叫做坡角),那么 i=h/l=tan a.锐角三角函数公式  正弦: sinα=∠α的对边/∠α 的斜边  余弦:cosα=∠α的邻边/∠α的斜边  正切:tanα=∠α的对边/∠α的邻边  余切:cotα=∠α的邻边/∠α的对边二倍角公式  正弦  sin2A=2sinA·cosA  余弦  正切  tan2A=(2tanA)/(1-tan^2(A))三倍角公式 三倍角公式  sin3α=4sinα·sin(π/3+α)sin(π/3-α)  cos3α=4cosα·cos(π/3+α)cos(π/3-α)  tan3a = tan a · tan(π/3+a)· tan(π/3-a)  三倍角公式推导   sin(3a)  =sin(a+2a)  =sin2acosa+cos2asina  =2sina(1-sina)+(1-2sina)sina  =3sina-4sin^3a  cos3a  =cos(2a+a)  =cos2acosa-sin2asina  =(2cosa-1)cosa-2(1-cos^a)cosa  =4cos^3a-3cosa  sin3a=3sina-4sin^3a  =4sina(3/4-sina)  =4sina[(√3/2)-sina]  =4sina(sin60°-sina)  =4sina(sin60°+sina)(sin60°-sina)  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]  =4sinasin(60°+a)sin(60°-a)  cos3a=4cos^3a-3cosa  =4cosa(cosa-3/4)  =4cosa[cosa-(√3/2)^2]  =4cosa(cosa-cos30°)  =4cosa(cosa+cos30°)(cosa-cos30°)  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}  =-4cosasin(a+30°)sin(a-30°)  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]  =-4cosacos(60°-a)[-cos(60°+a)]  =4cosacos(60°-a)cos(60°+a)  上述两式相比可得  tan3a=tanatan(60°-a)tan(60°+a)  现列出公式如下:   sin2α=2sinαcosα tan2α=2tanα/(1-tanα ) cos2α=cosα-sinα=2cosα-1=1-2sinα   可别轻视这些字符,它们在数学学习中会起到重要作用,包括在一些图像问题和函数问题中三倍角公式  sin3α=3sinα-4sinα=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)半角公式  sin^2(α/2)=(1-cosα)/2  cos^2(α/2)=(1+cosα)/2  tan^2(α/2)=(1-cosα)/(1+cosα)  tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式  sinα=2tan(α/2)/[1+tan(α/2)]  cosα=[1-tan(α/2)]/[1+tan^2(α/2)]  tanα=2tan(α/2)/[1-tan&s(α/2)]其他  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0  cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及  sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2  tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍角公式  sin4A=-4*(cosA*sinA*(2*sinA^2-1))  cos4A=1+(-8*cosA^2+8*cosA^4)  tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍角公式  sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍角公式  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))  cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))  tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)七倍角公式  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))  cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))  tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)八倍角公式  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)九倍角公式  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)十倍角公式  sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))  cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))  tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)N倍角公式  根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ)  为方便描述,令sinθ=s,cosθ=c  考虑n为正整数的情形:  cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n- 4)*(i s)^4 + ... …+C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …=>比较两边的实部与虚部  实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... …i*  (虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... …   对所有的自然数n:  1. cos(nθ):  公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。  2. sin(nθ):  (1)当n是奇数时:公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也 就是sinθ)表示。  (2)当n是偶数时:公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。  (例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)半角公式  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)  sin^2(a/2)=(1-cos(a))/2  cos^2(a/2)=(1+cos(a))/2  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 半角公式两角和公式 两角和公式  cos(α+β)=cosαcosβ-sinαsinβ  cos(α-β)=cosαcosβ+sinαsinβ  sin(α+β)=sinαcosβ+cosαsinβ  sin(α-β)=sinαcosβ -cosαsinβ  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)  cot(A+B) = (cotAcotB-1)/(cotB+cotA)  cot(A-B) = (cotAcotB+1)/(cotB-cotA)三角和公式  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)和差化积  sinθ+sinφ =2sin[(θ+φ)/2] cos[(θ-φ)/2] 和差化积公式sinθ-sinφ=2cos[(θ+φ)/2] sin[(θ-φ)/2]  cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]  cosθ-cosφ= -2sin[(θ+φ)/2]sin[(θ-φ)/2]  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)积化和差  sinαsinβ=-[cos(α+β)-cos(α-β)] /2  cosαcosβ=[cos(α+β)+cos(α-β)]/2  sinαcosβ=[sin(α+β)+sin(α-β)]/2  cosαsinβ=[sin(α+β)-sin(α-β)]/2双曲函数  sh a = [e^a-e^(-a)]/2  ch a = [e^a+e^(-a)]/2  th a = sin h(a)/cos h(a)  公式一:  设α为任意角,终边相同的角的同一三角函数的值相等:  sin(2kπ+α)= sinα  cos(2kπ+α)= cosα  tan(2kπ+α)= tanα  cot(2kπ+α)= cotα  公式二:  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:  sin(π+α)= -sinα  cos(π+α)= -cosα  tan(π+α)= tanα  cot(π+α)= cotα  公式三:  任意角α与 -α的三角函数值之间的关系:  sin(-α)= -sinα  cos(-α)= cosα  tan(-α)= -tanα  cot(-α)= -cotα  公式四:  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:  sin(π-α)= sinα  cos(π-α)= -cosα  tan(π-α)= -tanα  cot(π-α)= -cotα  公式五:  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:  sin(2π-α)= -sinα  cos(2π-α)= cosα  tan(2π-α)= -tanα  cot(2π-α)= -cotα  公式六:  π/2±α及3π/2±α与α的三角函数值之间的关系:  sin(π/2+α)= cosα  cos(π/2+α)= -sinα  tan(π/2+α)= -cotα  cot(π/2+α)= -tanα  sin(π/2-α)= cosα  cos(π/2-α)= sinα  tan(π/2-α)= cotα  cot(π/2-α)= tanα  sin(3π/2+α)= -cosα  cos(3π/2+α)= sinα  tan(3π/2+α)= -cotα  cot(3π/2+α)= -tanα  sin(3π/2-α)= -cosα  cos(3π/2-α)= -sinα  tan(3π/2-α)= cotα  cot(3π/2-α)= tanα  (以上k∈Z)  A·sin(ωt+θ)+ B·sin(ωt+φ) =  √{(A+2ABcos(θ-φ)} · sin{ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2 +2ABcos(θ-φ)} }  √表示根号,包括{……}中的内容三角函数的诱导公式(六公式)  公式一:   sin(-α) = -sinα  cos(-α) = cosα  tan (-α)=-tanα  公式二:  sin(π/2-α) = cosα  cos(π/2-α) = sinα  公式三:  sin(π/2+α) = cosα  cos(π/2+α) = -sinα  公式四:  sin(π-α) = sinα  cos(π-α) = -cosα  公式五:  sin(π+α) = -sinα  cos(π+α) = -cosα  公式六:  tanA= sinA/cosA  tan(π/2+α)=-cotα  tan(π/2-α)=cotα  tan(π-α)=-tanα  tan(π+α)=tanα  诱导公式 记背诀窍:奇变偶不变,符号看象限万能公式 万能公式  sinα=2tan(α/2)/[1+(tan(α/2))]  cosα=[1-(tan(α/2))]/[1+(tan(α/2)]  tanα=2tan(α/2)/[1-(tan(α/2))]其它公式 三角函数其它公式  (1) (sinα)^2+(cosα)^2=1(平方和公式)  (2)1+(tanα)^2=(secα)^2  (3)1+(cotα)^2=(cscα)^2  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可  (4)对于任意非直角三角形,总有  tanA+tanB+tanC=tanAtanBtanC  证:  A+B=π-C  tan(A+B)=tan(π-C)  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)  整理可得  tanA+tanB+tanC=tanAtanBtanC  得证  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论  (5)cotAcotB+cotAcotC+cotBcotC=1  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)  (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC  其他非重点三角函数   csc(a) = 1/sin(a)  sec(a) = 1/cos(a)  (seca)^2+(csca)^2=(seca)^2(csca)^2  幂级数展开式  sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+…… x∈ R  cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… x∈ R  arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)  arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)  arctan x = x - x^3/3 + x^5/5 -…… (x≤1)  无限公式  sinx=x(1-x^2/π^2)(1-x^2/4π^2)(1-x^2/9π^2)……  cosx=(1-4x^2/π^2)(1-4x^2/9π^2)(1-4x^2/25π^2)……  tanx=8x[1/(π^2-4x^2)+1/(9π^2-4x^2)+1/(25π^2-4x^2)+……]  secx=4π[1/(π^2-4x^2)-1/(9π^2-4x^2)+1/(25π^2-4x^2)-+……]  (sinx)x=cosx/2cosx/4cosx/8……  (1/4)tanπ/4+(1/8)tanπ/8+(1/16)tanπ/16+……=1/π  arctan x = x - x^3/3 + x^5/5 -…… (x≤1)  和自变量数列求和有关的公式  sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)  cosx+cos2x+cos3x+……+cosnx=[cos((n+1)x/2)sin(nx/2)]/sin(x/2)  tan((n+1)x/2)=(sinx+sin2x+sin3x+……+sinnx)/(cosx+cos2x+cos3x+……+cosnx)  sinx+sin3x+sin5x+……+sin(2n-1)x=(sinnx)^2/sinx  cosx+cos3x+cos5x+……+cos(2n-1)x=sin(2nx)/(2sinx)
meira2023-06-22 16:28:361

三角函数是什么?

