汉邦问答 / 问答 / 问答详情

有关概率论的问题,数学好的请多指教

2023-05-26 08:18:21

设A,B,C为三个随机事件,且P(A)=P(B=)P(C) =14,P(AB)=P(BC)=116,P(AC)=0.求:A,B,C中至少有一个发生的概率;
会做的帮帮忙啊,要有公式。

韦斯特兰

1-P(A~B~C~)=p(ABC)+P(ABC~)+P(ACB~)+P(BCA~)+P((AB)~C)+P((AC)~B)+P((BC)~A)=

0+1/16+0+1/16+3/16+1/4+1/4=10/16=5/8

概率的公理化定义

CarieVinne

定理大全

第1章 随机事件及其概率

(1)排列组合公式 从m个人中挑出n个人进行排列的可能数。

从m个人中挑出n个人进行组合的可能数。

(2)加法和乘法原理 加法原理(两种方法均能完成此事):m+n

某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。

乘法原理(两个步骤分别不能完成这件事):m×n

某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。

(3)一些常见排列 重复排列和非重复排列(有序)

对立事件(至少有一个)

顺序问题

(4)随机试验和随机事件 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。

试验的可能结果称为随机事件。

(5)基本事件、样本空间和事件 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:

①每进行一次试验,必须发生且只能发生这一组中的一个事件;

②任何事件,都是由这一组中的部分事件组成的。

这样一组事件中的每一个事件称为基本事件,用 来表示。

基本事件的全体,称为试验的样本空间,用 表示。

一个事件就是由 中的部分点(基本事件 )组成的集合。通常用大写字母A,B,C,…表示事件,它们是 的子集。

为必然事件,Ø为不可能事件。

不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。

(6)事件的关系与运算 ①关系:

如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):

如果同时有 , ,则称事件A与事件B等价,或称A等于B:A=B。

A、B中至少有一个发生的事件:A B,或者A+B。

属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者 ,它表示A发生而B不发生的事件。

A、B同时发生:A B,或者AB。A B=Ø,则表示A与B不可能同时发生,称事件A与事件B互不相容或者互斥。基本事件是互不相容的。

-A称为事件A的逆事件,或称A的对立事件,记为 。它表示A不发生的事件。互斥未必对立。

②运算:

结合率:A(BC)=(AB)C A∪(B∪C)=(A∪B)∪C

分配率:(AB)∪C=(A∪C)∩(B∪C) (A∪B)∩C=(AC)∪(BC)

德摩根率: ,

(7)概率的公理化定义 设 为样本空间, 为事件,对每一个事件 都有一个实数P(A),若满足下列三个条件:

1° 0≤P(A)≤1,

2° P(Ω) =1

3° 对于两两互不相容的事件 , ,…有

常称为可列(完全)可加性。

则称P(A)为事件 的概率。

(8)古典概型 1° ,

2° 。

设任一事件 ,它是由 组成的,则有

P(A)= =

(9)几何概型 若随机试验的结果为无限不可数并且每个结果出现的可能性均匀,同时样本空间中的每一个基本事件可以使用一个有界区域来描述,则称此随机试验为几何概型。对任一事件A,

。其中L为几何度量(长度、面积、体积)。

(10)加法公式 P(A+B)=P(A)+P(B)-P(AB)

当P(AB)=0时,P(A+B)=P(A)+P(B)

(11)减法公式 P(A-B)=P(A)-P(AB)

当B A时,P(A-B)=P(A)-P(B)

当A=Ω时,P( )=1- P(B)

(12)条件概率 定义 设A、B是两个事件,且P(A)>0,则称 为事件A发生条件下,事件B发生的条件概率,记为 。

条件概率是概率的一种,所有概率的性质都适合于条件概率。

例如P(Ω/B)=1 P( /A)=1-P(B/A)

(13)乘法公式 乘法公式:

更一般地,对事件A1,A2,…An,若P(A1A2…An-1)>0,则有

… …… … 。

(14)独立性 ①两个事件的独立性

设事件 、 满足 ,则称事件 、 是相互独立的。

若事件 、 相互独立,且 ,则有

若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。

必然事件 和不可能事件Ø与任何事件都相互独立。

Ø与任何事件都互斥。

②多个事件的独立性

设ABC是三个事件,如果满足两两独立的条件,

P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)

并且同时满足P(ABC)=P(A)P(B)P(C)

那么A、B、C相互独立。

对于n个事件类似。

(15)全概公式 设事件 满足

1° 两两互不相容, ,

2° ,

则有

(16)贝叶斯公式 设事件 , ,…, 及 满足

1° , ,…, 两两互不相容, >0, 1,2,…, ,

2° , ,

,i=1,2,…n。

此公式即为贝叶斯公式。

,( , ,…, ),通常叫先验概率。 ,( , ,…, ),通常称为后验概率。贝叶斯公式反映了“因果”的概率规律,并作出了“由果朔因”的推断。

(17)伯努利概型 我们作了 次试验,且满足

 每次试验只有两种可能结果, 发生或 不发生;

 次试验是重复进行的,即 发生的概率每次均一样;

 每次试验是独立的,即每次试验 发生与否与其他次试验 发生与否是互不影响的。

这种试验称为伯努利概型,或称为 重伯努利试验。

用 表示每次试验 发生的概率,则 发生的概率为 ,用 表示 重伯努利试验中 出现 次的概率,

, 。

第二章 随机变量及其分布

(1)离散型随机变量的分布律 设离散型随机变量 的可能取值为Xk(k=1,2,…)且取各个值的概率,即事件(X=Xk)的概率为

P(X=xk)=pk,k=1,2,…,

则称上式为离散型随机变量 的概率分布或分布律。有时也用分布列的形式给出:

显然分布律应满足下列条件:

(1) , , (2) 。

(2)连续型随机变量的分布密度 设 是随机变量 的分布函数,若存在非负函数 ,对任意实数 ,有

则称 为连续型随机变量。 称为 的概率密度函数或密度函数,简称概率密度。

密度函数具有下面4个性质:

1° 。

2° 。

(3)离散与连续型随机变量的关系

积分元 在连续型随机变量理论中所起的作用与 在离散型随机变量理论中所起的作用相类似。

(4)分布函数 设 为随机变量, 是任意实数,则函数

称为随机变量X的分布函数,本质上是一个累积函数。

可以得到X落入区间 的概率。分布函数 表示随机变量落入区间(– ∞,x]内的概率。

分布函数具有如下性质:

1° ;

2° 是单调不减的函数,即 时,有 ;

3° , ;

4° ,即 是右连续的;

5° 。

对于离散型随机变量, ;

对于连续型随机变量, 。

(5)八大分布 0-1分布 P(X=1)=p, P(X=0)=q

二项分布 在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。

, 其中 ,

则称随机变量 服从参数为 , 的二项分布。记为 。

当 时, , ,这就是(0-1)分布,所以(0-1)分布是二项分布的特例。

泊松分布 设随机变量 的分布律为

, , ,

则称随机变量 服从参数为 的泊松分布,记为 或者P( )。

泊松分布为二项分布的极限分布(np=λ,n→∞)。

超几何分布

随机变量X服从参数为n,N,M的超几何分布,记为H(n,N,M)。

几何分布 ,其中p≥0,q=1-p。

随机变量X服从参数为p的几何分布,记为G(p)。

均匀分布 设随机变量 的值只落在[a,b]内,其密度函数 在[a,b]上为常数 ,即

其他,

则称随机变量 在[a,b]上服从均匀分布,记为X~U(a,b)。

分布函数为

当a≤x1<x2≤b时,X落在区间( )内的概率为

指数分布

其中 ,则称随机变量X服从参数为 的指数分布。

X的分布函数为

记住积分公式:

正态分布 设随机变量 的密度函数为

, ,

其中 、 为常数,则称随机变量 服从参数为 、 的正态分布或高斯(Gauss)分布,记为 。

具有如下性质:

1° 的图形是关于 对称的;

2° 当 时, 为最大值;

若 ,则 的分布函数为

。。

参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为

, ,

分布函数为

是不可求积函数,其函数值,已编制成表可供查用。

Φ(-x)=1-Φ(x)且Φ(0)= 。

如果 ~ ,则 ~ 。

(6)分位数 下分位表: ;

上分位表: 。

(7)函数分布 离散型 已知 的分布列为

的分布列( 互不相等)如下:

若有某些 相等,则应将对应的 相加作为 的概率。

连续型 先利用X的概率密度fX(x)写出Y的分布函数FY(y)=P(g(X)≤y),再利用变上下限积分的求导公式求出fY(y)。

第三章 二维随机变量及其分布

(1)联合分布 离散型 如果二维随机向量 (X,Y)的所有可能取值为至多可列个有序对(x,y),则称 为离散型随机量。

设 =(X,Y)的所有可能取值为 ,且事件{ = }的概率为pij,,称

为 =(X,Y)的分布律或称为X和Y的联合分布律。联合分布有时也用下面的概率分布表来表示:

Y

X y1 y2 … yj …

x1 p11 p12 … p1j …

x2 p21 p22 … p2j …

xi pi1 …

这里pij具有下面两个性质:

(1)pij≥0(i,j=1,2,…);

(2)

连续型 对于二维随机向量 ,如果存在非负函数 ,使对任意一个其邻边分别平行于坐标轴的矩形区域D,即D={(X,Y)|a<x<b,c<y<d}有

则称 为连续型随机向量;并称f(x,y)为 =(X,Y)的分布密度或称为X和Y的联合分布密度。

分布密度f(x,y)具有下面两个性质:

(1) f(x,y)≥0;

(2)

(2)二维随机变量的本质

(3)联合分布函数 设(X,Y)为二维随机变量,对于任意实数x,y,二元函数

称为二维随机向量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数。

分布函数是一个以全平面为其定义域,以事件 的概率为函数值的一个实值函数。分布函数F(x,y)具有以下的基本性质:

(1)

(2)F(x,y)分别对x和y是非减的,即

当x2>x1时,有F(x2,y)≥F(x1,y);当y2>y1时,有F(x,y2) ≥F(x,y1);

(3)F(x,y)分别对x和y是右连续的,即

(4)

(5)对于

.

