概率论和统计学中,数学期望的概念是什么?
数学期望在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数等,因而称这随机变量是连续型随机变量。参考资料来源:百度百科-数学期望参考资料来源:百度百科-均值善士六合2023-05-26 08:18:281
概率论考研有什么学习方法,怎么感觉比高数还难啊
感觉概率论简单多了再也不做站长了2023-05-26 08:18:258
概率论中ABC三个事件不都发生怎么表示
ABC三个事件不都发生,和ABC同时都发生是对立事件。ABC三个事件同时发生为 P(ABC),所以ABC三事件不都同时发生为 1-P(ABC)。扩展资料概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。定理1互补法则。与A互补事件的概率始终是1-P(A)。定理2不可能事件的概率为零。定理3如果A1...An事件不能同时发生(为互斥事件),而且若干事件A1,A2,...An∈S每两两之间是空集关系,那么这些所有事件集合的概率等于单个事件的概率的和。定理4如果事件A,B是差集关系,则有 定理5任意事件加法法则:对于事件空间S中的任意两个事件A和B,有如下定理: 概率定理6乘法法则:事件A,B同时发生的概率是: 前提为事件A,B有一定关联。定理7无关事件乘法法则:两个不相关联的事件A,B同时发生的概率是:注意到这个定理实际上是定理6(乘法法则)的特殊情况,如果事件A,B没有联系,则有P(A|B)=P(A),以及P(B|A)=P(B)。观察一下轮盘游戏中两次连续的旋转过程,P(A)代表第一次出现红色的概率,P(B)代表第二次出现红色的概率,可以看出,A与B没有关联,利用上面提到的公式,连续两次出现红色的概率为: 忽视这一定理是造成许多玩家失败的根源,普遍认为,经过连续出现若干次红色后,黑色出现的概率会越来越大,事实上两种颜色每次出现的概率是相等的,之前出现的红色与之后出现的黑色之间没有任何联系,因为球本身并没有"记忆",它并不"知道"以前都发生了什么。所以,连续10次至少有1次出现红色的概率为 。参考资料:百度百科——概率论gitcloud2023-05-26 08:18:241
概率论中乘法定理,p(ab)=p(a|b)p(a)成立的条件是什么?一定要p(a)>0吗?可以等于
那个不该是p(b)么小白2023-05-26 08:18:232
概率论中的可列可加性和有限可加性有什么区别
可列可加性与有限可加性是等价的!善士六合2023-05-26 08:18:223
不理解概率论里的对偶律,不用veen图,哪位高手能阐述清楚用一两句话,就阐述图里式子。
想问下题主的课本是什么名字,急用苏萦2023-05-26 08:18:213
有关概率论的问题,数学好的请多指教
定理大全第1章 随机事件及其概率(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。 从m个人中挑出n个人进行组合的可能数。(2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。(3)一些常见排列 重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。(5)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。这样一组事件中的每一个事件称为基本事件,用 来表示。基本事件的全体,称为试验的样本空间,用 表示。一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。 为必然事件,Ø为不可能事件。不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。(6)事件的关系与运算 ①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生): 如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。A、B中至少有一个发生的事件:A B,或者A+B。属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。 -A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。②运算:结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)德摩根率: , (7)概率的公理化定义 设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:1° 0≤P(A)≤1,2° P(Ω) =13° 对于两两互不相容的事件 , ,…有常称为可列(完全)可加性。则称P(A)为事件 的概率。(8)古典概型 1° ,2° 。设任一事件 ,它是由 组成的,则有P(A)= = (9)几何概型 若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A, 。其中L为几何度量(长度、面积、体积)。(10)加法公式 P(A+B)=P(A)+P(B)-P(AB)当P(AB)=0时,P(A+B)=P(A)+P(B)(11)减法公式 P(A-B)=P(A)-P(AB)当B A时,P(A-B)=P(A)-P(B)当A=Ω时,P( )=1- P(B)(12)条件概率 定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。条件概率是概率的一种,所有概率的性质都适合于条件概率。例如P(Ω/B)=1 P( /A)=1-P(B/A)(13)乘法公式 乘法公式: 更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有 … …… … 。(14)独立性 ①两个事件的独立性设事件 、 满足 ,则称事件 、 是相互独立的。若事件 、 相互独立,且 ,则有若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。必然事件 和不可能事件Ø与任何事件都相互独立。Ø与任何事件都互斥。②多个事件的独立性设ABC是三个事件,如果满足两两独立的条件,P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)并且同时满足P(ABC)=P(A)P(B)P(C)那么A、B、C相互独立。对于n个事件类似。(15)全概公式 设事件 满足1° 两两互不相容, ,2° ,则有 。(16)贝叶斯公式 设事件 , ,…, 及 满足1° , ,…, 两两互不相容, >0, 1,2,…, ,2° , ,则 ,i=1,2,…n。此公式即为贝叶斯公式。 ,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。(17)伯努利概型 我们作了 次试验,且满足 每次试验只有两种可能结果, 发生或 不发生; 次试验是重复进行的,即 发生的概率每次均一样; 每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。这种试验称为伯努利概型,或称为 重伯努利试验。用 表示每次试验 发生的概率,则 发生的概率为 ,用 表示 重伯努利试验中 出现 次的概率, , 。第二章 随机变量及其分布(1)离散型随机变量的分布律 设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为P(X=xk)=pk,k=1,2,…,则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出: 。显然分布律应满足下列条件:(1) , , (2) 。(2)连续型随机变量的分布密度 设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有 ,则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。密度函数具有下面4个性质:1° 。2° 。(3)离散与连续型随机变量的关系 积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。(4)分布函数 设 为随机变量, 是任意实数,则函数称为随机变量X的分布函数,本质上是一个累积函数。 可以得到X落入区间 的概率。分布函数 表示随机变量落入区间(– ∞,x]内的概率。分布函数具有如下性质:1° ;2° 是单调不减的函数,即 时,有 ;3° , ;4° ,即 是右连续的;5° 。对于离散型随机变量, ;对于连续型随机变量, 。(5)八大分布 0-1分布 P(X=1)=p, P(X=0)=q 二项分布 在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。 , 其中 ,则称随机变量 服从参数为 , 的二项分布。记为 。当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。 泊松分布 设随机变量 的分布律为 , , ,则称随机变量 服从参数为 的泊松分布,记为 或者P( )。泊松分布为二项分布的极限分布(np=λ,n→∞)。 超几何分布 随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。 几何分布 ,其中p≥0,q=1-p。随机变量X服从参数为p的几何分布,记为G(p)。 均匀分布 设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即 其他,则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。分布函数为当a≤x1<x2≤b时,X落在区间( )内的概率为 。 指数分布 其中 ,则称随机变量X服从参数为 的指数分布。X的分布函数为记住积分公式:正态分布 设随机变量 的密度函数为 , ,其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。 具有如下性质:1° 的图形是关于 对称的;2° 当 时, 为最大值;若 ,则 的分布函数为 。。参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为 , ,分布函数为 。 是不可求积函数,其函数值,已编制成表可供查用。Φ(-x)=1-Φ(x)且Φ(0)= 。如果 ~ ,则 ~ 。 。(6)分位数 下分位表: ;上分位表: 。(7)函数分布 离散型 已知 的分布列为 , 的分布列( 互不相等)如下: ,若有某些 相等,则应将对应的 相加作为 的概率。 连续型 先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。第三章 二维随机变量及其分布(1)联合分布 离散型 如果二维随机向量 (X,Y)的所有可能取值为至多可列个有序对(x,y),则称 为离散型随机量。设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:YX y1 y2 … yj …x1 p11 p12 … p1j …x2 p21 p22 … p2j …xi pi1 … …这里pij具有下面两个性质:(1)pij≥0(i,j=1,2,…);(2) 连续型 对于二维随机向量 ,如果存在非负函数 ,使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D={(X,Y)|a<x<b,c<y<d}有则称 为连续型随机向量;并称f(x,y)为 =(X,Y)的分布密度或称为X和Y的联合分布密度。