三角函数是数学中常见的一类关于角度的函数。也可以说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级限或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
北营2023-06-22 16:28:361

三角函数是什么

拌三丝2023-06-22 16:28:365

三角函数的定义是什么?

高中数学中关于三角函数的定义。供参考,请笑纳。
tt白2023-06-22 16:28:342

三角函数的概念是什么?

三角函数是数学中常见的一类关于角度的函数。也可以说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级限或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。
韦斯特兰2023-06-22 16:28:341

各象限的三角函数正负值

正弦 一二象限正,三四象限负余弦 一四象限正 ,二三象限负正切 一三象限正,二四象限负余切 和正切一样
wpBeta2023-06-22 16:28:314

三角函数公式大全

三角函数的诱导公式(六公式)公式一:sin(α+k*2π)=sinαcos(α+k*2π)=cosαtan(α+k*2π)=tanα公式二:sin(π+α) = -sinαcos(π+α) = -cosαtan(π+α)=tanα公式三:sin(-α) = -sinαcos(-α) = cosαtan (-α)=-tanα公式四:sin(π-α) = sinαcos(π-α) = -cosαtan(π-α) =-tanα公式五:sin(π/2-α) = cosαcos(π/2-α) =sinα公式六:sin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π/2+α)= cosαcos(π/2+α= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα
小菜G的建站之路2023-06-22 16:28:301

三角函数角度公式

三角函数角度公式sin(A+B)=sinAcosB+cosAsinB。cos(A+B)=cosAcosB-sinAsinB。tan(A+B)=(tanA+tanB)/(1-tanAtanB)在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。  (1)三角形内角和:A+B+C=π。  (2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,   a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)  (3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍 a^2=b^2+c^2-2bccosA;b^2=c^2+a^2-2cacosB;c^2=a^2+b^2-2abcosC。
bikbok2023-06-22 16:28:301

初中三角函数公式是什么

三角函数公式是比较重要的数学知识点,它可以分为三角函数两角和差公式,三角函数半角公式,三角函数倍角公式,锐角三角函数公式等。三角函数和角公式:sin(A+B)=sinAcosB+cosAsinB,cos(A+B)=cosAcosB-sinAsinB,tan(A+B)=(tanA+tanB)/(1-tanAtanB)。三角函数差角公式:sin(A-B)=sinAcosB-cossinB,cos(A-B)=cosAcosB+sinAsinB,tan(A-B)=(tanA-tanB)/(1+tanAtanB)。三角函数半角公式:1. 正弦sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)2. 余弦cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)3. 正切tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))三角函数倍角公式:1. 三角函数倍角公式Sin2A=2SinA*CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)2. 三角函数三倍角公式sin3A=4sinA*sin(π/3+A)sin(π/3-A)cos3A=4cosA*cos(π/3+A)cos(π/3-A)tan3A=tanA*tan(π/3+A)*tan(π/3-A)锐角三角函数公式:sinα=∠α的对边/斜边cosα=∠α的邻边/斜边tanα=∠α的对边/∠α的邻边cotα=∠α的邻边/∠α的对边三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级限或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。
西柚不是西游2023-06-22 16:28:292

三角函数公式大全

gf
真颛2023-06-22 16:28:285

三角函数的公式有哪些?

三角函数公式有积化和差公式、和差化积公式、三倍角公式、正弦二倍角公式、余弦二倍角公式、余弦定理等。1积化和差公式。sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)];cosα·sinβ=(1/2)*[sin(α+β)-sin(α-β)];cosα·cosβ=(1/2)*[cos(α+β)+cos(α-β)];sinα·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]2、和差化积公式。sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]3三倍角公式。sin3α=3sinα-4sin^3α:cos3α=4cos^3α-3cosα4两角和与差的三角函数关系sin(α+β)=sinαcosβ+cosαsinβ;sin(α-β)=sinαcosβ-cosαsinβ;cos(α+β)=cosαcosβ-sinαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ);tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
苏萦2023-06-22 16:28:281

三角函数cos公式?

直角三角形三角函数如下:正弦sin=对边比斜边。余弦cos=邻边比斜边。正切tan=对边比邻边。1、正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。2、余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。3、在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。cos公式的其他资料:它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1,余弦函数是偶函数,其图像关于y轴对称。利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角。(2)已知两边和它们的夹角,求第三边和其他两个角。
再也不做站长了2023-06-22 16:28:261

三角函数是什么

三角函数是数学中常见的一类关于角度的函数。也可以说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。----来自百度百科
人类地板流精华2023-06-22 16:28:241

三角函数公式 高中所有的

三角公式倒数关系:sina*csca=cosa*seca=tga*ctga=1平方关系:sin^a+cos^a =sec^ a-tg^ a=csc^a-ctg^a=1和差公式:sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-cosasinb (将上式的b用-b代替即得)cos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinb (将上式的b用-b代替即得)tg(a+b)=(tga+tgb)/(1-tgatgb)二倍角公式:(含万能公式)sin2a=2sinacosa=2tga/(1+tg^a)cos2a=2cos^a-1=1-2sin^a=(1-tg^a)/(1+tg^a)tg2a=2tga/(1-tg^a)半角公式:(sina)^=(1-cos2a)/2 (将a用a/2代替即得半角描述)(cosa)^=(1+cos2a)/2(tga)^=(1-cos2a)/(1+cos2a)三倍角公式:sin3a= 3sina-4sin^3 acos3a=-3cosa+4cos^3 a积化和差公式:sinacosb= [sin(a+b)+sin(a-b)]/2 (将上面关于sin的和差公式相加除以2即得)cosasinb= [sin(a+b)-sin(a-b)]/2 (将上面关于sin的和差公式相减除以2即得)cosacosb= [cos(a+b)+cos(a-b)]/2 (将上面关于cos的和差公式相加除以2即得)sinasinb=-[cos(a+b)-cos(a-b)]/2 (将上面关于cos的和差公式相加除以2即得)和差化积公式:sina+sinb= 2sin(a+b)/2cos(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)sina-sinb= 2cos(a+b)/2sin(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)cosa+cosb= 2cos(a+b)/2cos(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)cosa-cosb=-2sin(a+b)/2sin(a-b)/2 (将上面积化和差公式用(a+b)/2代替a, (a-b)/2代替b即可)
小白2023-06-22 16:28:242

三角函数的定义是什么

单位圆,sin往x轴上投影,取投影的横坐标。cos同理。其他的三角函数都是这俩派生的。高中的话。
瑞瑞爱吃桃2023-06-22 16:28:242

三角函数的定义是什么

把sinθ定义为y:1,还是y:r,其本质一样的,合理的。把sinθ定义为y,形式上更简洁。定义域:正弦函数y=sinxx∈R余弦函数y=cosxx∈R正切函数y=tanxx≠kπ+π/2,k∈Z余切函数y=cotxx≠kπ,k∈Z正割函数y=secxx≠kπ+π/2,k∈Z余割函数y=cscxx≠kπ,k∈Z
黑桃花2023-06-22 16:28:234

常见的三角函数有哪些?

三角函数有:正弦函数、余弦函数、正切函数、余切函数、正割函数、余割函数,在各个象限的正负情况如下:(表示格式为“象限”/“+或-”)正弦函数:y=sinx,一/+、二/+、三/-、四/-;余弦函数:y=cosx,一/+、二/-、三/-、四/+;正切函数:y=tanx,一/+、二/-、三/+、四/-;余切函数:y=cotx,一/+、二/-、三/+、四/-;正割函数:y=secx,一/+、二/-、三/-、四/+;余割函数:y=cscx,一/+、二/+、三/-、四/-。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。扩展资料:诱导公式口诀“奇变偶不变,符号看象限”意义:k×π/2±a(k∈z)的三角函数值,当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 k,b与函数图象所在象限。当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大;当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小;当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。六边形的六个角分别代表六种三角函数,存在如下关系:1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...在正切函数的图像中,在角kπ 附近变化缓慢,而在接近角 (k+ 1/2)π 的时候变化迅速。正切函数的图像在 θ = (k+ 1/2)π 有垂直渐近线。这是因为在 θ 从左侧接进 (k+ 1/2)π 的时候函数接近正无穷,而从右侧接近 (k+ 1/2)π 的时候函数接近负无穷。参考资料来源:百度百科——三角函数参考资料来源:百度百科——函数图像
真颛2023-06-22 16:28:231

什么是三角函数

三角函数的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。它包含:正弦、余弦、正切、余切、正割、余割
北境漫步2023-06-22 16:28:232

三角函数公式是什么?