(4)离散型与连续型的关系

(5)边缘分布 离散型 X的边缘分布为

Y的边缘分布为

连续型 X的边缘分布密度为

Y的边缘分布密度为

(6)条件分布 离散型 在已知X=xi的条件下,Y取值的条件分布为

在已知Y=yj的条件下,X取值的条件分布为

连续型 在已知Y=y的条件下,X的条件分布密度为

在已知X=x的条件下,Y的条件分布密度为

(7)独立性 一般型 F(X,Y)=FX(x)FY(y)

离散型

有零不独立

连续型 f(x,y)=fX(x)fY(y)

直接判断,充要条件:

①可分离变量

②正概率密度区间为矩形

二维正态分布

=0

随机变量的函数 若X1,X2,…Xm,Xm+1,…Xn相互独立, h,g为连续函数,则:

h(X1,X2,…Xm)和g(Xm+1,…Xn)相互独立。

特例:若X与Y独立,则:h(X)和g(Y)独立。

例如:若X与Y独立,则:3X+1和5Y-2独立。

(8)二维均匀分布 设随机向量(X,Y)的分布密度函数为

其中SD为区域D的面积,则称(X,Y)服从D上的均匀分布,记为(X,Y)~U(D)。

例如图3.1、图3.2和图3.3。

y

1

D1

O 1 x

图3.1

y

1

O 2 x

图3.2

y

d

c

O a b x

图3.3

(9)二维正态分布 设随机向量(X,Y)的分布密度函数为

其中 是5个参数,则称(X,Y)服从二维正态分布,

记为(X,Y)~N(

由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,

即X~N(

但是若X~N( ,(X,Y)未必是二维正态分布。

(10)函数分布 Z=X+Y 根据定义计算:

对于连续型,fZ(z)=

两个独立的正态分布的和仍为正态分布( )。

n个相互独立的正态分布的线性组合,仍服从正态分布。

Z=max,min(X1,X2,…Xn) 若 相互独立,其分布函数分别为 ,则Z=max,min(X1,X2,…Xn)的分布函数为:

分布

设n个随机变量 相互独立,且服从标准正态分布,可以证明它们的平方和

的分布密度为

我们称随机变量W服从自由度为n的 分布,记为W~ ,其中

所谓自由度是指独立正态随机变量的个数,它是随机变量分布中的一个重要参数。

分布满足可加性:设

t分布 设X,Y是两个相互独立的随机变量,且

可以证明函数

的概率密度为

我们称随机变量T服从自由度为n的t分布,记为T~t(n)。

F分布 设 ,且X与Y独立,可以证明 的概率密度函数为

我们称随机变量F服从第一个自由度为n1,第二个自由度为n2的F分布,记为F~f(n1, n2).

第四章 随机变量的数字特征

(1)一维随机变量的数字特征 离散型 连续型

期望

期望就是平均值 设X是离散型随机变量,其分布律为P( )=pk,k=1,2,…,n,

(要求绝对收敛) 设X是连续型随机变量,其概率密度为f(x),

(要求绝对收敛)

函数的期望 Y=g(X)

Y=g(X)

方差

D(X)=E[X-E(X)]2,

标准差

矩 ①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即

νk=E(Xk)= , k=1,2, ….

②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即

= , k=1,2, …. ①对于正整数k,称随机变量X的k次幂的数学期望为X的k阶原点矩,记为vk,即

νk=E(Xk)=

k=1,2, ….

②对于正整数k,称随机变量X与E(X)差的k次幂的数学期望为X的k阶中心矩,记为 ,即

=

k=1,2, ….

切比雪夫不等式 设随机变量X具有数学期望E(X)=μ,方差D(X)=σ2,则对于任意正数ε,有下列切比雪夫不等式

切比雪夫不等式给出了在未知X的分布的情况下,对概率

的一种估计,它在理论上有重要意义。

(2)期望的性质 (1) E(C)=C

(2) E(CX)=CE(X)

(3) E(X+Y)=E(X)+E(Y),

(4) E(XY)=E(X) E(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

(3)方差的性质 (1) D(C)=0;E(C)=C

(2) D(aX)=a2D(X); E(aX)=aE(X)

(3) D(aX+b)= a2D(X); E(aX+b)=aE(X)+b

(4) D(X)=E(X2)-E2(X)

(5) D(X±Y)=D(X)+D(Y),充分条件:X和Y独立;

充要条件:X和Y不相关。

D(X±Y)=D(X)+D(Y) ±2E[(X-E(X))(Y-E(Y))],无条件成立。

而E(X+Y)=E(X)+E(Y),无条件成立。

(4)常见分布的期望和方差 期望 方差

0-1分布

p

二项分布

np

泊松分布

几何分布

超几何分布

均匀分布

指数分布

正态分布

n 2n

t分布 0 (n>2)

(5)二维随机变量的数字特征 期望

函数的期望 =

方差

协方差 对于随机变量X与Y,称它们的二阶混合中心矩 为X与Y的协方差或相关矩,记为 ,即

与记号 相对应,X与Y的方差D(X)与D(Y)也可分别记为 与 。

相关系数 对于随机变量X与Y,如果D(X)>0, D(Y)>0,则称

为X与Y的相关系数,记作 (有时可简记为 )。

| |≤1,当| |=1时,称X与Y完全相关:

完全相关

而当 时,称X与Y不相关。

以下五个命题是等价的:

① ;

②cov(X,Y)=0;

③E(XY)=E(X)E(Y);

④D(X+Y)=D(X)+D(Y);

⑤D(X-Y)=D(X)+D(Y).

协方差矩阵

混合矩 对于随机变量X与Y,如果有 存在,则称之为X与Y的k+l阶混合原点矩,记为 ;k+l阶混合中心矩记为:

(6)协方差的性质 (i) cov (X, Y)=cov (Y, X);

(ii) cov(aX,bY)=ab cov(X,Y);

(iii) cov(X1+X2, Y)=cov(X1,Y)+cov(X2,Y);

(iv) cov(X,Y)=E(XY)-E(X)E(Y).

(7)独立和不相关 (i) 若随机变量X与Y相互独立,则 ;反之不真。

(ii) 若(X,Y)~N( ),

则X与Y相互独立的充要条件是X和Y不相关。

第五章 大数定律和中心极限定理

(1)大数定律

切比雪夫大数定律 设随机变量X1,X2,…相互独立,均具有有限方差,且被同一常数C所界:D(Xi)<C(i=1,2,…),则对于任意的正数ε,有

特殊情形:若X1,X2,…具有相同的数学期望E(XI)=μ,则上式成为

伯努利大数定律 设μ是n次独立试验中事件A发生的次数,p是事件A在每次试验中发生的概率,则对于任意的正数ε,有

伯努利大数定律说明,当试验次数n很大时,事件A发生的频率与概率有较大判别的可能性很小,即

这就以严格的数学形式描述了频率的稳定性。

辛钦大数定律 设X1,X2,…,Xn,…是相互独立同分布的随机变量序列,且E(Xn)=μ,则对于任意的正数ε有

(2)中心极限定理

列维-林德伯格定理 设随机变量X1,X2,…相互独立,服从同一分布,且具有相同的数学期望和方差: ,则随机变量

的分布函数Fn(x)对任意的实数x,有

此定理也称为独立同分布的中心极限定理。

棣莫弗-拉普拉斯定理 设随机变量 为具有参数n, p(0<p<1)的二项分布,则对于任意实数x,有

(3)二项定理 若当 ,则

超几何分布的极限分布为二项分布。

(4)泊松定理 若当 ,则

其中k=0,1,2,…,n,…。

二项分布的极限分布为泊松分布。

第六章 样本及抽样分布

(1)数理统计的基本概念 总体 在数理统计中,常把被考察对象的某一个(或多个)指标的全体称为总体(或母体)。我们总是把总体看成一个具有分布的随机变量(或随机向量)。

个体 总体中的每一个单元称为样品(或个体)。

样本 我们把从总体中抽取的部分样品 称为样本。样本中所含的样品数称为样本容量,一般用n表示。在一般情况下,总是把样本看成是n个相互独立的且与总体有相同分布的随机变量,这样的样本称为简单随机样本。在泛指任一次抽取的结果时, 表示n个随机变量(样本);在具体的一次抽取之后, 表示n个具体的数值(样本值)。我们称之为样本的两重性。

样本函数和统计量 设 为总体的一个样本,称

( )

为样本函数,其中 为一个连续函数。如果 中不包含任何未知参数,则称 ( )为一个统计量。

常见统计量及其性质 样本均值

样本方差

样本标准差

样本k阶原点矩

样本k阶中心矩

, ,

, ,

其中 ,为二阶中心矩。

(2)正态总体下的四大分布 正态分布 设 为来自正态总体 的一个样本,则样本函数

t分布 设 为来自正态总体 的一个样本,则样本函数

其中t(n-1)表示自由度为n-1的t分布。

设 为来自正态总体 的一个样本,则样本函数

其中 表示自由度为n-1的 分布。

F分布 设 为来自正态总体 的一个样本,而 为来自正态总体 的一个样本,则样本函数

其中

表示第一自由度为 ,第二自由度为 的F分布。

(3)正态总体下分布的性质 与 独立。

第七章 参数估计

(1)点估计 矩估计 设总体X的分布中包含有未知数 ,则其分布函数可以表成 它的k阶原点矩 中也包含了未知参数 ,即 。又设 为总体X的n个样本值,其样本的k阶原点矩为

这样,我们按照“当参数等于其估计量时,总体矩等于相应的样本矩”的原则建立方程,即有

由上面的m个方程中,解出的m个未知参数 即为参数( )的矩估计量。

若 为 的矩估计, 为连续函数,则 为 的矩估计。

极大似然估计 当总体X为连续型随机变量时,设其分布密度为 ,其中 为未知参数。又设 为总体的一个样本,称

为样本的似然函数,简记为Ln.