分布密度f(x,y)具有下面两个性质:(1) f(x,y)≥0;(2) (2)二维随机变量的本质 (3)联合分布函数 设(X,Y)为二维随机变量,对于任意实数x,y,二元函数称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。分布函数是一个以全平面为其定义域,以事件 的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:(1) (2)F(x,y)分别对x和y是非减的,即当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1);(3)F(x,y)分别对x和y是右连续的,即(4) (5)对于 .(4)离散型与连续型的关系 (5)边缘分布 离散型 X的边缘分布为 ;Y的边缘分布为 。 连续型 X的边缘分布密度为Y的边缘分布密度为(6)条件分布 离散型 在已知X=xi的条件下,Y取值的条件分布为在已知Y=yj的条件下,X取值的条件分布为连续型 在已知Y=y的条件下,X的条件分布密度为 ;在已知X=x的条件下,Y的条件分布密度为(7)独立性 一般型 F(X,Y)=FX(x)FY(y) 离散型 有零不独立 连续型 f(x,y)=fX(x)fY(y)直接判断,充要条件:①可分离变量②正概率密度区间为矩形 二维正态分布 =0 随机变量的函数 若X1,X2,…Xm,Xm+1,…Xn相互独立, h,g为连续函数,则:h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。特例:若X与Y独立,则:h(X)和g(Y)独立。例如:若X与Y独立,则:3X+1和5Y-2独立。(8)二维均匀分布 设随机向量(X,Y)的分布密度函数为其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。例如图3.1、图3.2和图3.3。y1D1O 1 x图3.1y1O 2 x图3.2ydcO a b x图3.3(9)二维正态分布 设随机向量(X,Y)的分布密度函数为其中 是5个参数,则称(X,Y)服从二维正态分布,记为(X,Y)~N( 由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,即X~N( 但是若X~N( ,(X,Y)未必是二维正态分布。(10)函数分布 Z=X+Y 根据定义计算: 对于连续型,fZ(z)= 两个独立的正态分布的和仍为正态分布( )。n个相互独立的正态分布的线性组合,仍服从正态分布。 , Z=max,min(X1,X2,…Xn) 若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:分布设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和的分布密度为我们称随机变量W服从自由度为n的 分布,记为W~ ,其中所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。 分布满足可加性:设则t分布 设X,Y是两个相互独立的随机变量,且可以证明函数的概率密度为我们称随机变量T服从自由度为n的t分布,记为T~t(n)。F分布 设 ,且X与Y独立,可以证明 的概率密度函数为我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为F~f(n1, n2).第四章 随机变量的数字特征(1)一维随机变量的数字特征 离散型 连续型 期望期望就是平均值 设X是离散型随机变量,其分布律为P( )=pk,k=1,2,…,n,(要求绝对收敛) 设X是连续型随机变量,其概率密度为f(x),(要求绝对收敛) 函数的期望 Y=g(X) Y=g(X)方差D(X)=E[X-E(X)]2,标准差 ,矩 ①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即νk=E(Xk)= , k=1,2, ….②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即= , k=1,2, …. ①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即νk=E(Xk)= k=1,2, ….②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即= k=1,2, …. 切比雪夫不等式 设随机变量X具有数学期望E(X)=μ,方差D(X)=σ2,则对于任意正数ε,有下列切比雪夫不等式切比雪夫不等式给出了在未知X的分布的情况下,对概率的一种估计,它在理论上有重要意义。(2)期望的性质 (1) E(C)=C(2) E(CX)=CE(X)(3) E(X+Y)=E(X)+E(Y), (4) E(XY)=E(X) E(Y),充分条件:X和Y独立;充要条件:X和Y不相关。(3)方差的性质 (1) D(C)=0;E(C)=C(2) D(aX)=a2D(X); E(aX)=aE(X)(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b(4) D(X)=E(X2)-E2(X)(5) D(X±Y)=D(X)+D(Y),充分条件:X和Y独立;充要条件:X和Y不相关。D(X±Y)=D(X)+D(Y) ±2E[(X-E(X))(Y-E(Y))],无条件成立。而E(X+Y)=E(X)+E(Y),无条件成立。(4)常见分布的期望和方差 期望 方差 0-1分布 p 二项分布 np 泊松分布 几何分布 超几何分布 均匀分布 指数分布 正态分布 n 2n t分布 0 (n>2)(5)二维随机变量的数字特征 期望 函数的期望 = =方差 协方差 对于随机变量X与Y,称它们的二阶混合中心矩 为X与Y的协方差或相关矩,记为 ,即与记号 相对应,X与Y的方差D(X)与D(Y)也可分别记为 与 。 相关系数 对于随机变量X与Y,如果D(X)>0, D(Y)>0,则称为X与Y的相关系数,记作 (有时可简记为 )。| |≤1,当| |=1时,称X与Y完全相关: 完全相关 而当 时,称X与Y不相关。以下五个命题是等价的:① ;②cov(X,Y)=0;③E(XY)=E(X)E(Y);④D(X+Y)=D(X)+D(Y);⑤D(X-Y)=D(X)+D(Y). 协方差矩阵 混合矩 对于随机变量X与Y,如果有 存在,则称之为X与Y的k+l阶混合原点矩,记为 ;k+l阶混合中心矩记为:(6)协方差的性质 (i) cov (X, Y)=cov (Y, X);(ii) cov(aX,bY)=ab cov(X,Y);(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);(iv) cov(X,Y)=E(XY)-E(X)E(Y).(7)独立和不相关 (i) 若随机变量X与Y相互独立,则 ;反之不真。(ii) 若(X,Y)~N( ),则X与Y相互独立的充要条件是X和Y不相关。第五章 大数定律和中心极限定理(1)大数定律切比雪夫大数定律 设随机变量X1,X2,…相互独立,均具有有限方差,且被同一常数C所界:D(Xi)<C(i=1,2,…),则对于任意的正数ε,有特殊情形:若X1,X2,…具有相同的数学期望E(XI)=μ,则上式成为伯努利大数定律 设μ是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数ε,有伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即这就以严格的数学形式描述了频率的稳定性。 辛钦大数定律 设X1,X2,…,Xn,…是相互独立同分布的随机变量序列,且E(Xn)=μ,则对于任意的正数ε有(2)中心极限定理列维-林德伯格定理 设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差: ,则随机变量的分布函数Fn(x)对任意的实数x,有此定理也称为独立同分布的中心极限定理。 棣莫弗-拉普拉斯定理 设随机变量 为具有参数n, p(0<p<1)的二项分布,则对于任意实数x,有(3)二项定理 若当 ,则超几何分布的极限分布为二项分布。(4)泊松定理 若当 ,则其中k=0,1,2,…,n,…。二项分布的极限分布为泊松分布。第六章 样本及抽样分布(1)数理统计的基本概念 总体 在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。 个体 总体中的每一个单元称为样品(或个体)。 样本 我们把从总体中抽取的部分样品 称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时, 表示n个随机变量(样本);在具体的一次抽取之后, 表示n个具体的数值(样本值)。我们称之为样本的两重性。 样本函数和统计量 设 为总体的一个样本,称 ( )为样本函数,其中 为一个连续函数。如果 中不包含任何未知参数,则称 ( )为一个统计量。 常见统计量及其性质 样本均值 样本方差 样本标准差 样本k阶原点矩样本k阶中心矩 , , , ,其中 ,为二阶中心矩。(2)正态总体下的四大分布 正态分布 设 为来自正态总体 的一个样本,则样本函数t分布 设 为来自正态总体 的一个样本,则样本函数其中t(n-1)表示自由度为n-1的t分布。设 为来自正态总体 的一个样本,则样本函数其中 表示自由度为n-1的 分布。 F分布 设 为来自正态总体 的一个样本,而 为来自正态总体 的一个样本,则样本函数其中 表示第一自由度为 ,第二自由度为 的F分布。(3)正态总体下分布的性质 与 独立。第七章 参数估计(1)点估计 矩估计 设总体X的分布中包含有未知数 ,则其分布函数可以表成 它的k阶原点矩 中也包含了未知参数 ,即 。又设 为总体X的n个样本值,其样本的k阶原点矩为这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有由上面的m个方程中,解出的m个未知参数 即为参数( )的矩估计量。若 为 的矩估计, 为连续函数,则 为 的矩估计。 极大似然估计 当总体X为连续型随机变量时,设其分布密度为 ,其中 为未知参数。又设 为总体的一个样本,称为样本的似然函数,简记为Ln.当总体X为离型随机变量时,设其分布律为 ,则称为样本的似然函数。若似然函数 在 处取到最大值,则称 分别为 的最大似然估计值,相应的统计量称为最大似然估计量。若 为 的极大似然估计, 为单调函数,则 为 的极大似然估计。(2)估计量的评选标准 无偏性 设 为未知参数 的估计量。若E ( )= ,则称 为 的无偏估计量。E( )=E(X), E(S2)=D(X) 有效性 设 和 是未知参数 的两个无偏估计量。若 ,则称 有效。 一致性 设 是 的一串估计量,如果对于任意的正数 ,都有则称 为 的一致估计量(或相合估计量)。若 为 的无偏估计,且 则 为 的一致估计。只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。(3)区间估计 置信区间和置信度 设总体X含有一个待估的未知参数 。如果我们从样本 出发,找出两个统计量 与 ,使得区间 以 的概率包含这个待估参数 ,即那么称区间 为 的置信区间, 为该区间的置信度(或置信水平)。 单正态总体的期望和方差的区间估计 设 为总体 的一个样本,在置信度为 下,我们来确定 的置信区间 。具体步骤如下:(i)选择样本函数;(ii)由置信度 ,查表找分位数;(iii)导出置信区间 。 已知方差,估计均值 (i)选择样本函数(ii) 查表找分位数(iii)导出置信区间未知方差,估计均值 (i)选择样本函数(ii)查表找分位数(iii)导出置信区间方差的区间估计 (i)选择样本函数(ii)查表找分位数(iii)导出 的置信区间第八章 假设检验基本思想 假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。这里所说的小概率事件就是事件 ,其概率就是检验水平α,通常我们取α=0.05,有时也取0.01或0.10。基本步骤 假设检验的基本步骤如下:(i) 提出零假设H0;(ii) 选择统计量K;(iii) 对于检验水平α查表找分位数λ;(iv) 由样本值 计算统计量之值K;将 进行比较,作出判断:当 时否定H0,否则认为H0相容。两类错误 第一类错误 当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设),称这种错误为“以真当假”的错误或第一类错误,记 为犯此类错误的概率,即P{否定H0|H0为真}= ;此处的α恰好为检验水平。 第二类错误 当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受了不真实的假设),称这种错误为“以假当真”的错误或第二类错误,记 为犯此类错误的概率,即P{接受H0|H1为真}= 。 两类错误的关系 人们当然希望犯两类错误的概率同时都很小。但是,当容量n一定时, 变小,则 变大;相反地, 变小,则 变大。取定 要想使 变小,则必须增加样本容量。在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可“以假为真”、而不愿“以真当假”时,则应把α取得很小,如0.01,甚至0.001。反之,则应把α取得大些。单正态总体均值和方差的假设检验条件 零假设 统计量 对应样本函数分布 否定域已知 N(0,1) 未知 未知CarieVinne 2023-05-26 08:18:212