、sin(-α)=-sinα2、cos(-α)=cosα3、sin(π/2-α)=cosα4、cos(π/2-α)=sinα5、sin(π/2+α)=cosα6、cos(π/2+α)=-sinα7、sin(π-α)=sinα8、cos(π-α)=-cosα9、sin(π+α)=-sinα10、tanα=sinα/cosα11、tan(π/2+α)=-cotα12、tan(π/2-α)=cotα13、tan(π-α)=-tanα14、tan(π+α)=tanα扩展资料:常用的和角公式1、sin(α+β)=sinαcosβ+ sinβcosα2、sin(α-β)=sinαcosβ-sinB*cosα3、cos(α+β)=cosαcosβ-sinαsinβ4、cos(α-β)=cosαcosβ+sinαsinβ5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)
CarieVinne 2023-06-22 16:28:2213

什么是三角函数

三角函数的释义:直角三角形的三边,关于其任一锐角,可组成六种比率,而称为此角的正弦、余弦;正切、余切;正割、余割。起源:公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。三角学中“正弦”和“余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。相关概念:1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R (其中R为外接圆的半径)。2、第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC。3、第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA。4、正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)。5、三角形中的恒等式:对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC。
陶小凡2023-06-22 16:28:221

三角函数公式

等于chang+kuan×2
u投在线2023-06-22 16:28:212

三角函数是什么?

三角函数求的到底是什么? 30分 三角函数,求的不是长度 三角函数,求的其实是比值! 三角函数到底是什么意思啊!! 说实话我学了三角函数好长时间了。也就知道sinA(就是A角的对边与这个三角形的斜边的比值)cosA(就是A角的邻边与这个三角形的斜边的比值)tanA(就是A角的对边与邻边的比值)中学一般都是以解三角形的形式出现。给你几个条件。去解其它的边与角的关系。但是高中的含义就大大的就扩大了。特别的复杂化。但是只要你基础打好现在学好。就问题不大的。反正就是要多做多练。题海战术。 三角函数是什么意思 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的 *** 与一个比值的 *** 的变量之间的映射。通常的三角函数是在平面直角座标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。由于三角函数的周期性,它并不具有单值函数意义上的反函数。 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。 基本初等内容 它有六种基本函数(初等基本表示): 函数名 正弦 余弦 正切 余切 正割 余割 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 以及两个不常用,已趋于被淘汰的函数: 正矢函数 versinθ =1-cosθ 余矢函数 vercosθ =1-sinθ 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 tan^2(α)+1=sec^2(α) cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) ·倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin......
北境漫步2023-06-22 16:28:201

三角函数有哪几种

正6个正弦、余弦、正切、余切、正割函数、余割函数不常用6个正矢函数 余矢函数 半正矢函数 半余矢函数 外正割函数 外余割函数
韦斯特兰2023-06-22 16:28:192

三角函数的公式有哪些?

一、sin度数公式1、sin 30= 1/22、sin 45=根号2/23、sin 60= 根号3/2二、cos度数公式1、cos 30=根号3/22、cos 45=根号2/23、cos 60=1/2三、tan度数公式1、tan 30=根号3/32、tan 45=13、tan 60=根号3扩展资料:1、三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。2、三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。3、常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。4、早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。5、喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。6、古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。参考资料:三角函数公式百度百科
ardim2023-06-22 16:28:192

什么是三角函数?

在数学中,三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的.三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度.更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值. 三角函数在数学中属于初等函数里的超越函数的一类函数.它们本质上是任意角的集合与一个比值的集合的变量之间的映射.由于三角函数具有周期性,所以并不具有单射函数(亦称为单调函数)意义上的反函数.三角函数在复数中有重要的应用,在物理学中也是常用的工具. 三角函数一般用于计算三角形(通常为直角三角形)中未知长度的边和未知的角度,在导航系统,工程学以及物理学方面都有广泛的用途.其在基本物理中的一个常见用途是将矢量转换到笛卡尔坐标系中.现代比较常用的三角函数有6个,其中Sin和Cos还常用于模拟周期函数现象,比如说声波和光波,谐振子的位置和速度,光照强度和白昼长度,过去一年中的平均气温变化等等. 其实是wiki上的东东,wiki是个好东东哦!
陶小凡2023-06-22 16:28:191

三角函数是什么

三角函数是数学中属于初等函数中的超越函数的一类函数.它们的本质是任何角的集合与一个比值的集合的变量之间的映射.通常的三角函数是在平面直角坐标系中定义的.其定义域为整个实数域.另一种定义是在直角三角形中,但并不完全.现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系.三角函数在北师版数学九下会学到初中主要用到的三角函数有:正弦:sin(对边比斜边)余弦:cos(邻边比斜边)正切:tan(对边比邻边)余切:cot(邻边比对边)特殊角的三角函数sin cos tan cot30° 1/2 √3/2 √3/3 √345° √2/2 √2/2 1 160° √3/2 1/2 √3 √3/3重要定理正弦定理正弦定理:在△ABC中,a / sin A = b / sin B = c / sin C = 2R其中,R为△ABC的外接圆的半径.余弦定理余弦定理:在△ABC中,b^2 = a^2 + c^2 - 2ac·cos θ.其中,θ为边a与边c的夹角.三角函数很简单的,只要多应用就能掌握
FinCloud2023-06-22 16:28:182

三角函数的定义?

三角函数是数学中属于初等函数中的超越函数的一类函数,是以实数为自变量的函数。三角函数有六种基本函数(初等基本表示):函数名 正弦 余弦 正切 余切 正割 余割。正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secα cotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1 三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα·半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
无尘剑 2023-06-22 16:28:181

三角函数定义公式

三角函数定义公式如下:公式为sinA=a/c,cosA=b/c,tanA=a/b。三角函数的必背公式包括半角公式,倍角公式,两角和与差公式,积化和差公式,和差化积公式。sin(A/2)=±√((1-cosA)/2),cos(A/2)=±√((1+cosA)/2),tan(A/2)=±√((1-cosA)/((1+cosA))。三角函数是数学中属于初等函数中的超越函数的函数。通常是在平面直角坐标系中定义的,其定义域为整个实数域。在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边a=BC、斜边c=AB、邻边b=AC。在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。如:sin 30= 1/2sin 45=根号2/2sin 60= 根号3/2cos 30=根号3/2cos 45=根号2/2cos 60=1/2tan 30=根号3/3tan 45=1tan 60=根号3
无尘剑 2023-06-22 16:28:171

三角函数有哪些

三角函数有正弦函数sinθ、余弦函数cosθ、正切函数tanθ、余切函数cotθ、正割函数secθ、余割函数cscθ、正矢函数versinθ、余矢函数vercosθ。θ是三角形的一个角度,其性质只是一个符号而已,代表一个任意的角度值。三角函数简介三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。
豆豆staR2023-06-22 16:28:151

数学三角函数公式是什么?

数学三角函数公式是如下:1、sin2α=2sinαcosα。2、tan2α=2tanα/(1-tan^2(α))。3、cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 。4、sin^2(α/2)=(1-cosα)/2。5、cos^2(α/2)=(1+cosα)/2。6、tan^2(α/2)=(1-cosα)/(1+cosα)。7、tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα。8、二倍角公式通过角α的三角函数值的一些变换关系来表示其二倍角2α的三角函数值,二倍角公式包括正弦二倍角公式、余弦二倍角公式以及正切二倍角公式。
北营2023-06-22 16:28:141

三角函数是什么?

定义式锐角三角函数 任意角三角函数图形 直角三角形 任意角三角函数正弦函数(sin) 余弦函数(cos) 正切函数(tan) 余切函数(cot) 正割函数(sec) 余割函数(csc)
拌三丝2023-06-22 16:28:133

在EXCEL中怎样用函数设置负数保留,正数显现为零

可以用公式B2=if(a2<0,a2,0)
西柚不是西游2023-06-21 09:10:383

在Excel中做函数如何将负数变成正数?