当总体X为离型随机变量时,设其分布律为 ,则称

为样本的似然函数。

若似然函数 在 处取到最大值,则称 分别为 的最大似然估计值,相应的统计量称为最大似然估计量。

若 为 的极大似然估计, 为单调函数,则 为 的极大似然估计。

(2)估计量的评选标准 无偏性 设 为未知参数 的估计量。若E ( )= ,则称 为 的无偏估计量。

E( )=E(X), E(S2)=D(X)

有效性 设 和 是未知参数 的两个无偏估计量。若 ,则称 有效。

一致性 设 是 的一串估计量,如果对于任意的正数 ,都有

则称 为 的一致估计量(或相合估计量)。

若 为 的无偏估计,且 则 为 的一致估计。

只要总体的E(X)和D(X)存在,一切样本矩和样本矩的连续函数都是相应总体的一致估计量。

(3)区间估计 置信区间和置信度 设总体X含有一个待估的未知参数 。如果我们从样本 出发,找出两个统计量 与 ,使得区间 以 的概率包含这个待估参数 ,即

那么称区间 为 的置信区间, 为该区间的置信度(或置信水平)。

单正态总体的期望和方差的区间估计

设 为总体 的一个样本,在置信度为 下,我们来确定 的置信区间 。具体步骤如下:

(i)选择样本函数;

(ii)由置信度 ,查表找分位数;

(iii)导出置信区间 。

已知方差,估计均值 (i)选择样本函数

(ii) 查表找分位数

(iii)导出置信区间

未知方差,估计均值 (i)选择样本函数

(ii)查表找分位数

(iii)导出置信区间

方差的区间估计 (i)选择样本函数

(ii)查表找分位数

(iii)导出 的置信区间

第八章 假设检验

基本思想 假设检验的统计思想是,概率很小的事件在一次试验中可以认为基本上是不会发生的,即小概率原理。

为了检验一个假设H0是否成立。我们先假定H0是成立的。如果根据这个假定导致了一个不合理的事件发生,那就表明原来的假定H0是不正确的,我们拒绝接受H0;如果由此没有导出不合理的现象,则不能拒绝接受H0,我们称H0是相容的。与H0相对的假设称为备择假设,用H1表示。

这里所说的小概率事件就是事件 ,其概率就是检验水平α,通常我们取α=0.05,有时也取0.01或0.10。

基本步骤 假设检验的基本步骤如下:

(i) 提出零假设H0;

(ii) 选择统计量K;

(iii) 对于检验水平α查表找分位数λ;

(iv) 由样本值 计算统计量之值K;

将 进行比较,作出判断:当 时否定H0,否则认为H0相容。

两类错误

第一类错误 当H0为真时,而样本值却落入了否定域,按照我们规定的检验法则,应当否定H0。这时,我们把客观上H0成立判为H0为不成立(即否定了真实的假设),称这种错误为“以真当假”的错误或第一类错误,记 为犯此类错误的概率,即

P{否定H0|H0为真}= ;

此处的α恰好为检验水平。

第二类错误 当H1为真时,而样本值却落入了相容域,按照我们规定的检验法则,应当接受H0。这时,我们把客观上H0。不成立判为H0成立(即接受了不真实的假设),称这种错误为“以假当真”的错误或第二类错误,记 为犯此类错误的概率,即

P{接受H0|H1为真}= 。

两类错误的关系 人们当然希望犯两类错误的概率同时都很小。但是,当容量n一定时, 变小,则 变大;相反地, 变小,则 变大。取定 要想使 变小,则必须增加样本容量。

在实际使用时,通常人们只能控制犯第一类错误的概率,即给定显著性水平α。α大小的选取应根据实际情况而定。当我们宁可“以假为真”、而不愿“以真当假”时,则应把α取得很小,如0.01,甚至0.001。反之,则应把α取得大些。

单正态总体均值和方差的假设检验

条件 零假设 统计量 对应样本

函数分布 否定域

已知

N(0,1)

未知

未知

概率的公理化定义

概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。该常数即为事件A出现的概率,常用P(A)表示。 第一个系统地推算概率的人是16世纪的卡尔达诺。记载在他的著作《Liber de Ludo Aleae》中。书中关于概率的内容是由Gould从拉丁文翻译出来的。 卡尔达诺的数学著作中有很多给赌徒的建议。这些建议都写成短文。然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由Chevvalier de Mere提出的问题。Chevvalier de Mere是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰子问题和比赛奖金分配问题。
2023-05-26 01:22:121

概率的公理化定义是什么?

概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论).其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了. 这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的.这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理.
2023-05-26 01:22:191

关于概率的公理化定义

概率,又称或然率、机会率、机率或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下: 对于随机试验的每一事件赋于一个实数,称为某事件的概率。
2023-05-26 01:22:321

概率论公理化定义是谁提出的?

柯尔莫哥洛夫。柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0。(2)规范性:对于必然事件,有P(Ω)=1。(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……。公理化概率论:柯尔莫格罗夫所提出的概率论公理化体系,主要根植于集合论、测度论与实变函数论。他运用娴熟的实变函数理论,建立了集合测度与随机事件概率的类比、积分与数学期望的类比、函数的正交性与随机变量独立性的类比等,这种广泛的类比赋予概率论以演绎数学的特征,许多在直线上的积分定理都可移植到概率空间。
2023-05-26 01:22:391

概率论 要过程?

一、概率的公理化定义概率论研究的是随机现象的统计规律性,先通过集合论的知识引入样本空间,然后通过样本空间来定义随机事件,这样我们的重点是关注随机事件发生的能可性大小,这是我们最关心的,可是怎么来衡量它呢?对一个随机事件A,要想说明它的发生可能性大小,最直接的就是赋予其一个数,称其为概率。这个过程也是一波三折,直到1933才由前苏联数学家柯尔莫哥洛夫给出一个公理化定义:只要P(A)满足:非负性,规范性与可列可加性就称P(A)为A的概率,说明A发生的可能性大小。这是概率论遇到的第一个亟需解决的量化问题,解决了!二、随机变量的引入第二个需要量化的是那些样本点,啥玩意都有:S=;S={阳性,阴性};S={男,女}这样表示不利于我们对所关心事件的整理,同时也不直观,不易让人看懂,所以引入了随机变量这个概念。什么是随机变量呢?就是将样本空间中的所有样本点按照一定的规则对应到实数,按课本上的定义就是定义在样本空间上的单值实函数X(e)称为随机变量,实际上它称函数,人家函数阵营并不同意,我们都是从R对应到R的,你是从样本空间对应到实数,算什么函数嘛,顶多是一个映射。不过函数比较忙,也没时间打假,你叫就叫吧。不管怎样,随机变量混成了一个函数,还真解决了概率论的一大心病,看这样的式子多爽:P=1/2P=1/6三、分布函数这可是一个货真价实的函数,至此可用分布函数来表示我们所关心的事件并利用高等数学的知识来求概率了。
2023-05-26 01:22:541

大学课本对概率定义错了把?我证伪了

你随便吧
2023-05-26 01:23:043

概率的定义

《博弈圣经》概率的定义《博弈圣经》概率的定义;概率如同太监,讲概率的人,如同太监讲性;讲生男生女、讲优生优育;概率论,如同太监肚子里的大粪。
2023-05-26 01:23:132

什么是概率的公式化定理

功率:P=W/t电功率:P=IU纯电阻电路:P=U^2/R P=I^2*R
2023-05-26 01:23:222

概率三条公理

概率公理(英语:Probability axioms)是概率论的公理,任何事件发生的概率的定义均满足概率公理。因其发明者为安德烈·柯尔莫果洛夫,也被人们熟知为柯尔莫果洛夫公理(Kolmogorov axioms)。 某个事件的概率是定义在“全体”(universe)或者所有可能基础事件的样本空间时,概率必须满足以下柯尔莫果洛夫公理。 也可以说,概率可以被解释为定义在样本空间的子集的σ代数上的一个测度,那些子集为事件,使得所有集的测度为。这个性质很重要,因为这里提出条件概率的自然概念。对于每一个非零概率A都可以在空间上定义另外一个概率: 这通常被读作“给定A时B的概率”。如果给定A时B的条件概率与B的概率相同,则A与B被称为是独立的。 当样本空间是有限或者可数无限时,概率函数也可以以基本事件定义它的值,这里。具体的解释建议参考如下文档http://wenku.baidu.com/view/a3c50d8da0116c175f0e481a.html
2023-05-26 01:23:311

随机事件及其概率

1 随机事件与概率1.1 随机事件及其运算随机现象 在一定条件下, 并不总是出现相同结果的现象.样本空间 随机现象的一切可能基本结果组成的集合, 记为 [公式] , 其中 [公式] 表示基本结果, 又称为样本点.随机事件 随机现象的某些样本点组成的集合, 常用大写字母 [公式] 等表示, [公式] 表示必然事件, [公式] 表示不可能事件.随机变量 用来表示随机现象结果的变量, 常用大写字母 [公式] 等表示.事件间的关系 (1)包含关系 如果属于 [公式] 的样本点必属于 [公式] , 即事件 [公式] 发生必然导致事件 [公式] 发生, 则称 [公式] 被包含在 [公式] 中, 记为 [公式] ;(2)相等关系 如果 [公式] 且 [公式] , 则称 [公式] 与 [公式] 相等, 记为 [公式] ; (3)互不相容 如果 [公式] , 即 [公式] 与 [公式] 不可能同时发生, 则称 [公式] 与 [公式] 互不相容.事件的运算 (1)事件的并 事件 [公式] 与 [公式] 中至少有一个发生, 记为 [公式] ; (2)事件的交 事件 [公式] 与 [公式] 同时发生, 记为 [公式] 或 [公式] ; (3)事件的差 事件 [公式] 发生而事件 [公式] 不发生, 记为 [公式] ; (4)对立事件 事件 [公式] 的对立事件即“ [公式] 不发生”, 记为 [公式] .事件的运算性质 (1)并与交满足结合律和交换律;(2)分配律 [公式] ; [公式] ; (3)棣莫弗公式(对偶法则) [公式] , [公式] .事件域 含有必然事件 [公式] , 并关于对立运算和可列并运算都封闭的事件类 [公式] 称为事件域, 又称为 [公式] 代数.具体说, 事件域 [公式] 满足: (1) [公式] ; (2)若 [公式] , 则对立事件 [公式] ; (3)若 [公式] , [公式] , 则可列并 [公式] .两个常用的事件域(1)离散样本空间 [公式] 内的一切子集组成的事件域;(2)连续样本空间 [公式] 内的一切博雷尔集逐步扩展而成的事件域.1.2 概率的定义及其确定方法概率的公理化定义 定义在事件域 [公式] 上的一个实值函数 [公式] 满足: (1)非负性公理 若 [公式] ,则 [公式] ; (2)正则性公理 [公式] ;(3)可列可加性公理 若 [公式] 互不相容, 有 [公式] , 则称 [公式] 为事件 [公式] 的概率, 称三元素 [公式] 为概率空间.
2023-05-26 01:24:091

人一生会遇到约2920万人,两个人相爱的概率是0.000049%。这个概率是怎么算出来的?