概率论与统计学的图书目录
第一章 事件与概率1.1 随机事件与随机变量1.1.1 随机现象及其样本空间1.1.2 随机事件与随机变量的定义1.1.3 事件间的关系与运算习题1.11.2 概率的定义及其确定方法1.2.1 概率的公理化定义1.2.2 频率方法1.2.3 古典方法1.2.4 概率分布1.2.5 主观方法习题1.21.3 概率的性质1.3.1 对立事件的概率1.3.2 概率的单调性1.3.3 概率的加法公式习题1.31.4 独立性1.4.1 事件间的独立性1.4.2 n重伯努利试验习题1.41.5 条件概率1.5.1 条件概率的定义1.5.2 条件概率的性质1.5.3 全概率公式1.5.4 贝叶斯公式习题1.5第二章 随机变量的分布及其特征数2.1 随机变量及其概率分布2.1.1 随机变量的定义2.1.2 离散分布2.1.3 连续分布习题2.12.2 分布函数2.2.1 分布函数的定义与性质2.2.2 正态分布的计算2.2.3 随机变量函数的分布习题2.22.3 数学期望2.3.1 离散分布的数学期望2.3.2 连续分布的数学期望2.3.3 随机变量函数的数学期望习题2.32.4 方差与标准差2.4.1 方差与标准差的定义2.4.2 方差的性质2.4.3 切比雪夫不等式2.4.4 伯努利大数定律习题2.42.5 分布的其他特征数2.5.1 矩2.5.2 变异系数2.5.3 偏度2.5.4 峰度2.5.5 中位数2.5.6 分位数2.5.7 众数习题2.53.1.1 多维随机变量3.1.2 联合分布3.1.3 随机变量间的独立性3.1.4 多维离散随机变量3.1.5 多维连续随机变量习题3.13.2 多维随机变量函数的分布与期望3.2.1 最大值与最小值的分布3.2.2 卷积公式3.2.3 多维随机变量函数的数学期望3.2.4 Delta方法习题3.23.3 多维随机变量间的相依性3.3.1 协方差3.3.2 相关系数3.3.3 条件分布3.3.4 条件期望习题3.33.4 中心极限定理3.4.1 一个重要现象3.4.2 独立同分布下的中心极限定理3.4.3 二项分布的正态近似3.4.4 独立不同分布下的中心极限定理习题3.4第四章 统计量与估计量4.1 总体与样本4.1.1 总体与个体4.1.2 样本4.1.3 从样本去认识总体的图表方法4.1.4 正态概率图习题4.14.2 统计量、估计量与抽样分布4.2.1 统计量与估计量4.2.2 抽样分布4.2.3 点估计的评价标准习题1.24.3 点估计方法4.3.1 样本的经验分布函数与样本矩4.3.2 矩法估计4.3.3 极大似然估计习题4.34.4 次序统计量4.4.1 次序统计量概念4.4.2 次序统计量的分布4.4.3 样本极差4.4.4 样本中位数与样本p分位数4.4.5 五数概括及其箱线图4.4.6 用随机模拟法寻找统计量的近似分布习题4.4第五章 单样本推断5.1 假设检验的概念与步骤5.1.1 假设检验问题5.1.2 假设检验的步骤5.1.3 标准差在假设检验中的作用习题5.15.2 正态均值的检验5.2.1 正态均值u的u检验(a已知)5.2.2 正态均值u的t检验(a未知)5.2.3 用p值作判断5.2.4 假设检验的一些解释习题5.25.3 正态均值的区间估计5.3.1 置信区间5.3.2 枢轴量法5.3.3 假设检验与置信区间的联系5.3.4 正态均值u的置信区间习题5.35.4 样本量的确定……第六章 双样本推断第七章 方差分析习题答案参考文献附录北境漫步2023-05-26 08:18:211
概率论问题求解:n个人随机围成一圈,指定的两个人相邻的概率是多少??
2/(n-1) 解法一:不管甲坐在什么位置,剩下n-1个位置里,乙有两个可选位置,所以是2/(n-1) 这应该是最简便的解法了解法二:总共n个人围一圈,有 (n-1)! 个坐法甲乙要坐在一起,那么就让他们坐一起,他们谁在左谁在右,有2种。其他n-2个人,(n-2)! 个坐法。所以是 2*(n-2)! 故概率围 2/(n-1)。扩展资料:公理化定义柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件Ω,有P(Ω)=1;(3)可列可加性:设A1,A2??是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2??),则有P(A1∪A2∪??)=P(A1)+P(A2)+??此后故乡只2023-05-26 08:18:211
概率论中σ2和S²有什么区别?谢谢大神!!
s^2是方差的意思,第一个没看出来是什么字符!西柚不是西游2023-05-26 08:18:203
概率论问题
什么问题再也不做站长了2023-05-26 08:18:203
概率论与数理统计 第一章 随机事件与概率
加法原理、乘法原理、组合与排列 确定性现象 :在一定条件下必然发生。 随机现象 :事先无法预知出现哪个结果 统计规律性 :随机现象在一次试验中呈现不确定的结果,而在大量重复试验中结果呈现某种规律性。 观察的过程叫做 随机试验 。 随机试验一切可能结果组成的集合称为 样本空间 ,记为 ,其中 表示试验的每一个可能结果,又称为 样本点 。 当我们通过随机试验来研究随机对象时,每一次试验都只能出现样本空间中的某一个样本点。各个可能结果 是否在一次试验中出现是随机的。 在随机试验中,常常关心其中的某一些结果是否会出现,如抛一枚骰子,掷出点数是否为奇数等。这些在一次试验中可能出现也可能不出现的一类结果称为 随机事件 ,简称为 事件 ,通常用大写字母A,B,C来表示。 从集合的角度说,样本空间的 部分样本点组成的集合 称为随机事件。 因为集合之间有各种关系,是可以进行运算的,因此在随机事件之间也可以讨论相互的关系,进行相应的运算。 由此可推出: 频率 :在 次试验中事件A出现了 次,则称比值 为这 次试验中事件A出现的频率,记为 , 称为事件A发生的频数。 概率的统计定义 为:随着试验次数 的增大,频率值逐步 “稳定” 到一个实数,这个实数称为事件A发生的概率。 概念的公理化定义: 由概率的三条公理,可以得到一些重要的基本性质: 古典概型的基本思路: (1) 只有 有限个样本点 (2) 每个 基本事件发生的可能性相等 几何概型是古典概型的推广,保留样本点的等可能性,但 去掉了包含有限个样本点的限制 。 经典问题:碰面问题,蒲丰投针问题。 根据蒲丰投针问题可以近似地计算 一般地,条件概率是指在某随机事件A发生的条件下,另一随机事件B发生的概率,记为 条件概率的定义: 可以验证条件概率也满足概率的公理化定义的三条基本性质。 概率的乘法公式 : 事件的独立性定义: 由此引出定理: 可以将相互独立性推广到三个事件、……、n个事件 将一些较为复杂的随机事件的概率计算问题分解为一些较容易计算的情况分别进行考虑。 完备事件组 : 定理1 全概率公式 : 定理2 贝叶斯公式 : 由条件概率的定义及全概率公式得到。 已知结果,寻找原因 。 先验概率 和 后验概率 : 贝叶斯派和经典统计学学派为现代统计学的两大分支,差别在于是否使用先验信息。善士六合2023-05-26 08:18:191
概率论中C和A的计算方法
Anm=m*(m-1)*(m-2)*.......(m-n+1) 即m个数相乘Cnm=Anm/n!mlhxueli 2023-05-26 08:18:194
概率论与数理统计分版本吗
《新世纪高级应用型人才培养系列教材·概率论与数理统计》是一本由同济大学出版社出版的书籍。《概率论与数理统计(工程数学)(第2版)》分为两大部分:第一部分为概率论基础,包括前5章内容;第二部分为数理统计,包括后4章内容。第一部分包括:随机事件及其概率、一维随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理.第二部分包括:数理统计的基本思想、参数估计、假设检验、线性回归、方差分析和正交设计,《概率论与数理统计(工程数学)(第2版)》基本上只用到微积分和线性代数的知识,凡是具备这两门高等数学知识的读者,都可以使用《概率论与数理统计(工程数学)(第2版)》作为学习《概率论与数理统计》课程的教材。书名概率论与数理统计出版社同济大学出版社定价24.00 元[1]开本16 开装帧平装相关图书我的订单 | 更多图书概率论与数理统计9787560841922限时满减¥17.4来自度小店去购买概率论与数理统计 孟晗 编【正版】¥9来自京东去购买概率论与数理统计孟晗科学与自然9787560841922 概率论高等学校教材¥16.3来自京东去购买概率论与数理统计 孟晗 编 同济大学出版社 9787560841922¥19.5来自京东去购买【正版现货】概率论与数理统计¥25.6来自京东去购买概率论与数理统计¥31.2来自京东去购买内容简介图书目录TA说内容简介《概率论与数理统计(工程数学)(第2版)》内容丰富,重点突出,但是由于课时和专业原因,教师在实际授课时,可以根据专业特点,在完成基本内容的基础上,有选择地讲授。[1]图书目录第2版 前言第一章 随机事件及其概率第一节 随机事件及其运算一、随机试验与样本空间二、随机事件三、事件的关系与运算习题 1-1第二节 随机事件的概率一、概率的统汁定义二、古典概型二、几何概率四、概率的公理化定义习题 1-2第三节 条件概率与全概率公式一,条件概率勺乘法公式二、全概率公式与贝叶斯公式习题 1-3第四节 随机事件的独立性习题 1-4第五节 伯劳利慨型习题 1-5第二章 随机变量及其分布第一节 随机变量第二节 离散型随机变量及其概率分布一、两点分布(0-1分布或伯努利分布)二、二项分布三、泊松分布四、超几何分布五、几何分布六、帕斯卡分布习题 2-2第三节 随机变量的分布函数习题 2-3第四节 连续型随机变量及其概率密度一、均匀分布二、指数分布三、正态分布习题 2-4第五节 随机变量函数的分布习题 2-5第三章 多维随机变量及其分布第一节 多维随机变量习题 3-1第二节 边缘分布习题 3-2第三节 条件分布习题 3-3第四节 随机变量的独立性习题 3-4第五节 多维随机变量函数的分布习题 3-5第四章 随机变量的数字特征第一节 数学期望习题 4-1第二节 方差习题 4-2第三节 协方差及相关系数习题 4-3第四节 随机变量的其他数字特征习题 4-4第五章 大数定律与中心极限定理第一节 大数定律习题 5-1第二节 中心极限定理习题 5-2第六章 数理统计的基本思想第一节 总体与样本编辑传视频TA说1目录在【百度APP-我的】大鱼炖火锅2023-05-26 08:18:191
概率论问题求解:n个人随机围成一圈,指定的两个人相邻的概率是多少??