在单击“查找和选择”按钮之后,可以直接单击“替换”。1.双击B2,输入公式=ABS(A2)。2.下拉填充B2的公式就得到了A列数据的绝对值,也就将负数变成了正数。
此后故乡只2023-06-21 09:09:461

excel如何将满足条件的的正数部分变负数函数

最好有一个样表或举个例子,不然不能猜测出你的具体要解决的问题
拌三丝2023-06-21 09:09:3712

EXCEL函数咨询

ABS 求出参数的绝对值。 数据计算 AND “与”运算,返回逻辑值,仅当有参数的结果均为逻辑“真(TRUE)”时返回逻辑“真(TRUE)”,反之返回逻辑“假(FALSE)”。 条件判断 AVERAGE 求出所有参数的算术平均值。 数据计算 COLUMN 显示所引用单元格的列标号值。 显示位置 CONCATENATE 将多个字符文本或单元格中的数据连接在一起,显示在一个单元格中。 字符合并 COUNTIF 统计某个单元格区域中符合指定条件的单元格数目。 条件统计 DATE 给出指定数值的日期。 显示日期 DATEDIF 计算返回两个日期参数的差值。 计算天数 DAY 计算参数中指定日期或引用单元格中的日期天数。 计算天数 DCOUNT 返回数据库或列表的列中满足指定条件并且包含数字的单元格数目。 条件统计 FREQUENCY 以一列垂直数组返回某个区域中数据的频率分布。 概率计算 IF 根据对指定条件的逻辑判断的真假结果,返回相对应条件触发的计算结果。 条件计算 INDEX 返回列表或数组中的元素值,此元素由行序号和列序号的索引值进行确定。 数据定位 INT 将数值向下取整为最接近的整数。 数据计算 ISERROR 用于测试函数式返回的数值是否有错。如果有错,该函数返回TRUE,反之返回FALSE。 逻辑判断 LEFT 从一个文本字符串的第一个字符开始,截取指定数目的字符。 截取数据 LEN 统计文本字符串中字符数目。 字符统计 MATCH 返回在指定方式下与指定数值匹配的数组中元素的相应位置。 匹配位置 MAX 求出一组数中的最大值。 数据计算 MID 从一个文本字符串的指定位置开始,截取指定数目的字符。 字符截取 MIN 求出一组数中的最小值。 数据计算 MOD 求出两数相除的余数。 数据计算 MONTH 求出指定日期或引用单元格中的日期的月份。 日期计算 NOW 给出当前系统日期和时间。 显示日期时间 OR 仅当所有参数值均为逻辑“假(FALSE)”时返回结果逻辑“假(FALSE)”,否则都返回逻辑“真(TRUE)”。 逻辑判断 RANK 返回某一数值在一列数值中的相对于其他数值的排位。 数据排序 RIGHT 从一个文本字符串的最后一个字符开始,截取指定数目的字符。 字符截取 SUBTOTAL 返回列表或数据库中的分类汇总。 分类汇总 SUM 求出一组数值的和。 数据计算 SUMIF 计算符合指定条件的单元格区域内的数值和。 条件数据计算 TEXT 根据指定的数值格式将相应的数字转换为文本形式 数值文本转换 TODAY 给出系统日期 显示日期 VALUE 将一个代表数值的文本型字符串转换为数值型。 文本数值转换 VLOOKUP 在数据表的首列查找指定的数值,并由此返回数据表当前行中指定列处的数值 条件定位 WEEKDAY 给出指定日期的对应的星期数。 星期计算Excel 部分函数列表.函数的步骤:①选中存放结果的单元格②单击“=”(编辑公式)③找函数(单击“三角形”形状按钮。或者直接输入函数名④选范围⑤CTRL+回车键①求和函数SUM()②平均函数AVERAGE()③排位函数RANK ()例: Rank(A1:$A$1:$A$15)行号和列号前面加上“$“符号 A叫行号。1或者15叫列号,表示单元格所在的位置 数据单元格在A列1号或者是A列15号④最大值函数MAX ()⑤最小值函数MIN ()⑥统计函数 COUNTIF( )计算满足给定单元格的数目例:Countif ( A1:B5,”>60”) 统计分数大于60分的人数,注意,条件要加双引号,在英文状态下输入。⑦单元格内容合并CONCTENATE()将若干文字串合并到一个字符串中⑧ RIGHT(A1,4)提取字符串最右边的若干字符,长度为4位⑨LEFT ( )返回字符串最左边的若干字符⑩MIDB()自文字的指定位置开始向右提取指定长度的字符串11、重复函数 REPT()单元格重量出现的次数。12、NOW()返回电脑内部的系统日期与时间13、MONTH( )将序列数转换为对应的月份数编者语:Excel是办公室自动化中非常重要的一款软件,很多巨型国际企业都是依靠Excel进行数据管理。它不仅仅能够方便的处理表格和进行图形分析,其更强大的功能体现在对数据的自动处理和计算,然而很多缺少理工科背景或是对Excel强大数据处理功能不了解的人却难以进一步深入。编者以为,对Excel函数应用的不了解正是阻挡普通用户完全掌握Excel的拦路虎,然而目前这一部份内容的教学文章却又很少见,所以特别组织了这一个《Excel函数应用》系列,希望能够对Excel进阶者有所帮助。《Excel函数应用》系列,将每周更新,逐步系统的介绍Excel各类函数及其应用,敬请关注!----------------------------------术语说明 什么是参数?参数可以是数字、文本、形如 TRUE 或 FALSE 的逻辑值、数组、形如 #N/A 的错误值或单元格引用。给定的参数必须能产生有效的值。参数也可以是常量、公式或其它函数。参数不仅仅是常量、公式或函数,还可以是数组、单元格引用等:1.数组--用于建立可产生多个结果或可对存放在行和列中的一组参数进行运算的单个公式。在 Microsoft Excel有两类数组:区域数组和常量数组。区域数组是一个矩形的单元格区域,该区域中的单元格共用一个公式;常量数组将一组给定的常量用作某个公式中的参数。2.单元格引用--用于表示单元格在工作表所处位置的坐标值。例如,显示在第 B 列和第 3 行交叉处的单元格,其引用形式为"B3"。3.常量--常量是直接键入到单元格或公式中的数字或文本值,或由名称所代表的数字或文本值。例如,日期 10/9/96、数字 210 和文本"Quarterly Earnings"都是常量。公式或由公式得出的数值都不是常量。--------------------------------------------- Excel的数据处理功能在现有的文字处理软件中可以说是独占鳌头,几乎没有什么软件能够与它匹敌。在您学会了Excel的基本操作后,是不是觉得自己一直局限在Excel的操作界面中,而对于Excel的函数功能却始终停留在求和、求平均值等简单的函数应用上呢?难道Excel只能做这些简单的工作吗?其实不然,函数作为Excel处理数据的一个最重要手段,功能是十分强大的,在生活和工作实践中可以有多种应用,您甚至可以用Excel来设计复杂的统计管理表格或者小型的数据库系统。请跟随笔者开始Excel的函数之旅。这里,笔者先假设您已经对于Excel的基本操作有了一定的认识。首先我们先来了解一些与函数有关的知识。一、什么是函数Excel中所提的函数其实是一些预定义的公式,它们使用一些称为参数的特定数值按特定的顺序或结构进行计算。用户可以直接用它们对某个区域内的数值进行一系列运算,如分析和处理日期值和时间值、确定贷款的支付额、确定单元格中的数据类型、计算平均值、排序显示和运算文本数据等等。例如,SUM 函数对单元格或单元格区域进行加法运算。函数是否可以是多重的呢?也就是说一个函数是否可以是另一个函数的参数呢?当然可以,这就是嵌套函数的含义。所谓嵌套函数,就是指在某些情况下,您可能需要将某函数作为另一函数的参数使用。例如图1中所示的公式使用了嵌套的 AVERAGE 函数,并将结果与 50 相比较。这个公式的含义是:如果单元格F2到F5的平均值大于50,则求F2到F5的和,否则显示数值0。 察看原图 发送到手机图1 嵌套函数在学习Excel函数之前,我们需要对于函数的结构做以必要的了解。如图2所示,函数的结构以函数名称开始,后面是左圆括号、以逗号分隔的参数和右圆括号。如果函数以公式的形式出现,请在函数名称前面键入等号(=)。在创建包含函数的公式时,公式选项板将提供相关的帮助。察看原图 发送到手机图2 函数的结构公式选项板--帮助创建或编辑公式的工具,还可提供有关函数及其参数的信息。单击编辑栏中的"编辑公式"按钮,或是单击"常用"工具栏中的"粘贴函数" 按钮之后,就会在编辑栏下面出现公式选项板。整个过程如图3所示。察看原图 发送到手机图3 公式选项板二、使用函数的步骤在Excel中如何使用函数呢?1.单击需要输入函数的单元格,如图4所示,单击单元格C1,出现编辑栏察看原图 发送到手机图4 单元格编辑2.