概率是怎么算出来的?
2023-05-26 01:24:198

心理学概率的定义

概率的定义是什么? ■概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 ■概率的严格定义 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个 *** 函数,P(·)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+…… ■概率的古典定义 如果一个试验满足两条: (1)试验只有有限个基本结果; (2)试验的每个基本结果出现的可能性是一样的。 这样的试验,成为古典试验。 对于古典试验中的事件A,它的概率定义为: P(A)=m/n,n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。 ■概率的统计定义 在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。 在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是早期概率论史上最重要的学者雅各布·伯努利(Jocob Bernoulli,公元1654年~1705年)。 从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。 由于频率nA/n总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。 Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。 如何理解概率的定义? 首先应该明确在数学上概率是用公理化的形式定义的。 各种教科书中出现的‘概率统计定义",‘古典概率定义",‘几何概率定义"都是一些描述性的说法。教师不应该过分地去揣摩,探究那里的用语,而应理解其实质。 概率的概念笼统说并不难,但若深入到理论或哲学中去讨论,问题就有一大堆,不是中学(甚至也不是大学)数学课程需要讨论的。在这里,谈谈对数学上‘定义"的一些看法。 我们不想谈数学中给出定义的必要性,它的作用和意义。每一个数学老师对此都清楚。 我们想谈的是相反的一面,也是我们认为有些问题的地方,即过分地追求定义,过分地探究书中的词语,而忽略了对整体精神的把握。对任何一个概念的定义,都需要用到一些词语。 而严格说,这些词语仍需要定义。定义这些词语又需要用到另外一些词语。 因此,这是一个无限上推、无法完成的任务,除非在某一处停下来。换句话说,必须有一些不加定义的词语,以此为出发点来讨论问题。 提出这一点,是希望人们不要迷信定义。有人以为凡是没定义的都是不严格的,只有给出了定义才严格。 这种看法是不全面的。其次,有些定义即使有,对许多人来说也是不必要的。 大多数科学家并不需要了解实数的理论(实数的严格定义),大多数数学家也不需要掌握用皮亚诺公理给出的自然数定义。严格表述尽管重要,但数学中最重要的活力来自于它的问题,思想,来自人们的探索,猜想,分析。 概率的统计定义通常可以这样叙述:在相同的条件下做大量的重复试验,一个事件出现的次数k和总的试验次数n之比,称为这个事件在这n次试验中出现的频率。当试验次数n很大时,频率将‘稳定"在一个常数附近。 n越大,频率偏离这个常数大的可能性越小。这个常数称为该事件的概率。 我们要清楚上述定义只是描述性的。事实上它有循环定义之嫌。 因为定义中出现了‘可能性"。这指的就是概率.(类似地在古典概率定义中通常出现‘等可能性")。 你可以设法避免这类词出现,但其本质的意义无法避免。有些人去探讨‘试验"等词的定义。 事实上,‘做一次试验"并不难理解。如,扔一个硬币,摸三个红球,取十个产品,等等。 个别复杂的试验也不难向学生解释。把‘做一次试验"定义为‘条件实现一次",反而更难让人理解。 什么叫‘条件"?什么叫‘实现"?这显然是不恰当的。何况‘试验"根本不是数学中的名词。 概率学的定义 自然界和社会上所观察到的现象分为:确定现象与随机现象。概率学是数学的一个分支,它研究随机现象的数量规律. 一方面,它有自己独特的概念和方法,另一方面,它与其他数学分支又有紧密的联系,它是现代数学的重要组成部分.概率学的广泛应用几乎遍及所有的科学技术领域, 例如天气预报, 地震预报, 产品的抽样调查; 工农业生产和国民经济的各个部门,在通讯工程中可用以提高信号的抗干扰性,分辨率等等. 概率学公式:P(A)=m/n 几率与概率的概念区别? 几率就是概率,两者没有区别。 概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。 设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。该常数即为事件A出现的概率,常用P (A) 表示。 扩展资料: 概率事件: 在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的 *** 称为基本空间。随机事件(简称事件)是由某些基本事件组成的。 例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用 *** {(1,1)}表示。 “点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用 *** {(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。 P(不可能事件)=0。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件,在试验中此事件一定发生,称为必然事件。P(必然事件)=1。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。
2023-05-26 01:24:451

概率统计问题,麻烦解释下为什么P(A-B)=P(A-AB)=P(A)-P(AB)呢?

其实你这个问题的条件应该是不完整的,这个公式应该在B属于A时才成立。当B属于A时,你做图可以发现,此时B就是A与B的交集,即B=AB,因此P(A-B)=P(A-AB)=P(A)-P(AB)
2023-05-26 01:24:522

概率论与数理统计总结

1.1.1 随机现象: 概率论与数理统计的研究的对象就是随机现象,随机现象就是在一定的条件下不总是出现相同的结果的现象,也就是不能肯定的确定结果的现象就统称为随机现象。现实生活中有很多的随机现象比如同一学校统一专业的学生考上研究生的现象就是随机现象,你不能说哪一个学生肯定能够考上某所学校但是你能根据这所学校往年的数据估算出这所学校的考研率,在一定程度上也就能够大致估算出这所学校某某同学考上研究生的可能性有多大,当然一个学生能不能考上研究生与这所学校的考研率并没有必然的联系因为是随机的具有不确定性,但有一定的相关程度在里面。整个概率论研究的就是随机现象的模型(概率分布),而概率分布则是能够用来描叙某随机现象特征的工具。有阴就有阳,有了随机事件自然与之对应的就是确定性现象(如太阳每天东升西落) 1.1.2 样本空间: 随机现象一切可能 基本结果 所构成的集合则称为样本空间,其集合内的元素又称为样本点,当样本点的个数为可列个或者有限个的时候就叫做离散型样本空间,当样本点的个数为无限个或者不可列个的时候就叫做连续型样本空间。( 可列个的意思是可以按照一定的次序一一列举出来,比如某一天内到达某一个商场内的人数都是整数1,2,3。。。。,这叫可列个,不可列个的意思比如电视机的寿命,有100.1小时的有100.01小时的有100.0001小时的,你永远不能按照次序列举出比一百小的下一个元素到底是哪一个,这就叫不可列)。 1.1.3 随机事件: 随机现象某些样本点组成的集合叫做用一个 随机事件 ,也就是说随机事件是样本空间的一个子集,而样本空间中单个元素所组成的集合就叫做 基本事件 ,样本空间自身也是一个事件叫做 必然事件 ,样本空间的最小子集也即空集就叫做 不可能事件 1.1.4 随机变量: 用来表示随机现象结果的变量称为 随机变量 ,随机变量的取值就表示随机事件的结果,实际上随机事件的结果往往与一个随机变量的取值可以一一对应 1.1.5 随机事件之间的运算与关系: 由于我们将随机事件定义成一个集合事件间的运算也可看作是集合间的运算,集合间的诸运算如交集、并集、补集、差集等运算随机事件之间也有,而且运算规则一致。集合间的包含、相等、互不相容、对立,事件之间也有,随机事件间的运算性质满足交换律、结合律、分配率、德摩根定律。 1.1.6 事件域: 事件域为样本空间的某些子集所组成的集合类而且满足三个条件,事件域中元素的个数就是样本空间子集的个数,比如一个有N个样本点的样本空间那么他的事件域就有 个元素,定义事件域主要是为了定义事件概率做准备。 概率论中最基本的一个问题就是如何去确定一个随机事件的概率,随机事件的结果虽然具有不确定性,但是他发生的结果具有一定的规律性(也即随机事件发生可能性的大小),而用来描叙这种规律性的工具就是概率,但是我们怎么样来给概率下一个定义嘞?如何度量描叙事件发生可能性的大小嘞?这是一个问题。 在概率论的发展史上针对不同的随机事件有过各种各样的概率定义,但是那些定只适用于某一类的随机事件,那么如何给出适合一切随机现象概率的最一般的定义嘞?1900年数学家希尔伯特提出要建立概率的公理化定义,也就是建立一个放之四海而皆准的满足一切随机事件的概率的定义,用概率本质性的东西去刻画概率.1933年前苏联数学家柯尔莫哥洛夫首次提出了概率的公理化定义,这个定义既概括了历史上几种概率的定义中的共同特性,又避免了各自的含混不清之处,不管什么随机现象只有满足该定义中的三条公理,才能说明他是概率,该定义发表之后得到了几乎所有数学家的一致认可。(说点题外话,如果某位数学工作者提出了某个重大的发现,首先需要写论文获得学术圈内的人士一致认同他的这个发现才能够有可能被作为公理写进教科书,之所以被称作公理就因为它既是放之四海而皆准的准则也是公认的真理)。 1.2.1 概率的三条公理化定义: 每一个随机事件其背后必定伴随着有她的样本空间(就像有些成功的男人背后都有一位贤内助),每一个随机事件都属于样本空间的事件域,样本空间的选取不同对同一个随机事件而言其概率通常也会不同。 如果概率满足以上三条公理则称有样本空间、事件域、概率所组成的空间为概率空间,满足以上三条公理的概率才能称之为概率。 概率的公理化定义并没有给出计算概率的方法因此知道了什么是概率之后如何去确定概率就又成了一个问题。 1.2.2 确定概率的频率方法: 确定概率的频率方法应用场景是在能够大量重复的随机实验中进行,用频率的稳定值去获得概率的估算值的方法思想如下: 为什么会想到用频率去估算概率嘞?因为人们的长期实践表明随着试验次数的增加,频率会稳定在某一个常数附近,我们称这个常数为频率的稳定值,后来的伯努力的大数定律证明了其稳定值就是随机事件发生的概率,可以证明频率一样满足概率的三条公理化定义由此可见频率就是“伪概率”。 1.2.4 确定概率的古典方法: 古典问题是历史上最早的研究概率论的问题,包括帕斯卡研究的骰子问题就是古典问题,他简单直观不需要做大量的试验我们就可以在经验事实的基础上感性且理性的分析清楚。 古典方法确定概率的思想如下: 很显然上叙古典概率满足概率的三条公理化定义,古典概型是最古老的确定概率的常用方法,求古典概率归结为求样本空间样本点的总数和事件样本点的个数,所以在计算中常用到排列组合的工具。 1.2.5 确定概率的几何方法: 基本思想: 1.2.6 确定概率的主观方法: 在现实世界中一些随机现象是无法进行随机试验的或者进行随机试验的成本大到得不偿失的地步,这时候的概率如何确定嘞? 统计学界的贝叶斯学派认为:一个事件的概率是人们根据经验对该事件发生可能性的个人信念,这样给出的概率就叫做主观概率,比如我说我考上研究生的概率是百分之百(这当然有吹牛的成分在里面,但是里面有也包含了自信和自己对自己学习情况的了解以及自己对所报考院校的了解),比如说某企业家说根据它多年的经验和当时的一些市场信息认为某项新产品在市场上畅销的可能性是百分之80(这种话如果是熟人在私下里跟你说你还可以相信但是也要小心,如果是陌生人当着很多人的面说的你会相信吗?傻X才相信对不对?这么畅销你自己为什么不去做还把蛋糕分给老子?)。主观概率就是人们根据实际情况对某件事情发生的可能性作出的估计,但是这种估计的好坏是有待验证的。 这个理解了都不用特意去记要用的时候信手捏来,我是个很勤快的人其他公式都懒得记懒得写了。。。。下面只分析条件概率、全概率公式、贝叶斯公式: 1.3.1 条件概率: 所谓条件概率就是在事件A发生的情况下B发生的概率,即A B为样本空间 中两两事件若P(B)>0则称: 为在B发生的前提下A发生的条件概率,简称条件概率。 这个公式不难理解,实际上上面公式 也就是说“ 在B发生的条件下A发生的概率等于事件A与事件B共有的样本点的个数比上B的样本点的个数”,而且可以验证此条件概率满足概率的三条公理化定义。 1.3.2 乘法公式: 1.3.3 全概率公式: 设 为样本空间 的一个分割,即 互不相容,且 ,如果 则对任一事件A有: 这个公式也是很好理解的因为诸 互不相容而且其和事件为样本空间,故A事件中的样本点的个数等于A与诸 中共有样本点的和。 1.3.4 贝叶斯公式: 贝叶斯公式是在全概率公式和乘法公式的基础上推得的。 设若 为样本空间的一个分割,即 互不相容,且 如果 则: 公式的证明是根据条件概率来的,然后在把分子分母分别用乘法公式和全概率公式代替即可,公式中的 一般为已知概率称之为 先验概率 公式中 则称之为 后验概率 ,全概率公式和乘法公式为由原因推结果,而贝叶斯公式则为由结果推原因。 1.3.5 事件独立性: 上面我们介绍了条件概率这个概念,在条件A下条件B发生的概率为 ,如果B的发生不受A的影响嘞?直觉上来讲这就将意味着 故引入如下定义对任意两个事件A,B若 则称事件A与事件B相互独立 除了两个随机事件相互独立满足的定义当然也会有多个随机事件独立满足的定义,对N随机事件相互独立则要求对事件中的任意 个随机事件都相互独立. 1.3.6 伯努利概型: 定义:如果实验E只有两种可能的结果: ,然后把这个试验重复n次就构成了n重伯努利试验或称之为伯努利概型.显然每次伯努利试验事件结果之间是相互独立互不影响的,则伯努利试验显然是服从二项分布的,之后再介绍二项分布。 1.4.1 离散型随机变量: 之前说过用来表示随机现象结果的变量称之为随机变量,如抛掷一枚骰子随机变量的取值可以为1,2,3….显然此时随便试验的结果与随机变量的取值是一一对应的,于是我们将研究随机试验结果的统计规律转化为研究随机变量取值的统计规律,这种对应关系是人为的建立起来的同时也是合理的,只取有限个或者可列个值时候的随机变量则称之为离散型随机变量。 1.4.2 随机变量的分布列: 将随机变量的取值与其对应取值的可能性大小即概率列成一张表就称之为分布列,分布列使得随机变量的统计规律一目了然也方便计算其特征数方差和均值。分布列满足如下两个性质: 满足以上两个性质的列表则称之为分布列 1.4.3 分布函数: 设若X为一个随机变量,对任意的实数x,称 为随机变量X的分布函数记为 . 分布函数满足以下三个性质: 以上上个性质是一个函数能否成为分布函数的充要条件。 1.4.4 数学期望和方差: 先来看一个例子,某手表厂在出产的产品中抽查了N=100只手表的日走时误差其数据如下: 这时候这100只手表的平均日走时误差为: 其中 是日走时误差的频率记做 则 平均值 即平均值为频数乘以频率的和,由于在 时频率稳定于概率,于是在理论上来讲频率应该用概率来代替,这时我们把频率用概率来代替之后求出的平均值称之为数学期望(实际上由后面的大数定律可得平均值也稳定于数学期望),数学期望在一定程度上反映了随机变量X结果的平均程度即整体的大小,我们记为 。 定义:设X是一个随机变量X的均值 存在 如果 也存在则称之为随机变量X的方差记为 . 显然方差也是一个均值那么他是什么的均值嘞? 表示随机变量的均值离差, 由随机变量平均值的离差和等于零我们可以推的随机变量均值的离差和也等于零故均值离差和的均值 也等于零,但是我们希望用离差来刻画不同分布间的差别如果用均值离差和的均值那么任何分布都为零,于是我们将离差加上一个平方变成 这样避免了离差和为零。那么方差这个表示分布特征的数又有什么重要意义嘞?很多人看似学完了概率统计,但是居然连方差的意义都没有搞清楚,实际上方差是用来刻画数据间的差异的,而刻画数据间的差异无论是在空间上的向量还是在平面上的点,用距离来刻画他们之间的差异是再好不过的。在物理学上要想正确合理的比较两动体的速度加速度我们就需要选取合适的参考系来进行对比,同样在比较数据间的差异的时候我们也往往用均值来做他们的参考(实际上其他的值也可以用来进行比较,但是那可能造成方差过大的现象),与均值的距离越大说明他们的差异也越大,而距离又有正负之分因此为了区别正负我们也需要把与均值的距离加上一个平方,这也就是方差概念的来源。我们通常用方差来描叙一组数据间的差异,方差越小数据越集中,越大数据越分散,同时在金融上面也用来评估风险比如股价的波动性,我们当然希望股价的波动越是平稳即方差越小、收益越稳定越好。 因为均值和方差描叙了随机变量及其分布的某些特征因此就将其称之为特征数. 1.4.5 连续型随机变量的密度函数: 连续型随机变量的取值可能充满某一个区间为不可列个取值,因此描叙连续型随机变量的概率分布不能再用分布列的行时呈现出来,而要借助其他的工具即概率密度函数。 概率密度函数的由来:比如某工厂测量一加工元件的长度,我们把测量的元件按照长度堆放起来,横轴为元件的单位长度,纵轴为元件单位长度上的频数,当原件数量很多的时候就会形成一定的图形,为了使得这个图形稳定下来我们将纵坐标修改为单位长度上的频率,当元件数量不断增多的时候由于频率会逐步稳定于概率,当单位长度越小,原件数量越多的时候,这个图形就越稳定,当单位长度趋向于零的时候,图形就呈现出一条光滑的曲线这时候纵坐标就由“单位长度上的概率”变为“一点上的概率密度”,此时形成的光滑曲线的函数 就叫做概率密度函数,他表现出x在一些地方取值的可能性较大,一些地方取值的可能性较小的一种统计规律,概率密度函数的形状多种多样,这正是反映了不同的连续随机变量取值统计规律上的差别。 概率密度函数 虽然不是密度但是将其乘上一个小的微元 就可得小区间 上概率的近似值,即 微分元的累计就能够得到区间 上的概率,这个累计不是别的就是 在区间 上的积分 = . 由此可得x的分布函数 ,对于连续型随机变量其密度函数的积分为分布函数,分布函数求导即为密度函数 密度函数的基本性质: 1.4.6 连续型随机变量的期望和方差: 设若随机变量X的密度函数为 . 数学期望: 方差: 1.4.7 切比雪夫不等式(Chebyshev,1821-1894): 设随机变量X的数学期望和方差都存在,则对任意常数 有: . 之所以有这个公式是因为人们觉得事件{ }发生的概率应该与方差存在一定的联系,这个是可以理解的,方差越大在某种程度上说明 X的取值偏离 越厉害即说明偏离值大于某个常数a的取值越多因此取值大于某个值的概率也越大,上面公式说明大偏差发生概率的上界与方差有关,方差越大上界也越大。 1.4.8 常用离散型分布: 1.4.9 常用的连续型分布:
2023-05-26 01:25:291