n等于2时,概率等于1。n大于等于3时,概率等于上述答案。Jm-R2023-05-26 08:18:194
概率论中σ2和S²有什么区别?谢谢大神!!
σ2表示的是总体方差,S²表示的是样本方差。在数学中,S²用的次数比较多。一般情况下,如果样本很大,就会用S²去比较总体样本的情况。如果样本数量很小,就会用σ2去比较样本情况。在矩估计中,就是用样本方差去估计总体方差的。扩展资料概率论的内容有:第一章 随机事件与概率1§1.1 随机现象与样本空间 1一、随机现象 1二、样本空间 2§1.2 随机事件与频率稳定性 3一、随机事件 3二、事件之间的关系与运算 3三、频率与概率 6§1.3 随机事件的概率 7一、古典概型 7二、几何概率 11三、概率的公理化定义与性质 14§1.4 条件概率、全概率公式、贝叶斯公式 16一、条件概率 16二、全概率公式 19三、贝叶斯公式 20§1.5 事件独立性 23一、两个事件的独立性 23二、多个事件的独立性 24三、贝努利概型 27第二章 随机变量及其分布33§2.1 随机变量与分布函数33一、随机变量的概念33二、随机变量的分布函数34§2.2 离散型随机变量37一、离散型随机变量的概率分布37二、离散型随机变量的分布函数39三、常用离散型随机变量的分布41§2.3 连续型随机变量46一、连续型随机变量的概率密度函数46二、连续型随机变量的分布函数48三、常用连续型随机变量的分布49§2.4 随机变量函数的分布56一、离散型随机变量函数的分布56二、连续型随机变量函数的分布57第三章 随机向量及其分布64§3.1 二维随机向量及其联合分布函数64一、随机向量的概念64二、随机向量的联合分布函数65三、随机向量的边际分布函数66§3.2 二维离散型随机向量66一、二维离散型随机向量的联合概率分布66二、二维离散型随机向量的边际概率分布69三、二维离散型随机向量的条件概率分布71§3.3 二维连续型随机向量72一、二维连续型随机向量的联合密度函数72二、二维连续型随机向量的边际密度函数77三、条件密度函数78四、两种常用的二维连续型随机向量的分布78§3.4 随机变量的独立性81一、随机变量独立性的定义81二、离散型随机向量独立的等价命题81三、连续型随机向量独立的等价命题84§3.5 二维随机向量函数的分布86一、二维离散型随机向量函数的分布86二、二维连续型随机向量函数的分布88三、可加性92等参考资料:百度百科——概率论Chen2023-05-26 08:18:191
概率论公理化定义是谁提出的?
柯尔莫哥洛夫。柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0。(2)规范性:对于必然事件,有P(Ω)=1。(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……。公理化概率论:柯尔莫格罗夫所提出的概率论公理化体系,主要根植于集合论、测度论与实变函数论。他运用娴熟的实变函数理论,建立了集合测度与随机事件概率的类比、积分与数学期望的类比、函数的正交性与随机变量独立性的类比等,这种广泛的类比赋予概率论以演绎数学的特征,许多在直线上的积分定理都可移植到概率空间。康康map2023-05-26 08:18:181
概率论 要过程?
一、概率的公理化定义概率论研究的是随机现象的统计规律性,先通过集合论的知识引入样本空间,然后通过样本空间来定义随机事件,这样我们的重点是关注随机事件发生的能可性大小,这是我们最关心的,可是怎么来衡量它呢?对一个随机事件A,要想说明它的发生可能性大小,最直接的就是赋予其一个数,称其为概率。这个过程也是一波三折,直到1933才由前苏联数学家柯尔莫哥洛夫给出一个公理化定义:只要P(A)满足:非负性,规范性与可列可加性就称P(A)为A的概率,说明A发生的可能性大小。这是概率论遇到的第一个亟需解决的量化问题,解决了!二、随机变量的引入第二个需要量化的是那些样本点,啥玩意都有:S=;S={阳性,阴性};S={男,女}这样表示不利于我们对所关心事件的整理,同时也不直观,不易让人看懂,所以引入了随机变量这个概念。什么是随机变量呢?就是将样本空间中的所有样本点按照一定的规则对应到实数,按课本上的定义就是定义在样本空间上的单值实函数X(e)称为随机变量,实际上它称函数,人家函数阵营并不同意,我们都是从R对应到R的,你是从样本空间对应到实数,算什么函数嘛,顶多是一个映射。不过函数比较忙,也没时间打假,你叫就叫吧。不管怎样,随机变量混成了一个函数,还真解决了概率论的一大心病,看这样的式子多爽:P=1/2P=1/6三、分布函数这可是一个货真价实的函数,至此可用分布函数来表示我们所关心的事件并利用高等数学的知识来求概率了。bikbok2023-05-26 08:18:181
概率论与数理统计总结
1.1.1 随机现象: 概率论与数理统计的研究的对象就是随机现象,随机现象就是在一定的条件下不总是出现相同的结果的现象,也就是不能肯定的确定结果的现象就统称为随机现象。现实生活中有很多的随机现象比如同一学校统一专业的学生考上研究生的现象就是随机现象,你不能说哪一个学生肯定能够考上某所学校但是你能根据这所学校往年的数据估算出这所学校的考研率,在一定程度上也就能够大致估算出这所学校某某同学考上研究生的可能性有多大,当然一个学生能不能考上研究生与这所学校的考研率并没有必然的联系因为是随机的具有不确定性,但有一定的相关程度在里面。整个概率论研究的就是随机现象的模型(概率分布),而概率分布则是能够用来描叙某随机现象特征的工具。有阴就有阳,有了随机事件自然与之对应的就是确定性现象(如太阳每天东升西落) 1.1.2 样本空间: 随机现象一切可能 基本结果 所构成的集合则称为样本空间,其集合内的元素又称为样本点,当样本点的个数为可列个或者有限个的时候就叫做离散型样本空间,当样本点的个数为无限个或者不可列个的时候就叫做连续型样本空间。( 可列个的意思是可以按照一定的次序一一列举出来,比如某一天内到达某一个商场内的人数都是整数1,2,3。。。。,这叫可列个,不可列个的意思比如电视机的寿命,有100.1小时的有100.01小时的有100.0001小时的,你永远不能按照次序列举出比一百小的下一个元素到底是哪一个,这就叫不可列)。 1.1.3 随机事件: 随机现象某些样本点组成的集合叫做用一个 随机事件 ,也就是说随机事件是样本空间的一个子集,而样本空间中单个元素所组成的集合就叫做 基本事件 ,样本空间自身也是一个事件叫做 必然事件 ,样本空间的最小子集也即空集就叫做 不可能事件 1.1.4 随机变量: 用来表示随机现象结果的变量称为 随机变量 ,随机变量的取值就表示随机事件的结果,实际上随机事件的结果往往与一个随机变量的取值可以一一对应 1.1.5 随机事件之间的运算与关系: 由于我们将随机事件定义成一个集合事件间的运算也可看作是集合间的运算,集合间的诸运算如交集、并集、补集、差集等运算随机事件之间也有,而且运算规则一致。集合间的包含、相等、互不相容、对立,事件之间也有,随机事件间的运算性质满足交换律、结合律、分配率、德摩根定律。 1.1.6 事件域: 事件域为样本空间的某些子集所组成的集合类而且满足三个条件,事件域中元素的个数就是样本空间子集的个数,比如一个有N个样本点的样本空间那么他的事件域就有 个元素,定义事件域主要是为了定义事件概率做准备。 概率论中最基本的一个问题就是如何去确定一个随机事件的概率,随机事件的结果虽然具有不确定性,但是他发生的结果具有一定的规律性(也即随机事件发生可能性的大小),而用来描叙这种规律性的工具就是概率,但是我们怎么样来给概率下一个定义嘞?如何度量描叙事件发生可能性的大小嘞?这是一个问题。 