单击编辑栏中"编辑公式"按钮 ,将会在编辑栏下面出现一个"公式选项板",此时"名称"框将变成"函数"按钮,如图3所示。3.单击"函数"按钮右端的箭头,打开函数列表框,从中选择所需的函数;察看原图 发送到手机图5 函数列表框4.当选中所需的函数后,Excel 2000将打开"公式选项板"。用户可以在这个选项板中输入函数的参数,当输入完参数后,在"公式选项板"中还将显示函数计算的结果;5.单击"确定"按钮,即可完成函数的输入;6.如果列表中没有所需的函数,可以单击"其它函数"选项,打开"粘贴函数"对话框,用户可以从中选择所需的函数,然后单击"确定"按钮返回到"公式选项板"对话框。在了解了函数的基本知识及使用方法后,请跟随笔者一起寻找Excel提供的各种函数。您可以通过单击插入栏中的"函数"看到所有的函数。察看原图 发送到手机图6 粘贴函数列表三、函数的种类Excel函数一共有11类,分别是数据库函数、日期与时间函数、工程函数、财务函数、信息函数、逻辑函数、查询和引用函数、数学和三角函数、统计函数、文本函数以及用户自定义函数。1.数据库函数--当需要分析数据清单中的数值是否符合特定条件时,可以使用数据库工作表函数。例如,在一个包含销售信息的数据清单中,可以计算出所有销售数值大于 1,000 且小于 2,500 的行或记录的总数。Microsoft Excel 共有 12 个工作表函数用于对存储在数据清单或数据库中的数据进行分析,这些函数的统一名称为 Dfunctions,也称为 D 函数,每个函数均有三个相同的参数:database、field 和 criteria。这些参数指向数据库函数所使用的工作表区域。其中参数 database 为工作表上包含数据清单的区域。参数 field 为需要汇总的列的标志。参数 criteria 为工作表上包含指定条件的区域。2.日期与时间函数--通过日期与时间函数,可以在公式中分析和处理日期值和时间值。3.工程函数--工程工作表函数用于工程分析。这类函数中的大多数可分为三种类型:对复数进行处理的函数、在不同的数字系统(如十进制系统、十六进制系统、八进制系统和二进制系统)间进行数值转换的函数、在不同的度量系统中进行数值转换的函数。4.财务函数--财务函数可以进行一般的财务计算,如确定贷款的支付额、投资的未来值或净现值,以及债券或息票的价值。财务函数中常见的参数: 未来值 (fv)--在所有付款发生后的投资或贷款的价值。期间数 (nper)--投资的总支付期间数。付款 (pmt)--对于一项投资或贷款的定期支付数额。现值 (pv)--在投资期初的投资或贷款的价值。例如,贷款的现值为所借入的本金数额。利率 (rate)--投资或贷款的利率或贴现率。类型 (type)--付款期间内进行支付的间隔,如在月初或月末。5.信息函数--可以使用信息工作表函数确定存储在单元格中的数据的类型。信息函数包含一组称为 IS 的工作表函数,在单元格满足条件时返回 TRUE。例如,如果单元格包含一个偶数值,ISEVEN 工作表函数返回 TRUE。如果需要确定某个单元格区域中是否存在空白单元格,可以使用 COUNTBLANK 工作表函数对单元格区域中的空白单元格进行计数,或者使用 ISBLANK 工作表函数确定区域中的某个单元格是否为空。6.逻辑函数--使用逻辑函数可以进行真假值判断,或者进行复合检验。例如,可以使用 IF 函数确定条件为真还是假,并由此返回不同的数值。7.查询和引用函数--当需要在数据清单或表格中查找特定数值,或者需要查找某一单元格的引用时,可以使用查询和引用工作表函数。例如,如果需要在表格中查找与第一列中的值相匹配的数值,可以使用 VLOOKUP 工作表函数。如果需要确定数据清单中数值的位置,可以使用 MATCH 工作表函数。8.数学和三角函数--通过数学和三角函数,可以处理简单的计算,例如对数字取整、计算单元格区域中的数值总和或复杂计算。9.统计函数--统计工作表函数用于对数据区域进行统计分析。例如,统计工作表函数可以提供由一组给定值绘制出的直线的相关信息,如直线的斜率和 y 轴截距,或构成直线的实际点数值。10.文本函数--通过文本函数,可以在公式中处理文字串。例如,可以改变大小写或确定文字串的长度。可以将日期插入文字串或连接在文字串上。下面的公式为一个示例,借以说明如何使用函数 TODAY 和函数 TEXT 来创建一条信息,该信息包含着当前日期并将日期以"dd-mm-yy"的格式表示。11.用户自定义函数--如果要在公式或计算中使用特别复杂的计算,而工作表函数又无法满足需要,则需要创建用户自定义函数。这些函数,称为用户自定义函数,可以通过使用 Visual Basic for Applications 来创建。以上对Excel函数及有关知识做了简要的介绍,在以后的文章中笔者将逐一介绍每一类函数的使用方法及应用技巧。但是由于Excel的函数相当多,因此也可能仅介绍几种比较常用的函数使用方法,其他更多的函数您可以从Excel的在线帮助功能中了解更详细的资讯。Excel是办公应用中的常用软件,它不光有统计功能,在进行查找、计算时,Excel也有诸多的函数可以简化我们的操作。需要注意的是对中英文的处理是不大相同的,中文的一个字是按两个字节计算的,稍不注意就可能忽略这一点,造成错误。其实Excel函数中有专门针对双字节字符的函数。让我们先来看看函数FIND与函数FINDB的区别。语法:FIND(find_text,within_text,start_num)FINDB(find_text,within_text,start_num) 两个函数的参数相同。作用:FIND函数用于查找文本(within_text)中的字符串(find_text),并从within_text的首字符开始返回find_text的起始位置编号。也可使用SEARCH查找字符串,但是,FIND和SEARCH不同,FIND区分大小写并且不允许使用通配符。FINDB函数用于查找文本(within_text)中的字符串(find_text),并基于字节数从within_text的首字符开始返回find_text的起始位置编号。此函数用于双字节字符。示例:在图1中,单元B2中的公式为“=FIND("雨",A2)”单元格B3中的公式为“=FINDB("雨",A2)”两个函数公式得出的结果不一样,这是因为在FIND函数中,“雨”位于“吴雨峰”串中的第二个位置,故返回“2”;而在FINDB函数中,每个汉字按2个字节算,所以“雨”是从第三个字节开始的,返回“3”。察看原图 发送到手机图1 请注意两个函数的不同结果同理:LEFT与LEFTB、RIGHT与RIGHTB、LEN与LENB、MID与MIDB、REPLACE与REPLACEB、SEARCH与SEARCHB的关系也如是。即不带字母B的函数是按字符操作的,而带字母B的函数是按字节进行操作的。我们在编辑、修改、计算工作簿数据时,经常会用到许多汉字字符,如果使用以上带字母B的函数对汉字字符进行操作,就会很方便。学习Excel函数,我们还是从“数学与三角函数”开始。毕竟这是我们非常熟悉的函数,这些正弦函数、余弦函数、取整函数等等从中学开始,就一直陪伴着我们。首先,让我们一起看看Excel提供了哪些数学和三角函数。笔者在这里以列表的形式列出Excel提供的所有数学和三角函数,详细请看附注的表格。从表中我们不难发现,Excel提供的数学和三角函数已基本囊括了我们通常所用得到的各种数学公式与三角函数。这些函数的详细用法,笔者不在这里一一赘述,下面从应用的角度为大家演示一下这些函数的使用方法。一、与求和有关的函数的应用SUM函数是Excel中使用最多的函数,利用它进行求和运算可以忽略存有文本、空格等数据的单元格,语法简单、使用方便。相信这也是大家最先学会使用的Excel函数之一。但是实际上,Excel所提供的求和函数不仅仅只有SUM一种,还包括SUBTOTAL、SUM、SUMIF、SUMPRODUCT、SUMSQ、SUMX2MY2、SUMX2PY2、SUMXMY2几种函数。这里笔者将以某单位工资表为例重点介绍SUM(计算一组参数之和)、SUMIF(对满足某一条件的单元格区域求和)的使用。(说明:为力求简单,示例中忽略税金的计算。)察看原图 发送到手机图1 函数求和SUM1、行或列求和以最常见的工资表(如上图)为例,它的特点是需要对行或列内的若干单元格求和。比如,求该单位2001年5月的实际发放工资总额,就可以在H13中输入公式:=SUM(H3:H12)2、区域求和区域求和常用于对一张工作表中的所有数据求总计。此时你可以让单元格指针停留在存放结果的单元格,然后在Excel编辑栏输入公式"=SUM()",用鼠标在括号中间单击,最后拖过需要求和的所有单元格。