如何理解概率的定义?

首先应该明确在数学上概率是用公理化的形式定义的。各种教科书中出现的‘概率统计定义",‘古典概率定义",‘几何概率定义"都是一些描述性的说法。教师不应该过分地去揣摩,探究那里的用语,而应理解其实质。概率的概念笼统说并不难,但若深入到理论或哲学中去讨论,问题就有一大堆,不是中学(甚至也不是大学)数学课程需要讨论的。在这里,谈谈对数学上‘定义"的一些看法。我们不想谈数学中给出定义的必要性,它的作用和意义。每一个数学老师对此都清楚。我们想谈的是相反的一面,也是我们认为有些问题的地方,即过分地追求定义,过分地探究书中的词语,而忽略了对整体精神的把握。对任何一个概念的定义,都需要用到一些词语。而严格说,这些词语仍需要定义。定义这些词语又需要用到另外一些词语。因此,这是一个无限上推、无法完成的任务,除非在某一处停下来。换句话说,必须有一些不加定义的词语,以此为出发点来讨论问题。提出这一点,是希望人们不要迷信定义。有人以为凡是没定义的都是不严格的,只有给出了定义才严格。这种看法是不全面的。其次,有些定义即使有,对许多人来说也是不必要的。大多数科学家并不需要了解实数的理论(实数的严格定义),大多数数学家也不需要掌握用皮亚诺公理给出的自然数定义。严格表述尽管重要,但数学中最重要的活力来自于它的问题,思想,来自人们的探索,猜想,分析。概率的统计定义通常可以这样叙述:在相同的条件下做大量的重复试验,一个事件出现的次数k和总的试验次数n之比,称为这个事件在这n次试验中出现的频率。当试验次数n很大时,频率将‘稳定"在一个常数附近。n越大,频率偏离这个常数大的可能性越小。这个常数称为该事件的概率。我们要清楚上述定义只是描述性的。事实上它有循环定义之嫌。因为定义中出现了‘可能性"。这指的就是概率.(类似地在古典概率定义中通常出现‘等可能性")。你可以设法避免这类词出现,但其本质的意义无法避免。有些人去探讨‘试验"等词的定义。事实上,‘做一次试验"并不难理解。如,扔一个硬币,摸三个红球,取十个产品,等等。个别复杂的试验也不难向学生解释。把‘做一次试验"定义为‘条件实现一次",反而更难让人理解。什么叫‘条件"?什么叫‘实现"?这显然是不恰当的。何况‘试验"根本不是数学中的名词。
2023-05-26 01:25:481