在概率论的发展史上针对不同的随机事件有过各种各样的概率定义,但是那些定只适用于某一类的随机事件,那么如何给出适合一切随机现象概率的最一般的定义嘞?1900年数学家希尔伯特提出要建立概率的公理化定义,也就是建立一个放之四海而皆准的满足一切随机事件的概率的定义,用概率本质性的东西去刻画概率.1933年前苏联数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这个定义既概括了历史上几种概率的定义中的共同特性,又避免了各自的含混不清之处,不管什么随机现象只有满足该定义中的三条公理,才能说明他是概率,该定义发表之后得到了几乎所有数学家的一致认可。(说点题外话,如果某位数学工作者提出了某个重大的发现,首先需要写论文获得学术圈内的人士一致认同他的这个发现才能够有可能被作为公理写进教科书,之所以被称作公理就因为它既是放之四海而皆准的准则也是公认的真理)。 1.2.1 概率的三条公理化定义: 每一个随机事件其背后必定伴随着有她的样本空间(就像有些成功的男人背后都有一位贤内助),每一个随机事件都属于样本空间的事件域,样本空间的选取不同对同一个随机事件而言其概率通常也会不同。 如果概率满足以上三条公理则称有样本空间、事件域、概率所组成的空间为概率空间,满足以上三条公理的概率才能称之为概率。 概率的公理化定义并没有给出计算概率的方法因此知道了什么是概率之后如何去确定概率就又成了一个问题。 1.2.2 确定概率的频率方法: 确定概率的频率方法应用场景是在能够大量重复的随机实验中进行,用频率的稳定值去获得概率的估算值的方法思想如下: 为什么会想到用频率去估算概率嘞?因为人们的长期实践表明随着试验次数的增加,频率会稳定在某一个常数附近,我们称这个常数为频率的稳定值,后来的伯努力的大数定律证明了其稳定值就是随机事件发生的概率,可以证明频率一样满足概率的三条公理化定义由此可见频率就是“伪概率”。 1.2.4 确定概率的古典方法: 古典问题是历史上最早的研究概率论的问题,包括帕斯卡研究的骰子问题就是古典问题,他简单直观不需要做大量的试验我们就可以在经验事实的基础上感性且理性的分析清楚。 古典方法确定概率的思想如下: 很显然上叙古典概率满足概率的三条公理化定义,古典概型是最古老的确定概率的常用方法,求古典概率归结为求样本空间样本点的总数和事件样本点的个数,所以在计算中常用到排列组合的工具。 1.2.5 确定概率的几何方法: 基本思想: 1.2.6 确定概率的主观方法: 在现实世界中一些随机现象是无法进行随机试验的或者进行随机试验的成本大到得不偿失的地步,这时候的概率如何确定嘞? 统计学界的贝叶斯学派认为:一个事件的概率是人们根据经验对该事件发生可能性的个人信念,这样给出的概率就叫做主观概率,比如我说我考上研究生的概率是百分之百(这当然有吹牛的成分在里面,但是里面有也包含了自信和自己对自己学习情况的了解以及自己对所报考院校的了解),比如说某企业家说根据它多年的经验和当时的一些市场信息认为某项新产品在市场上畅销的可能性是百分之80(这种话如果是熟人在私下里跟你说你还可以相信但是也要小心,如果是陌生人当着很多人的面说的你会相信吗?傻X才相信对不对?这么畅销你自己为什么不去做还把蛋糕分给老子?)。主观概率就是人们根据实际情况对某件事情发生的可能性作出的估计,但是这种估计的好坏是有待验证的。 这个理解了都不用特意去记要用的时候信手捏来,我是个很勤快的人其他公式都懒得记懒得写了。。。。下面只分析条件概率、全概率公式、贝叶斯公式: 1.3.1 条件概率: 所谓条件概率就是在事件A发生的情况下B发生的概率,即A B为样本空间 中两两事件若P(B)>0则称: 为在B发生的前提下A发生的条件概率,简称条件概率。 这个公式不难理解,实际上上面公式 也就是说“ 在B发生的条件下A发生的概率等于事件A与事件B共有的样本点的个数比上B的样本点的个数”,而且可以验证此条件概率满足概率的三条公理化定义。 1.3.2 乘法公式: 1.3.3 全概率公式: 设 为样本空间 的一个分割,即 互不相容,且 ,如果 则对任一事件A有: 这个公式也是很好理解的因为诸 互不相容而且其和事件为样本空间,故A事件中的样本点的个数等于A与诸 中共有样本点的和。 1.3.4 贝叶斯公式: 贝叶斯公式是在全概率公式和乘法公式的基础上推得的。 设若 为样本空间的一个分割,即 互不相容,且 如果 则: 公式的证明是根据条件概率来的,然后在把分子分母分别用乘法公式和全概率公式代替即可,公式中的 一般为已知概率称之为 先验概率 公式中 则称之为 后验概率 ,全概率公式和乘法公式为由原因推结果,而贝叶斯公式则为由结果推原因。 1.3.5 事件独立性: 上面我们介绍了条件概率这个概念,在条件A下条件B发生的概率为 ,如果B的发生不受A的影响嘞?直觉上来讲这就将意味着 故引入如下定义对任意两个事件A,B若 则称事件A与事件B相互独立 除了两个随机事件相互独立满足的定义当然也会有多个随机事件独立满足的定义,对N随机事件相互独立则要求对事件中的任意 个随机事件都相互独立. 1.3.6 伯努利概型: 定义:如果实验E只有两种可能的结果: ,然后把这个试验重复n次就构成了n重伯努利试验或称之为伯努利概型.显然每次伯努利试验事件结果之间是相互独立互不影响的,则伯努利试验显然是服从二项分布的,之后再介绍二项分布。 1.4.1 离散型随机变量: 之前说过用来表示随机现象结果的变量称之为随机变量,如抛掷一枚骰子随机变量的取值可以为1,2,3….显然此时随便试验的结果与随机变量的取值是一一对应的,于是我们将研究随机试验结果的统计规律转化为研究随机变量取值的统计规律,这种对应关系是人为的建立起来的同时也是合理的,只取有限个或者可列个值时候的随机变量则称之为离散型随机变量。 1.4.2 随机变量的分布列: 将随机变量的取值与其对应取值的可能性大小即概率列成一张表就称之为分布列,分布列使得随机变量的统计规律一目了然也方便计算其特征数方差和均值。分布列满足如下两个性质: 满足以上两个性质的列表则称之为分布列 1.4.3 分布函数: 设若X为一个随机变量,对任意的实数x,称 为随机变量X的分布函数记为 . 分布函数满足以下三个性质: 以上上个性质是一个函数能否成为分布函数的充要条件。 1.4.4 数学期望和方差: 先来看一个例子,某手表厂在出产的产品中抽查了N=100只手表的日走时误差其数据如下: 这时候这100只手表的平均日走时误差为: 其中 是日走时误差的频率记做 则 平均值 即平均值为频数乘以频率的和,由于在 时频率稳定于概率,于是在理论上来讲频率应该用概率来代替,这时我们把频率用概率来代替之后求出的平均值称之为数学期望(实际上由后面的大数定律可得平均值也稳定于数学期望),数学期望在一定程度上反映了随机变量X结果的平均程度即整体的大小,我们记为 。 定义:设X是一个随机变量X的均值 存在 如果 也存在则称之为随机变量X的方差记为 . 显然方差也是一个均值那么他是什么的均值嘞? 表示随机变量的均值离差, 由随机变量平均值的离差和等于零我们可以推的随机变量均值的离差和也等于零故均值离差和的均值 也等于零,但是我们希望用离差来刻画不同分布间的差别如果用均值离差和的均值那么任何分布都为零,于是我们将离差加上一个平方变成 这样避免了离差和为零。那么方差这个表示分布特征的数又有什么重要意义嘞?很多人看似学完了概率统计,但是居然连方差的意义都没有搞清楚,实际上方差是用来刻画数据间的差异的,而刻画数据间的差异无论是在空间上的向量还是在平面上的点,用距离来刻画他们之间的差异是再好不过的。在物理学上要想正确合理的比较两动体的速度加速度我们就需要选取合适的参考系来进行对比,同样在比较数据间的差异的时候我们也往往用均值来做他们的参考(实际上其他的值也可以用来进行比较,但是那可能造成方差过大的现象),与均值的距离越大说明他们的差异也越大,而距离又有正负之分因此为了区别正负我们也需要把与均值的距离加上一个平方,这也就是方差概念的来源。我们通常用方差来描叙一组数据间的差异,方差越小数据越集中,越大数据越分散,同时在金融上面也用来评估风险比如股价的波动性,我们当然希望股价的波动越是平稳即方差越小、收益越稳定越好。 因为均值和方差描叙了随机变量及其分布的某些特征因此就将其称之为特征数. 