若这些单元格是不连续的,可以按住Ctrl键分别拖过它们。对于需要减去的单元格,则可以按住Ctrl键逐个选中它们,然后用手工在公式引用的单元格前加上负号。当然你也可以用公式选项板完成上述工作,不过对于SUM函数来说手工还是来的快一些。比如,H13的公式还可以写成:=SUM(D3:D12,F3:F12)-SUM(G3:G12)3、注意SUM函数中的参数,即被求和的单元格或单元格区域不能超过30个。换句话说,SUM函数括号中出现的分隔符(逗号)不能多于29个,否则Excel就会提示参数太多。对需要参与求和的某个常数,可用"=SUM(单元格区域,常数)"的形式直接引用,一般不必绝对引用存放该常数的单元格。SUMIFSUMIF函数可对满足某一条件的单元格区域求和,该条件可以是数值、文本或表达式,可以应用在人事、工资和成绩统计中。仍以上图为例,在工资表中需要分别计算各个科室的工资发放情况。 要计算销售部2001年5月加班费情况。则在F15种输入公式为=SUMIF($C$3:$C$12,"销售部",$F$3:$F$12)其中"$C$3:$C$12"为提供逻辑判断依据的单元格区域,"销售部"为判断条件即只统计$C$3:$C$12区域中部门为"销售部"的单元格,$F$3:$F$12为实际求和的单元格区域。二、与函数图像有关的函数应用我想大家一定还记得我们在学中学数学时,常常需要画各种函数图像。那个时候是用坐标纸一点点描绘,常常因为计算的疏忽,描不出平滑的函数曲线。现在,我们已经知道Excel几乎囊括了我们需要的各种数学和三角函数,那是否可以利用Excel函数与Excel图表功能描绘函数图像呢?当然可以。这里,笔者以正弦函数和余弦函数为例说明函数图像的描绘方法。察看原图 发送到手机图2 函数图像绘制1、 录入数据--如图所示,首先在表中录入数据,自B1至N1的单元格以30度递增的方式录入从0至360的数字,共13个数字。2、 求函数值--在第2行和第三行分别输入SIN和COS函数,这里需要注意的是:由于SIN等三角函数在Excel的定义是要弧度值,因此必须先将角度值转为弧度值。具体公式写法为(以D2为例): =SIN(D1*PI()/180)3、 选择图像类型--首先选中制作函数图像所需要的表中数据,利用Excel工具栏上的图表向导按钮(也可利用"插入"/"图表"),在"图表类型"中选择"XY散点图",再在右侧的"子图表类型"中选择"无数据点平滑线散点图",单击[下一步],出现"图表数据源"窗口,不作任何操作,直接单击[下一步]。4、 图表选项操作--图表选项操作是制作函数曲线图的重要步骤,在"图表选项"窗口中进行(如图3),依次进行操作的项目有:标题--为图表取标题,本例中取名为"正弦和余弦函数图像";为横轴和纵轴取标题。坐标轴--可以不做任何操作; 网格线--可以做出类似坐标纸上网格,也可以取消网格线; 图例--本例选择图例放在图像右边,这个可随具体情况选择;数据标志--本例未将数据标志在图像上,主要原因是影响美观。如果有特殊要求例外。5、完成图像--操作结束后单击[完成],一幅图像就插入Excel的工作区了。6、 编辑图像--图像生成后,字体、图像大小、位置都不一定合适。可选择相应的选项进行修改。所有这些操作可以先用鼠标选中相关部分,再单击右键弹出快捷菜单,通过快捷菜单中的有关项目即可进行操作。至此,一幅正弦和余弦函数图像制作完成。用同样的方法,还可以制作二次曲线、对数图像等等。三、常见数学函数使用技巧--四舍五入在实际工作的数学运算中,特别是财务计算中常常遇到四舍五入的问题。虽然,excel的单元格格式中允许你定义小数位数,但是在实际操作中,我们发现,其实数字本身并没有真正的四舍五入,只是显示结果似乎四舍五入了。如果采用这种四舍五入方法的话,在财务运算中常常会出现几分钱的误差,而这是财务运算不允许的。那是否有简单可行的方法来进行真正的四舍五入呢?其实,Excel已经提供这方面的函数了,这就是ROUND函数,它可以返回某个数字按指定位数舍入后的数字。在Excel提供的"数学与三角函数"中提供了一个名为ROUND(number,num_digits)的函数,它的功能就是根据指定的位数,将数字四舍五入。这个函数有两个参数,分别是number和num_digits。其中number就是将要进行四舍五入的数字;num_digits则是希望得到的数字的小数点后的位数。如图3所示:单元格B2中为初始数据0.123456,B3的初始数据为0.234567,将要对它们进行四舍五入。在单元格C2中输入"=ROUND(B2,2)",小数点后保留两位有效数字,得到0.12、0.23。在单元格D2中输入"=ROUND(B2,4)",则小数点保留四位有效数字,得到0.1235、0.2346。察看原图 发送到手机图3 对数字进行四舍五入对于数字进行四舍五入,还可以使用INT(取整函数),但由于这个函数的定义是返回实数舍入后的整数值。因此,用INT函数进行四舍五入还是需要一些技巧的,也就是要加上0.5,才能达到取整的目的。仍然以图3为例,如果采用INT函数,则C2公式应写成:"=INT(B2*100+0.5)/100"。最后需要说明的是:本文所有公式均在Excel97和Excel2000中验证通过,修改其中的单元格引用和逻辑条件值,可用于相似的其他场合。附注:Excel的数学和三角函数一览表ABS 工作表函数 返回参数的绝对值 ACOS 工作表函数 返回数字的反余弦值 ACOSH 工作表函数 返回参数的反双曲余弦值 ASIN 工作表函数 返回参数的反正弦值 ASINH 工作表函数 返回参数的反双曲正弦值 ATAN 工作表函数 返回参数的反正切值 ATAN2 工作表函数 返回给定的 X 及 Y 坐标值的反正切值 ATANH 工作表函数 返回参数的反双曲正切值 CEILING 工作表函数 将参数 Number 沿绝对值增大的方向,舍入为最接近的整数或基数 COMBIN 工作表函数 计算从给定数目的对象集合中提取若干对象的组合数 COS 工作表函数 返回给定角度的余弦值 COSH 工作表函数 返回参数的双曲余弦值 COUNTIF 工作表函数 计算给定区域内满足特定条件的单元格的数目 DEGREES 工作表函数 将弧度转换为度 EVEN 工作表函数 返回沿绝对值增大方向取整后最接近的偶数 EXP 工作表函数 返回 e 的 n 次幂常数 e 等于 2.71828182845904,是自然对数的底数 FACT 工作表函数 返回数的阶乘,一个数的阶乘等于 1*2*3*...*该数 FACTDOUBLE 工作表函数 返回参数 Number 的半阶乘 FLOOR 工作表函数 将参数 Number 沿绝对值减小的方向去尾舍入,使其等于最接近的 significance 的倍数 GCD 工作表函数 返回两个或多个整数的最大公约数 INT 工作表函数 返回实数舍入后的整数值 LCM 工作表函数 返回整数的最小公倍数 LN 工作表函数 返回一个数的自然对数自然对数以常数项 e(2.71828182845904)为底 LOG 工作表函数 按所指定的底数,返回一个数的对数 LOG10 工作表函数 返回以 10 为底的对数 MDETERM 工作表函数 返回一个数组的矩阵行列式的值 MINVERSE 工作表函数 返回数组矩阵的逆距阵 MMULT 工作表函数 返回两数组的矩阵乘积结果 MOD 工作表函数 返回两数相除的余数结果的正负号与除数相同 MROUND 工作表函数 返回参数按指定基数舍入后的数值 MULTINOMIAL 工作表函数 返回参数和的阶乘与各参数阶乘乘积的比值 ODD 工作表函数 返回对指定数值进行舍入后的奇数 PI 工作表函数 返回数字 3.14159265358979,即数学常数 pi,精确到小数点后 15 位 POWER 工作表函数 返回给定数字的乘幂 PRODUCT 工作表函数 将所有以参数形式给出的数字相乘,并返回乘积值 QUOTIENT 工作表函数 回商的整数部分,该函数可用于舍掉商的小数部分 RADIANS 工作表函数 将角度转换为弧度 RAND 工作表函数 返回大于等于 0 小于 1 的均匀分布随机数 RANDBETWEEN 工作表函数 返回位于两个指定数之间的一个随机数 ROMAN 工作表函数 将阿拉伯数字转换为文本形式的罗马数字 ROUND 工作表函数 返回某个数字按指定位数舍入后的数字 ROUNDDOWN 工作表函数 靠近零值,向下(绝对值减小的方向)舍入数字 ROUNDUP 工作表函数 远离零值,向上(绝对值增大的方向)舍入数字 SERIESSUM 工作表函数 返回基于以下公式的幂级数之和: SIGN 工作表函数 返回数字的符号当数字为正数时返回 1,为零时返回 0,为负数时返回 -1
墨然殇2023-06-21 09:03:101