概率是从数量上反映了一个事情发生的?的大小

是的 概率越大,可能越大这是清华教授讲解概率的精彩视频,楼主看 下把http://v.youku.com/v_show/id_XMTA1ODYzMjg=.html 下面是资料,来自http://baike.baidu.com/view/45320.htm 【概率的定义】 随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 ■概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 ■概率的严格定义 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+…… ■概率的古典定义 如果一个试验满足两条: (1)试验只有有限个基本结果; (2)试验的每个基本结果出现的可能性是一样的。 这样的试验,成为古典试验。 对于古典试验中的事件A,它的概率定义为: P(A)=m/n,n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。 ■概率的统计定义 在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。 在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是早期概率论史上最重要的学者雅各布·伯努利(Jocob Bernoulli,公元1654年~1705年)。 从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。 由于频率nA/n总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。 Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。 编辑本段【生活中的实例】 普遍认为,人们对将要发生的机率总有一种不好的感觉,或者说不安全感,俗称「点背」,下面列出的几个例子可以形象描述人们有时对机率存在的错误的认识: ■1. 六合彩:在六合彩(49选6)中,一共有13983816种可能性(参阅组合数学),普遍认为,如果每周都买一个不相同的号,最晚可以在13983816/52(周)=268919年后获得头等奖。事实上这种理解是错误的,因为每次中奖的机率是相等的,中奖的可能性并不会因为时间的推移而变大。 ■2. 生日悖论:在一个足球场上有23个人(2×11个运动员和1个裁判员),不可思议的是,在这23人当中至少有两个人的生日是在同一天的机率要大於50%。 ■3. 轮盘游戏:在游戏中玩家普遍认为,在连续出现多次红色后,出现黑色的机率会越来越大。这种判断也是错误的,即出现黑色的机率每次是相等的,因为球本身并没有「记忆」,它不会意识到以前都发生了什麼,其机率始终是 18/37。 ■4. 三门问题:在电视台举办的猜隐藏在门后面的汽车的游戏节目中,在参赛者的对面有三扇关闭的门,其中只有一扇门的后面有一辆汽车,其它两扇门后是山羊。游戏规则是,参赛者先选择一扇他认为其后面有汽车的门,但是这扇门仍保持关闭状态,紧接著主持人打开没有被参赛者选择的另外两扇门中后面有山羊的一扇门,这时主持人问参赛者,要不要改变主意,选择另一扇门,以使得赢得汽车的机率更大一些?正确结果是,如果此时参赛者改变主意而选择另一扇关闭著的门,他赢得汽车的机率会增加一倍。 编辑本段【概率的两大类别】 ■古典概率相关 古典概率讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概率定义,或称之为概率的古典定义。历史上古典概率是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概率,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。 ■几何概率相关 集合概率若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概率,于是产生了几何概率。几何概率的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概率的一个典型例子。 在概率论发展的早期,人们就注意到古典概率仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概率中“等可能”只一概念。假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别用μ(S)和μ(A)表示。如一维空间的长度,二维空间的面积,三维空间的体积等。并且假定这种度量具有如长度一样的各种性质,如度量的非负性、可加性等。 ◆几何概率的严格定义 设某一事件A(也是S中的某一区域),S包含A,它的量度大小为μ(A),若以P(A)表示事件A发生的概率,考虑到“均匀分布”性,事件A发生的概率取为:P(A)=μ(A)/μ(S),这样计算的概率称为几何概率。 ◆若Φ是不可能事件,即Φ为Ω中的空的区域,其量度大小为0,故其概率P(Φ)=0。 编辑本段【独立试验序列】 假如一串试验具备下列三条: (1)每一次试验只有两个结果,一个记为“成功”,一个记为“失败”,P{成功}=p,P{失败}=1-p=q; (2)成功的概率p在每次试验中保持不变; (3)试验与试验之间是相互独立的。 则这一串试验称为独立试验序列,也称为bernoulli概型。 编辑本段【必然事件与不可能事件】 在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的集合称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用集合{(1,1)}表示“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用集合{(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件 ,在试验中此事件一定发生,所以称为必然事件。若A是一事件,则“事件A不发生”也是一个事件,称为事件A的对立事件。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。 【随机事件,基本事件,等可能事件,互斥事件,对立事件】 在一定的条件下可能发生也可能不发生的事件,叫做随机事件。 一次实验连同其中可能出现的每一个结果称为一个基本事件。 通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做等可能事件。 不可能同时发生的两个事件叫做互斥事件。 必有一个发生的互斥事件叫做对立事件。 编辑本段【概率的性质】 性质1.P(Φ)=0. 性质2(有限可加性).当n个事件A1,…,An两两互不相容时: P(A1∪...∪An)=P(A1)+...+P(An). _ 性质3.对于任意一个事件A:P(A)=1-P(非A). 性质4.当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B). 性质5.对于任意一个事件A,P(A)≤1. 性质6.对任意两个事件A和B,P(B-A)=P(B)-P(AB). 性质7(加法公式).对任意两个事件A和B,P(A∪B)=P(A)+P(B)-p(AB). (注:A后的数字1,2,...,n都表示下标.) 资料: 概率论 probability theory 研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。 概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺(Girolamo Cardano,1501——1576)开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,有人对博弈中的一些问题发生争论,其中的一个问题是“赌金分配问题”,他们决定请教法国数学家帕斯卡(Pascal)和费马(Fermat)基于排列组合方法,研究了一些较复杂的赌博问题,他们解决了分赌注问题、赌徒输光问题。他们对这个问题进行了认真的讨论,花费了3年的思考,并最终解决了这个问题,这个问题的解决直接推动了概率论的产生。 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后a.de棣莫弗和p.s.拉普拉斯 又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。 如何定义概率,如何把概率论建立在严格的逻辑基础上,是概率理论发展的困难所在,对这一问题的探索一直持续了3个世纪。20世纪初完成的勒贝格测度与积分理论及随后发展的抽象测度和积分理论,为概率公理体系的建立奠定了基础。在这种背景下,苏联数学家柯尔莫哥洛夫1933年在他的《概率论基础》一书中第一次给出了概率的测度论的定义和一套严密的公理体系。他的公理化方法成为现代概率论的基础,使概率论成为严谨的数学分支,对概率论的迅速发展起了积极的作用。 概率与统计的一些概念和简单的方法,早期主要用于赌博和人口统计模型。随着人类的社会实践,人们需要了解各种不确定现象中隐含的必然规律性,并用数学方法研究各种结果出现的可能性大小,从而产生了概率论,并使之逐步发展成一门严谨的学科。现在,概率与统计的方法日益渗透到各个领域,并广泛应用于自然科学、经济学、医学、金融保险甚至人文科学中 。
2023-05-26 01:25:571

大学高数概率名词解释

1:在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,简称事件。随机事件通常用大写英文字母A、B、C等表示。2:事件A发生或事件B发生,事件A与事件B至少一个发生,由事件A与事件B所有样本点组成,记作A∪B。3:事件A发生且事件B不发生,是由属于事件A但不属于事件B的样本点组成,记作A-B4:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……
2023-05-26 01:26:051

什么是“频数”,“频率”和“概率”?

在简单随机试验中,记一个事件为A。独立重复地将简单随机试验做n次,如果事件A发生了k次。则称在n次试验中,事件A发生的频数为k,发生的频率为k/n。概率是事件A发生可能性的大小,这是概率的描述性定义。如果存在一个实数p,当n很大时,频率稳定在p附近摆动,称频率的这个稳定值p为概率。这是概率的统计性定义。概率还有公理化定义,太抽象,繁琐,不再叙述,有兴趣的朋友可以参考概率统计教材。可以用中心极限定理证明概率的统计性定义。频数是某件事发生的次数。频率是某次计算中事情发生的次数站计算总次数的比率(比如掷硬币,一共投掷了1000次,499次正,假设为事情发生,还有501次未发生),频率的普遍情况叫概率,上个例子中频率为499/1000,但通过大量实验知道正面朝上几率为50%,这个是通过数学严密的逻辑推理出来的,叫概率。
2023-05-26 01:26:143

概率论与数理统计 第一章 随机事件与概率

加法原理、乘法原理、组合与排列 确定性现象 :在一定条件下必然发生。 随机现象 :事先无法预知出现哪个结果 统计规律性 :随机现象在一次试验中呈现不确定的结果,而在大量重复试验中结果呈现某种规律性。 观察的过程叫做 随机试验 。 随机试验一切可能结果组成的集合称为 样本空间 ,记为 ,其中 表示试验的每一个可能结果,又称为 样本点 。 当我们通过随机试验来研究随机对象时,每一次试验都只能出现样本空间中的某一个样本点。各个可能结果 是否在一次试验中出现是随机的。 在随机试验中,常常关心其中的某一些结果是否会出现,如抛一枚骰子,掷出点数是否为奇数等。这些在一次试验中可能出现也可能不出现的一类结果称为 随机事件 ,简称为 事件 ,通常用大写字母A,B,C来表示。 从集合的角度说,样本空间的 部分样本点组成的集合 称为随机事件。 因为集合之间有各种关系,是可以进行运算的,因此在随机事件之间也可以讨论相互的关系,进行相应的运算。 由此可推出: 频率 :在 次试验中事件A出现了 次,则称比值 为这 次试验中事件A出现的频率,记为 , 称为事件A发生的频数。 概率的统计定义 为:随着试验次数 的增大,频率值逐步 “稳定” 到一个实数,这个实数称为事件A发生的概率。 概念的公理化定义: 由概率的三条公理,可以得到一些重要的基本性质: 古典概型的基本思路: (1) 只有 有限个样本点 (2) 每个 基本事件发生的可能性相等 几何概型是古典概型的推广,保留样本点的等可能性,但 去掉了包含有限个样本点的限制 。 经典问题:碰面问题,蒲丰投针问题。 根据蒲丰投针问题可以近似地计算 一般地,条件概率是指在某随机事件A发生的条件下,另一随机事件B发生的概率,记为 条件概率的定义: 可以验证条件概率也满足概率的公理化定义的三条基本性质。 概率的乘法公式 : 事件的独立性定义: 由此引出定理: 可以将相互独立性推广到三个事件、……、n个事件 将一些较为复杂的随机事件的概率计算问题分解为一些较容易计算的情况分别进行考虑。 完备事件组 : 定理1 全概率公式 : 定理2 贝叶斯公式 : 由条件概率的定义及全概率公式得到。 已知结果,寻找原因 。 先验概率 和 后验概率 : 贝叶斯派和经典统计学学派为现代统计学的两大分支,差别在于是否使用先验信息。
2023-05-26 01:26:411

谁能解释下概率是怎么一回事?