1.4.5 连续型随机变量的密度函数: 连续型随机变量的取值可能充满某一个区间为不可列个取值,因此描叙连续型随机变量的概率分布不能再用分布列的行时呈现出来,而要借助其他的工具即概率密度函数。 概率密度函数的由来:比如某工厂测量一加工元件的长度,我们把测量的元件按照长度堆放起来,横轴为元件的单位长度,纵轴为元件单位长度上的频数,当原件数量很多的时候就会形成一定的图形,为了使得这个图形稳定下来我们将纵坐标修改为单位长度上的频率,当元件数量不断增多的时候由于频率会逐步稳定于概率,当单位长度越小,原件数量越多的时候,这个图形就越稳定,当单位长度趋向于零的时候,图形就呈现出一条光滑的曲线这时候纵坐标就由“单位长度上的概率”变为“一点上的概率密度”,此时形成的光滑曲线的函数 就叫做概率密度函数,他表现出x在一些地方取值的可能性较大,一些地方取值的可能性较小的一种统计规律,概率密度函数的形状多种多样,这正是反映了不同的连续随机变量取值统计规律上的差别。 概率密度函数 虽然不是密度但是将其乘上一个小的微元 就可得小区间 上概率的近似值,即 微分元的累计就能够得到区间 上的概率,这个累计不是别的就是 在区间 上的积分 = . 由此可得x的分布函数 ,对于连续型随机变量其密度函数的积分为分布函数,分布函数求导即为密度函数 密度函数的基本性质: 1.4.6 连续型随机变量的期望和方差: 设若随机变量X的密度函数为 . 数学期望: 方差: 1.4.7 切比雪夫不等式(Chebyshev,1821-1894): 设随机变量X的数学期望和方差都存在,则对任意常数 有: . 之所以有这个公式是因为人们觉得事件{ }发生的概率应该与方差存在一定的联系,这个是可以理解的,方差越大在某种程度上说明 X的取值偏离 越厉害即说明偏离值大于某个常数a的取值越多因此取值大于某个值的概率也越大,上面公式说明大偏差发生概率的上界与方差有关,方差越大上界也越大。 1.4.8 常用离散型分布: 1.4.9 常用的连续型分布:善士六合2023-05-26 08:18:181
卷积公式概率论是什么?
卷积公式是:z(t)=x(t)*y(t)=∫x(m)y(t-m)dm。这是一个定义式。卷积公式是用来求随机变量和的密度函数(pdf)的计算公式。注意卷积公式仅在Z与X、Y呈线性关系方可使用,因为小写z书写不方便,故用t代替。方法就是将y(或x)用x和t表达,替换原密度函数的y,对x(或y)积分,这样就可以消掉x和y,只剩下t。卷积定理指出,函数卷积的傅里叶变换是函数傅里叶变换的乘积。即,一个域中的卷积相当于另一个域中的乘积,例如时域中的卷积就对应于频域中的乘积。F(g(x)*f(x)) = F(g(x))F(f(x)),其中F表示的是傅里叶变换。在泛函分析中,卷积、旋积或褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。卷积是两个变量在某范围内相乘后求和的结果。离散情况下是数列相乘再求和。连续情况下是函数相乘再积分。卷积是两个函数的运算方式,就是一种满足一些条件(交换律、分配率、结合律、数乘结合律、平移特性、微分特性、积分特性等)的算子。用一种方式将两个函数联系到一起。从形式上讲,就是先对g函数进行翻转,相当于在数轴上把g函数从右边翻转到左边去,然后再把g函数平移到n,在这个位置上对两个函数的对应点相乘,然后相加。这就是“卷”的过程。函数翻转,滑动叠加(积分、加权求和)。有一种学术的说法:卷积是将过去所有连续信号经过系统的响应之后得到的在观察那一刻的加权叠加。从打板子的例子来看结合前边提到的连续形式f和g的卷积,可以理解为f和g的卷积在n处的值是用来表示在时刻n 遭受的疼痛程度。f(t)是在说t这一时刻的人打的力度,g(n-t)说的是现在站在n时刻开始统计 这个t时刻打的板子本身的疼痛程度变化成了什么样子。将所有积分计算出来 就可以知道到n时刻这个人有多痛。(至于积分上下限就不能用这个时刻来理解了,毕竟现在无法知道未来。)不过从这个简单的例子中还是可以窥见一些卷积公式的奥秘,我们知道在实际推导时主要是在推导两个随机变量的和的时候推导出来的。mlhxueli 2023-05-23 19:24:471
为什么卷积公式在概率论里不可以?
卷积公式概率论计算分布函数的时候不能用。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。此后故乡只2023-05-23 19:24:471
卷积公式概率论什么时候不能用
卷积公式概率论计算分布函数的时候不能用。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。墨然殇2023-05-23 19:24:471
卷积公式概率论计算分布函数的时候是否适用
卷积公式概率论计算分布函数的时候不能用。卷积公式的使用条件是只用来计算密度函数,不能计算分布函数。在泛函分析中,卷积是通过两个函数f和g生成第三个函数的一种数学算子,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。应用利用卷积定理可以简化卷积的运算量。对于长度为n的序列,按照卷积的定义进行计算,需要做(2n- 1)组对位乘法,其计算复杂度为;而利用傅里叶变换将序列变换到频域上后,只需要一组对位乘法,利用傅里叶变换的快速算法之后,总的计算复杂度为。这一结果可以在快速乘法计算中得到应用。kikcik2023-05-23 19:24:471
概率论 卷积的使用
阿啵呲嘚2023-05-23 19:24:391
概率论,知道分布函数求概率密度,如何求,谢谢
概率密度必须满足两个条件:(1)非负(2)在(-∞,+∞)上积分为1。(A)(C)无法保证(2)成立,都不正确。(D)无法保证(1)成立,不正确。只有(C)可以同时保证(1)和(2)成立,所以答案是(C)。FinCloud2023-05-23 12:57:561
概率论 随机变量的密度函数是什么?
连续型随机变量概率分布的讨论是在某个区间上来讨论的,在任何一个定点的概率都是零。而密度函数是来描述连续型随机变量在某点附近取值的密集程度。比如英语考试成绩服从均值为85的正态分布,正态分布的密度函数是在85处取到最大值,也就是表明成绩在85分附近的考生最多。而均匀分布指的是在某个区间上随机变量取值是均等的,比如公交车每个整点10分钟一趟从总站开出,你早上6点30到6点45随机地到车站乘车,到达时间就是一个随机变量,并且是服从均匀分布的,密度函数就是1/15,问你等候时间不超过4分钟的概率是多少?也就是求密度函数在6点36到6点40上的积分,即P=4/15.所以,连续型随机变量在某个区间上的概率,就是密度函数在这个区间上的积分.西柚不是西游2023-05-23 12:57:551
一道关于几何分布的概率论题
此题分析如下:先做此题的一个简化版:设Y1为从12张卡片中放回抽取,直到抽出A,B,C其中任何一个为止的次数。那么显然 Y1满足几何分布 :其中p1为抽中目标牌ABC的成功率,即3/12=1/4则右几何分布的期望公式可得那么此题的X和Y1是什么关系呢?想下载抽出A,B,C中任何一个后,无论是A,B,C中的哪一个,因为对称性,对X的大小是没有影响的。不妨设先抽出的是C。那么第二阶段,设Y2为从12张卡片中放回抽取,直到抽出A,B中任何一个为止的次数。同理:不妨设第二阶段抽中的是B。第三阶段,设Y3为从12张卡片中放回抽取,直到抽出A的次数。同理:X可以分为上述三个阶段分别抽取的次数,即:西柚不是西游2023-05-23 12:57:531
概率论里的指数分布是什么意思
陶小凡2023-05-23 12:57:362
概率论中X~E(λ)属于什么分布及其特点?
指数分布,可以用来表示独立随机事件发生的时间间隔。指数分布的参数为λ,则指数分布的期望为1/λ,方差为(1/λ)的平方。拌三丝2023-05-23 12:57:362
概率论(指数分布)
指数分布中的λ其实就是数学期望的倒数,也可以理解为均值的倒数。无尘剑 2023-05-23 12:57:341
概率论 两点分布与二项分布有什么区别?