excel 函数

B1=MAX(A1,$C$1),下拉,B列格式为日期C1=1983-1-1
余辉2023-06-21 09:03:092

c++写一个复数类,完成复数的加减乘运算。应包括构造函数。编写主函数,完成对类的使用

string.hpp:#ifndef __STRING_HPP__#define __STRING_HPP__#include<iostream>#include<cstring>#include<cstdio>#include<cstdlib>using namespace std;class String{ private: char* data; int len; public: String();//构造函数 String(int,char);//构造函数的存在 String(const char*); ~String();//析构函数 String(const String&);//拷贝构造函数 //赋值运算符函数 String& operator=(const String&); void show(); friend ostream& operator<< (ostream&,const String&);//插入运算符的重载 //提取运算符的重载 friend istream& operator>>(istream&,String&); const String operator +(const String&)const; String& operator+=(const String&); char& operator[](int); char* getdata(); int getlength(); operator char*(); friend bool operator==(const String&,const String&); friend bool operator!=(const String&,const String&); friend bool operator<(const String&,const String&); friend bool operator>(const String&,const String&);};#endif //__STRING_HPP__string.cpp中:#include"string.hpp"String::String()//构造函数{ data=new char[1]; len=0; *data="";}String::String(int n,char ch)//构造函数的存在{ data=new char[1+n]; len=n; char* p=data;w while(n-->0) *p++=ch;}String::String(const char* str){ /*if(str!=NULL) { len=strlen(str); data=new char[1+len]; strcpy(data,str); } else { data=new char[1]; len=0; *data=""; }*/ len=strlen(str?str:""); data=new char[1+len]; strcpy(data,str?str:"");}String::~String()//析构函数{ delete[]data; data=NULL;}String::String(const String& that)//拷贝构造函数{ //cout<<"拷贝构造函数被调用"<<endl; len=that.len; data=new char[1+len]; strcpy(data,that.data);}//赋值运算符函数String& String::operator=(const String& that){ // obj3=obj4; //初级程序员的写法 /*if(this==&that) return *this;//防止自赋值 delete[]data;//释放原内存 data=new char[1+that.len];//开辟新的内存 len=that.len; strcpy(data,that.data);//拷贝新内容 return *this;//返回自引用*/ //中级程序员的写法 //a=that; if(&that==this) return *this; char* p=new char[1+that.len]; if(!p) { cout<<"内存开辟失败"<<endl; exit(-1); } //如果开辟内存不成功的话,就抛出一个异常 delete[]data; data=strcpy(p,that.data); len=that.len; return *this; //高级程序员的写法 //a=that if(&that!=this) { String other(that); len=that.len; swap(data,other.data); } return *this;}void String::show(/*int a*/){ cout<<data<<" "<<len<<endl;}ostream& operator<<(ostream& os,const String& that){ //在插入运算符中可以把流对象os当作cout来使用 //最后还要返回流对象自身,以备连用 return os<<that.data<<" "<<that.len; //return os;}istream& operator>>(istream& is,String& that){ //return is>>that.data; char buf[256]={}; is.getline(buf,100); that.len=strlen(buf); delete[]that.data; that.data=new char[1+that.len]; strcpy(that.data,buf); return is;}const String String::operator+(const String& that) const{ String other; other.len=len+that.len; delete[]other.data; other.data=new char[1+other.len]; //strcat(strcpy(other.data,data),that.data); strcpy(other.data,data); strcat(other.data,that.data); //that.len=0; return other;}//obj1 =obj2 + obj3 //int a,b,c;//a=b+c;//ok//b+c=a;//error匿名变量只能做右值/*a=1,b=2,c=3;(a=b)=c;a=3 b=2 c=3*/String& String::operator+=(const String& that){ /*String other(*this); delete[]data; len+=that.len; data=new char[1+len]; strcat(strcpy(data,other.data),that.data);*/ *this=*this+that; return *this;}char& String::operator[](int i){ if(i<0||i>len) { cout<<"数组下标越界"<<endl; exit(-1); } return data[i];}/*obj1("abcdf");cout<<obj1[0]<<endl;//aobj1[0]="A";cout<<obj1<<endl;//Abcdf*/char* String::getdata(){ return data;}int String::getlength(){ return len;}String::operator char*(){ static char buf[256]={}; sprintf(buf,"%s%d",data,len); return buf;}//obj1("abcdef");//cout<<(char*)obj1<<endl;//abcdef6bool operator==(const String&that,const String&other){ return strcmp(that.data,other.data)==0;}bool operator!=(const String&that,const String&other){ //return strcmp(that.data,other.data)!=0; return !(that==other);}bool operator>(const String&that,const String&other){ return strcmp(that.data,other.data)>0;}bool operator<(const String&that,const String&other){ return strcmp(that.data,other.data)<0;}至于对类的使用,你可以自己写个程序测试下吧
小白2023-06-21 08:28:381

用结构体和函数怎么编写复数的加减运算

#define ARR_SIZE 20typedef struct complex{int aNum;int bNum;}Complex;void Add(Complex *A, Complex *B){ A->aNum=A->aNum+B->aNum; A->bNum=A->bNum+B->bNum;}void Minus(Complex *A, Complex *B){A->aNum=A->aNum-B->aNum;A->bNum=A->bNum-B->bNum;}char * FormatComplex(Complex *A) //格式化复数,变成a+bi{char temp[ARR_SIZE];wsprintf(temp,"%d+%d i",A->aNum,A->bNum);return temp;}
Jm-R2023-06-21 08:28:371

如何编写程序用成员函数形式实现复数类加减法运算重载

正解见下:#include<iostream>using namespace std;class complex//复数类声明{private: double real; double image;public: complex(double r=0.0,double i=0.0)//构造函数 { real=r; image=i; } complex operator+(complex c2);//+重载为成员函数 complex operator-(complex c2);//-重载为成员函数 complex operator*(complex c2);//*重载为成员函数 friend complex operator/(complex,complex);///重载为成员函数 bool operator==(complex c2);//==重载为成员函数 void display();};complex complex::operator +(complex c2)//重载的实现{complex c;c.real=c2.real+real;c.image=c2.image+image;return complex(c.real,c.image);}complex complex::operator -(complex c2)//重载的实现{complex c;c.real=real-c2.real;c.image=image-c2.image;return complex(c.real,c.image);}complex complex::operator *(complex c2)//重载的实现{complex c;c.real=c2.real*real;c.image=c2.image*image;return complex(c.real,c.image);}complex operator/(complex c1,complex c2)//重载的实现{return complex(c1.real/c2.real,c1.image/c2.image);}bool complex::operator ==(complex c2)//重载的实现{if((real==c2.real)||(image==c2.image))return true;else return false;}void complex::display(){cout<<"("<<real<<","<<image<<")"<<endl;}void main(){complex c1(5.0,4),c2(5.0,4),c3;cout<<"c1=";c1.display();cout<<"c2=";c2.display();c3=c1+c2;//使用重载运算符完成复数加法cout<<"c3=c1+c2=";c3.display();c3=c1-c2;//使用重载运算符完成复数减法cout<<"c3=c1-c2=";c3.display();c3=c1*c2;//使用重载运算符完成复数乘法cout<<"c3=c1*c2=";c3.display();c3=c1/c2;//使用重载运算符完成复数除法cout<<"c3=c1/c2=";c3.display();//使用重载运算符完成两个复数的比较bool result=(c1==c2);cout<<"(c1==c2)="<<result<<endl
苏州马小云2023-06-21 08:28:321

三角函数的复数性质

(1)对于z为实数y来说,复数域内正余弦函数的性质与通常所说的正余弦函数性质是一样的。(2)复数域内正余弦函数在z平面是解析的。(3)在复数域内不能再断言|sinz|≦1,|cosz|≦1。(4)sinz、cosz分别为奇函数,偶函数,且以2π为周期。复数三角函数sin(a+bi)=sinacosbi+sinbicosa=sinachb+ishbcosacos(a-bi)=cosacosbi+sinbisina=cosachb+ishbsinatan(a+bi)=sin(a+bi)/cos(a+bi)cot(a+bi)=cos(a+bi)/sin(a+bi)sec(a+bi)=1/cos(a+bi)csc(a+bi)=1/sin(a+bi)
Ntou1232023-06-21 08:24:551

复数与三角函数之间是如何进行转换的,顺便给个例子。

欧拉公式:e^ix=cosx+isinx∵将e^ix按泰勒展开得e^x=1+x/1!+x^2/2!+x^3/3!+x^4/4!+……将cos x按泰勒展开得cos x=1-x^2/2!+x^4/4!-x^6/6!……将sin x按泰勒展开得sin x=x-x^3/3!+x^5/5!-x^7/7!……则任意复数re^iθ=r(cosθ+isinθ) 其中r为模的大小,θ为复角
豆豆staR2023-06-21 08:24:342

什么叫复数函数?详细点

未知数和系数都是复数的函数复数z 可以表示成z=x+yix,y都是实数
mlhxueli 2023-06-21 08:19:532

什么是共轭函数?