随机性是由于人类认识不到一些事物的复杂本质,而提出的分析问题偶然这种说法也是不是那么客观的,比如抛硬币,大家常说有一半一半的概率正反面,但实际上每抛一次从开始抛的时候如果我们就知道抛出的角度已经各种力学的条件经过计算,肯定能知道最后出现的是正还是反了。计算机可以模拟概率,比如计算机可以生成任何区间上的伪随机数
2023-05-26 01:26:495

概率计算的概率的加法法则

定理:设A、B是互不相容事件(AB=φ),则:P(A∪B)=P(A)+P(B)-P(AB)推论1:设A1、A2、…、An互不相容,则:P(A1+A2+...+An)=P(A1)+P(A2)+…+P(An)推论2:设A1、A2、…、An构成完备事件组,则:P(A1+A2+...+An)=1推论3:为事件A的对立事件。推论4:若B包含A,则P(B-A)=P(B)-P(A)推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)条件概率:已知事件B出现的条件下A出现的概率,称为条件概率,记作:P(A|B)条件概率计算公式:当P(A)>0,P(B|A)=P(AB)/P(A)当P(B)>0,P(A|B)=P(AB)/P(B)P(AB)=P(A)×P(B|A)=P(B)×P(A|B)推广:P(ABC)=P(A)P(B|A)P(C|AB)  设:若事件A1,A2,…,An互不相容,且A1+A2+…+An=Ω,则称A1,A2,…,An构成一个完备事件组。全概率公式的形式如下:以上公式就被称为全概率公式。
2023-05-26 01:27:102

概率的性质5的推广

概率的性质5的推广如下《概率的基本性质》设计5 《概率的基本性质》教学设计 一、 教材分析 教科书通过掷骰子试验,定义了许多事件,及其事件之间的关系,事件的包含. 并事件. 交事件. 相等事件,以及互斥事件,概率的定义及其性质 事件的频率※概率的公理化定义概率的性质。
2023-05-26 01:27:281

概率论中C和A的计算方法

Anm=m*(m-1)*(m-2)*.......(m-n+1) 即m个数相乘Cnm=Anm/n!
2023-05-26 01:27:374

投两次骰子出现点数之和为奇数,且恰好其中有一个一点,写出样本空间。

郭敦顒回答:投一颗骰子,出现奇数点的样本空间是样本中骰子可出现点数的全体,就是:{1,2,3,4,5,6};而样本点是指在样本中所期望出现的子项,投一颗骰子,出现奇数点的样本点就是:{1,3,5}。
2023-05-26 01:29:112

概率的有限可加性属于公理性吗

概率的有限可加性属于公理性。根据查询相关公开信息显示:概率的公理化定义的本质就是可列可加性,相当于函数的连续性,故概率的有限可加性属于公理性。
2023-05-26 01:29:181

概率论与数理统计分版本吗

《新世纪高级应用型人才培养系列教材·概率论与数理统计》是一本由同济大学出版社出版的书籍。《概率论与数理统计(工程数学)(第2版)》分为两大部分:第一部分为概率论基础,包括前5章内容;第二部分为数理统计,包括后4章内容。第一部分包括:随机事件及其概率、一维随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律与中心极限定理.第二部分包括:数理统计的基本思想、参数估计、假设检验、线性回归、方差分析和正交设计,《概率论与数理统计(工程数学)(第2版)》基本上只用到微积分和线性代数的知识,凡是具备这两门高等数学知识的读者,都可以使用《概率论与数理统计(工程数学)(第2版)》作为学习《概率论与数理统计》课程的教材。书名概率论与数理统计出版社同济大学出版社定价24.00 元[1]开本16 开装帧平装相关图书我的订单 | 更多图书概率论与数理统计9787560841922限时满减¥17.4来自度小店去购买概率论与数理统计 孟晗 编【正版】¥9来自京东去购买概率论与数理统计孟晗科学与自然9787560841922 概率论高等学校教材¥16.3来自京东去购买概率论与数理统计 孟晗 编 同济大学出版社 9787560841922¥19.5来自京东去购买【正版现货】概率论与数理统计¥25.6来自京东去购买概率论与数理统计¥31.2来自京东去购买内容简介图书目录TA说内容简介《概率论与数理统计(工程数学)(第2版)》内容丰富,重点突出,但是由于课时和专业原因,教师在实际授课时,可以根据专业特点,在完成基本内容的基础上,有选择地讲授。[1]图书目录第2版 前言第一章 随机事件及其概率第一节 随机事件及其运算一、随机试验与样本空间二、随机事件三、事件的关系与运算习题 1-1第二节 随机事件的概率一、概率的统汁定义二、古典概型二、几何概率四、概率的公理化定义习题 1-2第三节 条件概率与全概率公式一,条件概率勺乘法公式二、全概率公式与贝叶斯公式习题 1-3第四节 随机事件的独立性习题 1-4第五节 伯劳利慨型习题 1-5第二章 随机变量及其分布第一节 随机变量第二节 离散型随机变量及其概率分布一、两点分布(0-1分布或伯努利分布)二、二项分布三、泊松分布四、超几何分布五、几何分布六、帕斯卡分布习题 2-2第三节 随机变量的分布函数习题 2-3第四节 连续型随机变量及其概率密度一、均匀分布二、指数分布三、正态分布习题 2-4第五节 随机变量函数的分布习题 2-5第三章 多维随机变量及其分布第一节 多维随机变量习题 3-1第二节 边缘分布习题 3-2第三节 条件分布习题 3-3第四节 随机变量的独立性习题 3-4第五节 多维随机变量函数的分布习题 3-5第四章 随机变量的数字特征第一节 数学期望习题 4-1第二节 方差习题 4-2第三节 协方差及相关系数习题 4-3第四节 随机变量的其他数字特征习题 4-4第五章 大数定律与中心极限定理第一节 大数定律习题 5-1第二节 中心极限定理习题 5-2第六章 数理统计的基本思想第一节 总体与样本编辑传视频TA说1目录在【百度APP-我的】
2023-05-26 01:29:241

设随机变量X的所有可能取值为1,2,...,n,且P{X=K}=ak(k=1,2,...,n),则a=?

2023-05-26 01:29:332

设事件A和B发生的概率分别为0.7和0.5,求P(AB)的取值范围?

由两事件的加法公式:P(A+B)=P(A)+P(B)-P(AB)可知:P(AB)=P(A)+P(B)-P(A+B)。  当A+B取到最大,即取整个样本空间时,P(A+B)达到最大(等于1),此时P(AB)取到最小值=0.7+0.5-1=0.2;   当B真包含于A时,P(A+B)达到最小 (P(A+B)=P(A)=0.7),此时P(AB)取到最大值=0.7+0.5-0.7=0.5;所以,P(AB)的变化范围是 0.2---0.5
2023-05-26 01:29:413

证明:条件概率也是一种概率。

证明:条件概率也是一种概率。与证明男人也是人一样愚蠢!条件概率说都说了概率,只是在前面加了定语“条件”,因而只是概率中的一种。
2023-05-26 01:29:552

概率论问题求解:n个人随机围成一圈,指定的两个人相邻的概率是多少??

n等于2时,概率等于1。n大于等于3时,概率等于上述答案。
2023-05-26 01:30:054

概率的公理化定义是什么?

概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。1、这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理。2、根据概率的公理化定义,概率指的是满足如下三个特点的集合函数(亦即以集合为定义域的实值函数):(1)非负性。亦即概率的取值不能是负数。实际上,任何“测度”,例如长度、面积、体积、重量等,都不能取负数。因此,作为针对“可能性”的测度,概率自然也不能取负数。(2)正则性。亦即概率的取值不能超过1。相较于其它的测度,正则性是概率这种测度的特别之处。因为诸如长度、面积、体积以及重量之类的测度都没有取值上限这种约束。而概率的取值之所以要求不能超过1,实在是基于我们对“可能性”大小这一判断的经验(或习惯)做法。(3)(无限)可列可加性。亦即无限个互不相容集合(事件)的并的概率,等于无限个(与每一个集合相对应的)概率之和。 概率的可列可加性有两个含义:一是互不相容的集合的并的概率,等于其中每一个集合的概率之和。这一规定仍是基于现实的经验。二是要求在“可能性”的测度过程中不能出现无限个概率之和不存在的情况,因为这也是违背经验的事情。扩展资料:概率的无限可列可加性的应用:满足公理化定义的概率还具有连续性,亦即它既具有下连续性,也具有上连续性。基于概率的无限可列可加性,我们很容易推导出概率的有限可列可加性。但基于概率的有限可列可加性,我们并不能逆推出概率的无限可列可加性。在概率满足有限可列可加性的基础上,还必须再增加一个概率满足下连续的假设,才能推出这个概率函数满足无限可列可加性的结论。参考资料来源:百度百科 - 概率参考资料来源:百度百科 - 公理化方法
2023-05-26 01:30:321

标题条件概率是否满足概率的公理化定义?

概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。1、这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理。2、根据概率的公理化定义,概率指的是满足如下三个特点的集合函数(亦即以集合为定义域的实值函数):(1)非负性。亦即概率的取值不能是负数。实际上,任何“测度”,例如长度、面积、体积、重量等,都不能取负数。因此,作为针对“可能性”的测度,概率自然也不能取负数。(2)正则性。亦即概率的取值不能超过1。相较于其它的测度,正则性是概率这种测度的特别之处。因为诸如长度、面积、体积以及重量之类的测度都没有取值上限这种约束。而概率的取值之所以要求不能超过1,实在是基于我们对“可能性”大小这一判断的经验(或习惯)做法。(3)(无限)可列可加性。亦即无限个互不相容集合(事件)的并的概率,等于无限个(与每一个集合相对应的)概率之概率的可列可加性有两个含义:一是互不相容的集合的并的概率,等于其中每一个集合的概率之和。这一规定仍是基于现实的经验。二是要求在“可能性”的测度过程中不能出现无限个概率之和不存在的情况,因为这也是违背经验的事情。扩展资料:概率的无限可列可加性的应用:满足公理化定义的概率还具有连续性,亦即它既具有下连续性,也具有上连续性。基于概率的无限可列可加性,我们很容易推导出概率的有限可列可加性。但基于概率的有限可列可加性,我们并不能逆推出概率的无限可列可加性。在概率满足有限可列可加性的基础上,还必须再增加一个概率满足下连续的假设,才能推出这个概率函数满足无限可列可加性的结论。
2023-05-26 01:30:451

公理化定义是什么意思

概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理。
2023-05-26 01:30:541

什么是几何概率

几何概率符合概率的公理性界定,就是它符合概率的公理化定义。是概率的一种特例吧。是一种公理,无法被证明或否证概率的公理化定义:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件S,有P(S)=1;(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……稍微看一眼吧www.cchere.net/article/432380显然不能被证明,知道贝特洛悖论吧。。。。。。以就是说,你不能证明也无法否证概率在总体中是一样,均匀的,也就是概率密度函数为常数,这是几何概率的基本假定,这和公式P=μ(A)/μ(S)是等价的。几何概率和公理化概率就像群域环的关系一样,一个比一个严格。
2023-05-26 01:31:031

概率是什么?Sigma algebra,Borel field 是什么意思,意义何在

概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。折叠古典定义如果一个试验满足两条:(1)试验只有有限个基本结果;(2)试验的每个基本结果出现的可能性是一样的。这样的试验便是古典试验。对于古典试验中的事件A,它的概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。折叠频率定义随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。折叠统计定义在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。在历史上,第一个对"当试验次数n逐渐增大,频率nA稳定在其概率p上"这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli)。从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。由于频率nA/n总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。折叠公理化定义柯尔莫哥洛夫(kolmogorov)于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件Ω,有P(Ω)=1;(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有概率应用之一——骰子概率应用之一——骰子P(A1∪A2∪……)=P(A1)+P(A2)+……Sigma algebra即sigma代数sigma代数( sigma-algebra)Σ 是一个样本空间(Ω)的子集的非空集合,其元素满足以下特征:空集∈Σ2. 如果A∈Σ,那么Ac(A的补集)也属于Σ3. Σ内可数个元素的并也属于ΣBorel field即波莱尔域Borel 域是概率统计中最常见的一类σ代数,其定义如下:B =σ ({(?∞,a]: ?a∈R})对于高维的情况,我们可以定义多维Borel 域:B^k=σ ({∏j=1,,k (?∞,a]: ?a∈R})上述两个定义都用到了σ 域的生成这个概念,其中用σ (.) 表示由给定的集合系生成的最小σ 域。Borel 域中的成员称为Borel 集合。
2023-05-26 01:31:101

人一生会遇到约2920万人,两个人相爱的概率是0.000049%。这个概率是怎么算出来的?