两点分布是一次实验. 成功的概率是p,失败的概率是1-p 二项分布是n次实验 每次实验服从两点分布:成功概率为p,失败概率为1-p B(n,p) 两点分布也就是B(1,p)ardim2023-05-23 12:57:321
求大神解概率论题目,证明服从大数定律。
阿啵呲嘚2023-05-22 22:50:081
概率论中大数定理
概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。大数定律(law of large numbers),又称大数定理[1] ,是一种描述当试验次数很大时所呈现的概率性质的定律。但是注意到,虽然通常最常见的称呼是大数“定律”,但是大数定律并不是经验规律,而是严格证明了的定理。有些随机事件无规律可循,但不少是有规律的,这些“有规律的随机事件”在大量重复出现的条件下,往往呈现几乎必然的统计特性,这个规律就是大数定律。确切的说大数定律是以确切的数学形式表达了大量重复出现的随机现象的统计规律性,即频率的稳定性和平均结果的稳定性,并讨论了它们成立的条件。[2] 简单地说,大数定理就是“当试验次数足够多时,事件出现的频率无穷接近于该事件发生的概率”。该描述即贝努利大数定律。wpBeta2023-05-22 22:50:071
概率论——大数定律
依据考研数学的安排,在学习大数定律之前引入这样两个先修知识点: (1)切比雪夫不等式: ,对任意的ε>0. 它的意义是:事件大多会集中在它的期望附近 (2)依概率收敛:如果xn是一个随机变量序列、A是一个常数,对任意的ε>0,有 ,则称Xn依概率收敛于常数A 依概率收敛并不同于传统意义上的“实验无数次后频率会无限靠近概率”,它实际上在概率附近划出了一个小的边界ε。实验结果当然可能发生波动,这个边界的作用就是把波动限制在一个很小的范围内。即使超出这个边界,也只是一个 小概率事件 。(小概率事件是指在一次实验中几乎不可能发生的事件,而在重复实验中一定会发生。) 接着看大数定律: (1)切比雪夫大数定律: 这里显然是不严谨的,因为为了方便表述我们省略掉了一些前提条件,好在并不影响对于这个定律本身的理解。 它的数学意义显而易见: 算数平均值依概率收敛于数学期望 。当我们中学做的物理实验中采用多次实验取平均值的方法来减小误差时,实际上理论依据就是切比雪夫大数定律。 (2)伯努利大数定律: 伯努利大数定律的条件是Xn服从B(n,p),也就是说Xn是n重伯努利实验中事件发生的次数,它的数学意义是 频率依概率收敛于统计概率 。伯努利大数定律实际上是切比雪夫大数定律的一种特殊情况。 (3)辛钦大数定律: 辛钦大数定律在表述上和切比雪夫相差不多,但它的特点在于要求Xi独立同分布,并且要存在期望。 (4)棣莫弗——拉普拉斯中心极限定理 设随机变量Xn服从B(n,p),则对于任意实数x,有 ,其中φ(x)是标准正态的分布函数。 结论:Xn近似服从于N(np,np(1-p)) (5)列维——林德伯格中心极限定理 条件:Xn独立同分布、期望和方差存在,有 结论: 近似服从于N(nμ,n ) 我们先给出这两个中心极限定理,可能不太好懂,好在他们之间有很深的关系,或者说棣莫弗实际是列维的特殊情况(服从B(n,p))。有了上述的两个中心极限定理,我们就可以在n很大的情况下把任意一个复杂的分布近似地看作一个正态分布,大大减少了分析的难度。(当然,要符合前提条件)善士六合2023-05-22 22:50:041
概率论相关系数是什么?
相关系数如下:在概率论中,相关系数是:显示两个随机变量之间线性关系的强度和方向。实际中,为了能进行这样的横向对比,我们需要排除用统一的方式来定量某个随机变量的上下浮动。这时我们会计算相关系数。相关系数是“归一化”的协方差。一些不同的相关系数:Pearson相关系数:衡量两个等距尺度或等比尺度变量之相关性。是最常见的,也是学习统计学时第一个接触的相关系数。Spearman等级相关系数:衡量两个次序尺度变量之相关性。Kendall等级相关系数:衡量两个人为次序尺度变量(原始资料为等距尺度)之相关性。Kendall和谐系数:衡量两个次序尺度变量之相关性。Gamma相关系数:衡量两个次序尺度变量之相关性。韦斯特兰2023-05-22 22:50:021
概率论里,求概率分布和求分布函数有什么区别?还是一样的?
本质上是一样的,但对: 离散变量多数是求概率分布; 连续变量多是求分布函数.再也不做站长了2023-05-22 22:49:541
概率论几大分布
看到机器学习中,要求训练集和测试集来自同一分布,然后学习了一下概率论中分布的类型,说明如下:概率论中的六种常用分布,即(0-1)分布、二项分布、泊松分布、均匀分布、指数分布和正态分布。.0—1分布就是n=1情况下的二项分布。即只先进行一次事件试验,该事件发生的概率为p,不发生的概率为1-p。这是一个最简单的分布,任何一个只有两种结果的随机现象都服从0-1分布。在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布(Binomial Distribution)。在概率理论和统计学中,指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。 这是伽马分布的一个特殊情况。 它是几何分布的连续模拟,它具有无记忆的关键性质。 除了用于分析泊松过程外,还可以在其他各种环境中找到。指数分布与分布指数族的分类不同,后者是包含指数分布作为其成员之一的大类概率分布,也包括正态分布,二项分布,伽马分布,泊松分布等等。正态分布是自然科学与行为科学中的定量现象的一个方便模型。各种各样的心理学测试分数和物理现象比如光子计数都被发现近似地服从正态分布。尽管这些现象的根本原因经常是未知的,理论上可以证明如果把许多小作用加起来看做一个变量,那么这个变量服从正态分布。正态分布出现在许多区域统计:例如,采样分布均值是近似地正态的,即使被采样的样本的原始群体分布并不服从正态分布。另外,正态分布信息熵在所有的已知均值及方差的分布中最大,这使得它作为一种均值以及方差已知的分布的自然选择。正态分布是在统计以及许多统计测试中最广泛应用的一类分布。在概率论,正态分布是几种连续以及离散分布的极限分布。帕松分布、普阿松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配、泊松小数法则(Poisson law of small numbers),是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松在1838年时发表。泊松分布适合于描述单位时间内随机事件发生的次数的概率分布。如某一服务设施在一定时间内受到的服务请求的次数,电话交换机接到呼叫的次数、汽车站台的候客人数、机器出现的故障数、自然灾害发生的次数、DNA序列的变异数、放射性原子核的衰变数、激光的光子数分布等等。在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。 均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)韦斯特兰2023-05-22 22:49:531
概率论分布类型总结是什么?
正态分布是自然科学与行为科学中的定量现象的一个方便模型。各种各样的心理学测试分数和物理现象比如光子计数都被发现近似地服从正态分布。使用概率分布有两种含义:广义上讲,概率分布是指随机变量的概率性质:当我们说概率空间时,当两个随机变量X和Y具有相同的分布(或相同的分布)时,我们无法用概率来区分。换句话说,确实,x和y是随机变量,具有相同的分布,当且仅适用于任何事件。狭义上是指随机变量的概率分布函数。设x为样本空间。是概率测度,那么定义如下的函数就是X的分布函数,或者说是累积分布函数(CDF):它定义了任何实数a。具有相同分布函数的随机变量必须是同分布的,所以分布函数可以用来描述一个分布,但是概率密度函数(pdf)是一种比较常用的描述方法。一些分析结论和注意点:1)PDF是连续变量特有的,PMF是离散随机变量特有的。2)PDF的取值本身不是概率,它是一种趋势(密度)只有对连续随机变量的取值进行积分后才是概率,也就是说对于连续值确定它在某一点的概率是没有意义的。3)PMF的取值本身代表该值的概率。PDF-(积分)->CDFPDF描述了CDF的变化趋势,即曲线的斜率。拌三丝2023-05-22 22:49:521
概率论常见分布
ardim2023-05-22 22:49:511
概率论中常见分布总结「转」
本文主要是基于下面优秀博客文的总结和梳理: 概率论中常见分布总结以及python的scipy库使用:两点分布、二项分布、几何分布、泊松分布、均匀分布、指数分布、正态分布 (侵删。) 概率分布有两种型别:离散(discrete)概率分布和连续(continuous)概率分布。 离散概率分布也称为概率质量函式(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。 连续概率分布也称为概率密度函式(probability density function),它们是具有连续取值(例如一条实线上的值)的函式。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。 一些分析结论和注意点: 1)PDF是连续变量特有的,PMF是离散随机变量特有的; 2)PDF的取值本身不是概率,它是一种趋势(密度)只有对连续随机变量的取值进行积分后才是概率,也就是说对于连续值确定它在某一点的概率是没有意义的; 3)PMF的取值本身代表该值的概率。 PDF -(积分)-> CDF PDF描述了CDF的变化趋势,即曲线的斜率。 PMF [离散随机变量 概率] 伯努利试验: 伯努利试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验。 即只先进行一次伯努利试验,该事件发生的概率为p,不发生的概率为1-p。这是一个最简单的分布,任何一个只有两种结果的随机现象都服从0-1分布。 最常见的例子为抛硬币 其中: 即做n个两点分布的实验 其中: 对于二项分布,可以参考 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.binom.html 二项分布的应用场景主要是,对于已知次数n,关心发生k次成功。 ,即为二项分布公式可求。 对于抛硬币的问题,做100次实验,观察其概率分布函式: [图片上传失败...(image-dbd774-1517353918840)] 观察概率分布图,可以看到,对于n = 100次实验中,有50次成功的概率(正面向上)的概率最大。可桃可挑2023-05-22 22:49:511
概率论Z=X+Y的概率密度问题
图肖振2023-05-22 22:49:502
高斯函数!作为激活函数,和logsig区别!好像高斯函数有点统计学概率论?