共轭根式数学上的共轭: 共轭复数:实数部分相同而虚数部分互为相反数的两个复数。 矩阵的共轭转置:把矩阵转置后,再把每一个数换成它的共轭复数。 自共轭矩阵:矩阵中每一个第i 行第j 列的元素都与第j 行第i 列的元素的共轭相等。 代数上的共轭与共轭复数类似,用来进行分母有理化。 共轭梯度法 共轭类 共轭指数 、共轭复数、共轭双曲线等
meira2023-06-20 07:12:252

excel函数

E3输入以下公式=IFERROR(VLOOKUP(C3,Sheet2!B5:C15,2,0)*D3+8,"")题目中的乘以D3是Sheet2中的D3,还是Sheet1的D3?如果是Sheet2中的D3,公式修改为=IFERROR(VLOOKUP(C3,Sheet2!B5:C15,2,0)*Sheet2!D3+8,"")
NerveM 2023-06-20 07:05:312

有谁知道excel表格中各种函数分别的用法

Excel常用函数大全1、ABS函数函数名称:ABS主要功能:求出相应数字的绝对值。使用格式:ABS(number)参数说明:number代表需要求绝对值的数值或引用的单元格。应用举例:如果在B2单元格中输入公式:=ABS(A2),则在A2单元格中无论输入正数(如100)还是负数(如-100),B2中均显示出正数(如100)。特别提醒:如果number参数不是数值,而是一些字符(如A等),则B2中返回错误值“#VALUE!”。2、AND函数函数名称:AND主要功能:返回逻辑值:如果所有参数值均为逻辑“真(TRUE)”,则返回逻辑“真(TRUE)”,反之返回逻辑“假(FALSE)”。使用格式:AND(logical1,logical2,...)参数说明:Logical1,Logical2,Logical3……:表示待测试的条件值或表达式,最多这30个。应用举例:在C5单元格输入公式:=AND(A5>=60,B5>=60),确认。如果C5中返回TRUE,说明A5和B5中的数值均大于等于60,如果返回FALSE,说明A5和B5中的数值至少有一个小于60。特别提醒:如果指定的逻辑条件参数中包含非逻辑值时,则函数返回错误值“#VALUE!”或“#NAME”。3、AVERAGE函数函数名称:AVERAGE主要功能:求出所有参数的算术平均值。使用格式:AVERAGE(number1,number2,……)参数说明:number1,number2,……:需要求平均值的数值或引用单元格(区域),参数不超过30个。应用举例:在B8单元格中输入公式:=AVERAGE(B7:D7,F7:H7,7,8),确认后,即可求出B7至D7区域、F7至H7区域中的数值和7、8的平均值。特别提醒:如果引用区域中包含“0”值单元格,则计算在内;如果引用区域中包含空白或字符单元格,则不计算在内。4、COLUMN函数函数名称:COLUMN主要功能:显示所引用单元格的列标号值。使用格式:COLUMN(reference)参数说明:reference为引用的单元格。应用举例:在C11单元格中输入公式:=COLUMN(B11),确认后显示为2(即B列)。特别提醒:如果在B11单元格中输入公式:=COLUMN(),也显示出2;与之相对应的还有一个返回行标号值的函数——ROW(reference)。5、CONCATENATE函数函数名称:CONCATENATE主要功能:将多个字符文本或单元格中的数据连接在一起,显示在一个单元格中。使用格式:CONCATENATE(Text1,Text……)参数说明:Text1、Text2……为需要连接的字符文本或引用的单元格。应用举例:在C14单元格中输入公式:=CONCATENATE(A14,"@",B14,".com"),确认后,即可将A14单元格中字符、@、B14单元格中的字符和.com连接成一个整体,显示在C14单元格中。特别提醒:如果参数不是引用的单元格,且为文本格式的,请给参数加上英文状态下的双引号,如果将上述公式改为:=A14&"@"&B14&".com",也能达到相同的目的。6、COUNTIF函数函数名称:COUNTIF主要功能:统计某个单元格区域中符合指定条件的单元格数目。使用格式:COUNTIF(Range,Criteria)参数说明:Range代表要统计的单元格区域;Criteria表示指定的条件表达式。应用举例:在C17单元格中输入公式:=COUNTIF(B1:B13,">=80"),确认后,即可统计出B1至B13单元格区域中,数值大于等于80的单元格数目。特别提醒:允许引用的单元格区域中有空白单元格出现。7、DATE函数函数名称:DATE主要功能:给出指定数值的日期。使用格式:DATE(year,month,day)参数说明:year为指定的年份数值(小于9999);month为指定的月份数值(可以大于12);day为指定的天数。应用举例:在C20单元格中输入公式:=DATE(2003,13,35),确认后,显示出2004-2-4。特别提醒:由于上述公式中,月份为13,多了一个月,顺延至2004年1月;天数为35,比2004年1月的实际天数又多了4天,故又顺延至2004年2月4日。8、函数名称:DATEDIF主要功能:计算返回两个日期参数的差值。使用格式:=DATEDIF(date1,date2,"y")、=DATEDIF(date1,date2,"m")、=DATEDIF(date1,date2,"d")参数说明:date1代表前面一个日期,date2代表后面一个日期;y(m、d)要求返回两个日期相差的年(月、天)数。应用举例:在C23单元格中输入公式:=DATEDIF(A23,TODAY(),"y"),确认后返回系统当前日期[用TODAY()表示)与A23单元格中日期的差值,并返回相差的年数。特别提醒:这是Excel中的一个隐藏函数,在函数向导中是找不到的,可以直接输入使用,对于计算年龄、工龄等非常有效。9、DAY函数函数名称:DAY主要功能:求出指定日期或引用单元格中的日期的天数。使用格式:DAY(serial_number)参数说明:serial_number代表指定的日期或引用的单元格。应用举例:输入公式:=DAY("2003-12-18"),确认后,显示出18。特别提醒:如果是给定的日期,请包含在英文双引号中。10、DCOUNT函数函数名称:DCOUNT主要功能:返回数据库或列表的列中满足指定条件并且包含数字的单元格数目。使用格式:DCOUNT(database,field,criteria)参数说明:Database表示需要统计的单元格区域;Field表示函数所使用的数据列(在第一行必须要有标志项);Criteria包含条件的单元格区域。11、FREQUENCY函数函数名称:FREQUENCY主要功能:以一列垂直数组返回某个区域中数据的频率分布。使用格式:FREQUENCY(data_array,bins_array)参数说明:Data_array表示用来计算频率的一组数据或单元格区域;Bins_array表示为前面数组进行分隔一列数值。12、IF函数函数名称:IF主要功能:根据对指定条件的逻辑判断的真假结果,返回相对应的内容。使用格式:=IF(Logical,Value_if_true,Value_if_false)参数说明:Logical代表逻辑判断表达式;Value_if_true表示当判断条件为逻辑“真(TRUE)”时的显示内容,如果忽略返回“TRUE”;Value_if_false表示当判断条件为逻辑“假(FALSE)”时的显示内容,如果忽略返回“FALSE”。MAX函数函数名称:MAX主要功能:求出一组数中的最大值。使用格式:MAX(number1,number2……)参数说明:number1,number2……代表需要求最大值的数值或引用单元格(区域),参数不超过30个。
wpBeta2023-06-20 07:05:291

所有的数据库函数的函数名都以什么开头

数据库中的函数封装了一些通用的功能,例如日期类型和字符串类型之间的转换,每个数据库系统都内置了一些函数,当然用户也可以自己定义自己的函数。 这些函数可以在sql和后台存储过程或触发器中使用,但是使用了这些函数的SQL已经不是标准的SQL...
meira2023-06-20 07:05:292

数学竞赛中复数那块看不太懂,哪位高手能具体讲一下复数的知识点,尤其与三角函数的联系,详细一点最好

自己到新华书店买一本有关的书籍看看就明白了。或者看看一下高三的数学教材,人教版的。
凡尘2023-06-19 09:01:361

复变函数ei的模长怎么求

利用直尺直接可以测量出的长度,即为复数的模长
此后故乡只2023-06-18 17:13:463

将下列复数转为三角函数与指数表示 1.Z=4+4i 2.Z=-√3-i 谢谢!

Z=4+4i=4根号2(COS(根号2/2)+isin(根号2/2))=4根号2(COS45+iSIN45) =4根号2 ^(iPAI/4) Z=--(√3+i )=-2(COS根号3/2+iSIN根号3/2)=-2(COS60+ISIN60)=-2e^(PAI/3)
meira2023-06-18 16:52:391

将下面复数表示为三角函数式和指数式 1-cosx+isinx

1-cosx+isinx =1-[1-2sin^2(x/2)]+isinx =2sin^2(x/2)+i*[2sin(x/2)cos(x/2)] =2sin(x/2)[sin(x/2)+icos(x/2)].
真颛2023-06-18 16:52:381

将下面复数表示为三角函数式和指数式 1-cosx+isinx

1-cosx+isinx=1-[1-2sin^2(x/2)]+isinx=2sin^2(x/2)+i*[2sin(x/2)cos(x/2)]=2sin(x/2)[sin(x/2)+icos(x/2)].
Chen2023-06-18 16:52:061

复数化为三角函数时,其中的角度是幅角,还是幅角主值? 还有什么情

答非所问
wpBeta2023-06-18 16:51:592

复数的三角函数表示

z=(27+81i)(-3-i)/10 =(0-270i)/10=-27i=27(cos270°+isin270°)
CarieVinne 2023-06-18 16:51:552

复数的基础知识以及与三角函数的转换

你看看同济大学出版的高等数学
大鱼炖火锅2023-06-18 16:51:462

复变函数中z=0有没有三角表示式?

每一个复数都有三角表示式,z=0 的三角式是: 0*[cos(θ)+isin(θ)],其中 θ 可以是任意实数(因为 0 方向不确定)
无尘剑 2023-06-18 16:51:361
 首页 上一页  43 44 45 46 47 48 49 50 51 52 53  下一页  尾页