高斯函数的图像是倒悬着的钟,而logsig函数的图像和arctanx比较像。在统计学与概率论中,高斯函数是正态分布的密度函数。可桃可挑2023-05-22 18:12:331
数学专业概率论与数理统计 考研都考什么
概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布及其应用。3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为5.会求随机变量函数的分布。三、多维随机变量及其分布 考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的分布函数的概念和性质。2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度,掌握二维随机变量的边缘分布和条件分布。3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义。5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质 考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。2.会求随机变量函数的数学期望.3. 了解切比雪夫不等式。五、大数定律和中心极限定理考试内容切比雪夫大数定律 伯努利(Bernoulli)大数定律 辛钦(Khinchine)大数定律 棣莫弗-拉普拉斯(De Moivre-Laplace)定理 列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。2.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)、列维-林德伯格定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。六、数理统计的基本概念 考试内容总体 个体 简单随机样本 统计量 经验分布函数 样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布考试要求1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为 2.了解产生 变量, 变量, 变量的典型模式;理解标准正态分布、 分布、 分布、 分布的上侧 分位数,会查相应的数值表。3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布。4.了解经验分布函数的概念和性质。七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 考试要求1.了解参数的点估计、估计量与估计值的概念。2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.CarieVinne 2023-05-20 08:56:222
概率论与数理统计课后题,不知道如何证明相合估计
相合估计量就是要依概率收敛于待估计的量,证明一般是用辛钦大数定律,这个定律可以直接用西柚不是西游2023-05-20 08:56:211
概率论发展史
1.20世纪以前的概率论概率论起源于博弈问题。15-16世纪,意大利数学家帕乔利(L.Pacioli,1445-1517)、塔塔利亚(N.Tartaglia,1499-1557)和卡尔丹(G.cardano,1501-1576)的著作中都曾讨论过俩人赌博的赌金分配等概率问题。1657年,荷兰数学家惠更斯(C.Huygens,1629-1695)发表了《论赌博中的计算》,这是最早的概率论著作。这些数学家的著述中所出现的第一批概率论概念与定理,标志着概率论的诞生。而概率论最为一门独立的数学分支,真正的奠基人是雅格布•伯努利(Jacob Bernoulli,1654-1705)。他在遗著《猜度术》中首次提出了后来以“伯努利定理”著称的极限定理,在概率论发展史上占有重要地位。伯努利之后,法国数学家棣莫弗(A.de Moivre,1667-1754)把概率论又作了巨大推进,他提出了概率乘法法则,正态分布和正态分布率的概念,并给出了概率论的一些重要结果。之后法国数学家蒲丰(C.de Buffon,1707-1788)提出了著名的“普丰问题”,引进了几何概率。另外,拉普拉斯、高斯和泊松(S.D.Poisson,1781-1840)等对概率论做出了进一步奠基性工作。特别是拉普拉斯,他是严密的、系统的科学概率论的最卓越的创建者,在1812年出版的《概率的分析理论》中,拉普拉斯以强有力的分析工具处理了概率论的基本内容,实现了从组合技巧向分析方法的过渡,使以往零散的结果系统化,开辟了概率论发展的新时期。泊松则推广了大数定理,提出了著名的泊松分布。19世纪后期,极限理论的发展称为概率论研究的中心课题,俄国数学家切比雪夫对此做出了重要贡献。他建立了关于独立随机变量序列的大数定律,推广了棣莫弗—拉普拉斯的极限定理。切比雪夫的成果后被其学生马尔可夫发扬光大,影响了20世纪概率论发展的进程。19世纪末,一方面概率论在统计物理等领域的应用提出了对概率论基本概念与原理进行解释的需要,另一方面,科学家们在这一时期发现的一些概率论悖论也揭示出古典概率论中基本概念存在的矛盾与含糊之处。这些问题却强烈要求对概率论的逻辑基础做出更加严格的考察。2.概率论的公理化俄国数学家伯恩斯坦和奥地利数学家冯•米西斯(R.von Mises,1883-1953)对概率论的严格化做了最早的尝试。但它们提出的公理理论并不完善。事实上,真正严格的公理化概率论只有在测度论和实变函数理论的基础才可能建立。测度论的奠基人,法国数学家博雷尔(E.Borel,1781-1956)首先将测度论方法引入概率论重要问题的研究,并且他的工作激起了数学家们沿这一崭新方向的一系列搜索。特别是原苏联数学家科尔莫戈罗夫的工作最为卓著。他在1926年推倒了弱大数定律成立的充分必要条件。后又对博雷尔提出的强大数定律问题给出了最一般的结果,从而解决了概率论的中心课题之一——大数定律,成为以测度论为基础的概率论公理化的前奏。1933年,科尔莫戈罗夫出版了他的著作《概率论基础》,这是概率论的一部经典性著作。其中,科尔莫戈罗夫给出了公理化概率论的一系列基本概念,提出了六条公理,整个概率论大厦可以从这六条公理出发建筑起来。科尔莫戈罗夫的公理体系逐渐得到数学家们的普遍认可。由于公理化,概率论成为一门严格的演绎科学,并通过集合论与其它数学分支密切地联系者。科尔莫戈罗夫是20世纪最杰出的数学家之一,他不仅仅是公理化概率论的建立者,在数学和力学的众多领域他都做出了开创或奠基性的贡献,同时,他还是出色的教育家。由于概率论等其它许多领域的杰出贡献,科尔莫戈罗夫荣获80年的沃尔夫奖。3.进一步的发展在公理化基础上,现代概率论取得了一系列理论突破。公理化概率论首先使随机过程的研究获得了新的起点。1931年,科尔莫戈罗夫用分析的方法奠定了一类普通的随机过程——马尔可夫过程的理论基础。科尔莫戈罗夫之后,对随机过程的研究做出重大贡献而影响着整个现代概率论的重要代表人物有莱维(P.Levy,1886-1971)、辛钦、杜布(J.L.Dob)和伊藤清等。1948年莱维出版的著作《随机过程与布朗运动》提出了独立增量过程的一般理论,并以此为基础极大地推进了作为一类特殊马尔可夫过程的布朗运动的研究。1934年,辛钦提出平稳过程的相关理论。1939年,维尔(J.Ville)引进“鞅”的概念,1950年起,杜布对鞅概念进行了系统的研究而使鞅论成为一门独立的分支。从1942年开始,日本数学家伊藤清引进了随机积分与随机微分方程,不仅开辟了随机过程研究的新道路,而且为随机分析这门数学新分支的创立和发展奠定了基础。拌三丝2023-05-20 08:56:212
概率论与数理统计,求大佬解决,多写写过程。
穷死了,买不起草稿纸Ntou1232023-05-20 08:56:212
概率论?
meira2023-05-20 08:56:203
最早的概率论的书叫什么?是谁写的?
概率论的起源与赌博问题有关。16世纪,意大利的学者开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,法国数学家B.帕斯卡、P.de费马及荷兰数学家C.惠更斯基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题等。随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家J.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后A.de棣莫弗和P.S.拉普拉斯 又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家P.L.切比雪夫、A.A.马尔可夫、A.M.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面A.N.柯尔莫哥洛夫、N.维纳、A.A.马尔可夫、A.R辛钦、P.莱维及W.费勒等人作了杰出的贡献。肖振2023-05-20 08:56:201
概率论三题求教
下一个学霸做题的那种软件,扫一下就出答案了FinCloud2023-05-20 08:56:202
概率论中的fX(x)是什么意思?它和f(x)有什么区别
在一维连续型随机变量中,f(x)表示随机变量X的密度函数. fX(x)和fY(y)在“二维连续型随机变量及其密度函数”中出现. fX(x)是X的边缘密度函数;fY(y)是Y的边缘密度函数.小白2023-05-19 11:02:071
欧几里得讲的全是几何问题? 和我们平时学的高等数学,线性代数,概率论有关系吗?
他几何中提到的穷竭法对微积分影响很大。其他我也不知道有什么关系了。北营2023-05-18 13:55:414
有没有一本书可以系统的介绍微积分,概率论,线性代数等数学知识
应该有的mlhxueli 2023-05-18 05:46:234
概率论中协方差与相关系数的关系
协方差计算公式为:COV(X,Y)=E(XY)-E(X)E(Y). 随机变量X和Y的(线性)相关系数ρ(X, Y) =COV(X,Y)/(√D(X)*√D(Y)), D(X)=Var(X)为X的方差. X、Y的联合概率密度函数为: f(x, y)= 2, 0u投在线2023-05-16 14:52:481
概率论协方差计算
因为各变量之间相互独立,所以E(XiXj)=E(Xi)E(Xj)(i不等于j),所以后面的协方差都是0大鱼炖火锅2023-05-16 14:52:451