计算过程:世界人口60多亿。一生有:80*365=29200天,平均每天可以遇到1000个人左右。   一辈子遇到人的总数:29200*1000=29200000人.   相遇的概率:   29200000/6000000000=0.00487   相识概率计算:平安活到80岁大概会认识3000人左右。   相识概率:3000/6000000000=0.0000005(千万分之五)。   扩展资料:在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义称为概率的统计定义。在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli)。从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。由于频率 总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。公理化定义柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件Ω,有P(Ω)=1;(3)可列可加性:设A1,A2??是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2??),则有P(A1∪A2∪??)=P(A1)+P(A2)+。参考资料来源:百度百科--概率
2023-05-26 01:31:191

概率是什么?Sigma algebra,Borel field 是什么意思,意义何在

概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。折叠古典定义如果一个试验满足两条:(1)试验只有有限个基本结果;(2)试验的每个基本结果出现的可能性是一样的。这样的试验便是古典试验。对于古典试验中的事件A,它的概率定义为:P(A)=m/n,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。折叠频率定义随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。折叠统计定义在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。在历史上,第一个对"当试验次数n逐渐增大,频率nA稳定在其概率p上"这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli)。从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。由于频率nA/n总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。折叠公理化定义柯尔莫哥洛夫(kolmogorov)于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件Ω,有P(Ω)=1;(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有概率应用之一——骰子概率应用之一——骰子P(A1∪A2∪……)=P(A1)+P(A2)+……Sigma algebra即sigma代数sigma代数( sigma-algebra)Σ 是一个样本空间(Ω)的子集的非空集合,其元素满足以下特征:空集∈Σ2. 如果A∈Σ,那么Ac(A的补集)也属于Σ3. Σ内可数个元素的并也属于ΣBorel field即波莱尔域Borel 域是概率统计中最常见的一类σ代数,其定义如下:B =σ ({(?∞,a]: ?a∈R})对于高维的情况,我们可以定义多维Borel 域:B^k=σ ({∏j=1,,k (?∞,a]: ?a∈R})上述两个定义都用到了σ 域的生成这个概念,其中用σ (.) 表示由给定的集合系生成的最小σ 域。Borel 域中的成员称为Borel 集合。
2023-05-26 01:31:481

几率是什么意思

问题一:概率什么意思? 【概率的定义】 随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 ■概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 ■概率的严格定义 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(・)是一个 *** 函数,P(・)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+…… 问题二:数学中“概率”是什么意思? 概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。如某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这些都是概率的实例。 事件 在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的 *** 称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用 *** {(1,1)}表示,“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用 *** {(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。P(不可能事件)=0。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件,在试验中此事件一定发生,所以称为必然事件。P(必然事件)=1。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。 在一定的条件下可能发生也可能不发生的事件,叫做随机事件。 通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做等可能事件。 不可能同时发生的两个事件叫做互斥事件。 对立事件。即必有一个发生的互斥事件叫做对立事件。 概型 ①古典概型 古典概型讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概型定义,或称之为概率的古典定义。历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概型,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。 ②几何概型 几何概型若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概型,于是产生了几何概型。几何概型的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概型的一个典型例子。 设某一事件A(也是S中的某一区域),S包含A,它的量度大小为μ(A),若以P(A)表示事件A发生的概率,考虑到“均匀分布”性,事件A发生的概率取为:P(A)=μ(A)/μ(S),这样计算的概率称为几何概型。若Φ是不可能事件,即Φ为Ω中的空的区域,其量度大小为0,故其概率P(Φ)=0。 在概率论发展的早期,人们就注意到古典概型仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概型中“等可能”只一概念。假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别......>> 问题三:概率 X*代表什么意思? X*表示一个新的随机变量,它是X的函数。这个函数形式通常称为X的标准化。经济数学团队帮你解答,请及时评价。谢谢! 问题四:概率人生,是什么意思? 概率一如人生 。 有概率,既是有希望,哪怕希望再小,它也是有, 但是希望又很渺茫,很难到达,但终究是有希望,所以不能放弃,想赌一把人生, 所以哪怕活地累,遇到困难,生活还是在继续。就象买彩票,希望很小,但有可能,就有许多人买。 问题五:是几率还是机率?二者有什么不同? 查了查词典,只有”几率”这个词,没有”机率”这个词。 应该是有点区别的吧 比如:升职机率很小,升职的几率为0.5,一般不会说升职几率很小。 或者是哗几率的后面一定要跟数字,而机率后面可以是数字也可以是副词! 问题六:当机率是什么意思? 5分 当机=死机WINDOWS无法运行? 问题七:概率什么意思? 【概率的定义】 随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 ■概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 ■概率的严格定义 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(・)是一个 *** 函数,P(・)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件S,有P(S)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+…… 问题八:数学中“概率”是什么意思? 概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。如某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这些都是概率的实例。 事件 在一个特定的随机试验中,称每一可能出现的结果为一个基本事件,全体基本事件的 *** 称为基本空间。随机事件(简称事件)是由某些基本事件组成的,例如,在连续掷两次骰子的随机试验中,用Z,Y分别表示第一次和第二次出现的点数,Z和Y可以取值1、2、3、4、5、6,每一点(Z,Y)表示一个基本事件,因而基本空间包含36个元素。“点数之和为2”是一事件,它是由一个基本事件(1,1)组成,可用 *** {(1,1)}表示,“点数之和为4”也是一事件,它由(1,3),(2,2),(3,1)3个基本事件组成,可用 *** {(1,3),(3,1),(2,2)}表示。如果把“点数之和为1”也看成事件,则它是一个不包含任何基本事件的事件,称为不可能事件。P(不可能事件)=0。在试验中此事件不可能发生。如果把“点数之和小于40”看成一事件,它包含所有基本事件,在试验中此事件一定发生,所以称为必然事件。P(必然事件)=1。实际生活中需要对各种各样的事件及其相互关系、基本空间中元素所组成的各种子集及其相互关系等进行研究。 在一定的条件下可能发生也可能不发生的事件,叫做随机事件。 通常一次实验中的某一事件由基本事件组成。如果一次实验中可能出现的结果有n个,即此实验由n个基本事件组成,而且所有结果出现的可能性都相等,那么这种事件就叫做等可能事件。 不可能同时发生的两个事件叫做互斥事件。 对立事件。即必有一个发生的互斥事件叫做对立事件。 概型 ①古典概型 古典概型讨论的对象局限于随机试验所有可能结果为有限个等可能的情形,即基本空间由有限个元素或基本事件组成,其个数记为n,每个基本事件发生的可能性是相同的。若事件A包含m个基本事件,则定义事件A发生的概率为p(A)=m/n,也就是事件A发生的概率等于事件A所包含的基本事件个数除以基本空间的基本事件的总个数,这是P.-S.拉普拉斯的古典概型定义,或称之为概率的古典定义。历史上古典概型是由研究诸如掷骰子一类赌博游戏中的问题引起的。计算古典概型,可以用穷举法列出所有基本事件,再数清一个事件所含的基本事件个数相除,即借助组合计算可以简化计算过程。 ②几何概型 几何概型若随机试验中的基本事件有无穷多个,且每个基本事件发生是等可能的,这时就不能使用古典概型,于是产生了几何概型。几何概型的基本思想是把事件与几何区域对应,利用几何区域的度量来计算事件发生的概率,布丰投针问题是应用几何概型的一个典型例子。 设某一事件A(也是S中的某一区域),S包含A,它的量度大小为μ(A),若以P(A)表示事件A发生的概率,考虑到“均匀分布”性,事件A发生的概率取为:P(A)=μ(A)/μ(S),这样计算的概率称为几何概型。若Φ是不可能事件,即Φ为Ω中的空的区域,其量度大小为0,故其概率P(Φ)=0。 在概率论发展的早期,人们就注意到古典概型仅考虑试验结果只有有限个的情况是不够的,还必须考虑试验结果是无限个的情况。为此可把无限个试验结果用欧式空间的某一区域S表示,其试验结果具有所谓“均匀分布”的性质,关于“均匀分布”的精确定义类似于古典概型中“等可能”只一概念。假设区域S以及其中任何可能出现的小区域A都是可以度量的,其度量的大小分别......>> 问题九:概率 X*代表什么意思? X*表示一个新的随机变量,它是X的函数。这个函数形式通常称为X的标准化。经济数学团队帮你解答,请及时评价。谢谢! 问题十:概率人生,是什么意思? 概率一如人生 。 有概率,既是有希望,哪怕希望再小,它也是有, 但是希望又很渺茫,很难到达,但终究是有希望,所以不能放弃,想赌一把人生, 所以哪怕活地累,遇到困难,生活还是在继续。就象买彩票,希望很小,但有可能,就有许多人买。
2023-05-26 01:31:551

概率是什么?Sigma algebra,Borel field 是什么意思,意义何在

概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 Sigma algebra,Borel field,是指σ代数,博雷尔
2023-05-26 01:32:032

什么是几何概率

与长度,面积,体积有关的等可能事件的概率。
2023-05-26 01:32:123

概率论中σ2和S²有什么区别?谢谢大神!!

σ2表示的是总体方差,S²表示的是样本方差。在数学中,S²用的次数比较多。一般情况下,如果样本很大,就会用S²去比较总体样本的情况。如果样本数量很小,就会用σ2去比较样本情况。在矩估计中,就是用样本方差去估计总体方差的。扩展资料概率论的内容有:第一章 随机事件与概率1§1.1 随机现象与样本空间 1一、随机现象 1二、样本空间 2§1.2 随机事件与频率稳定性 3一、随机事件 3二、事件之间的关系与运算 3三、频率与概率 6§1.3 随机事件的概率 7一、古典概型 7二、几何概率 11三、概率的公理化定义与性质 14§1.4 条件概率、全概率公式、贝叶斯公式 16一、条件概率 16二、全概率公式 19三、贝叶斯公式 20§1.5 事件独立性 23一、两个事件的独立性 23二、多个事件的独立性 24三、贝努利概型 27第二章 随机变量及其分布33§2.1 随机变量与分布函数33一、随机变量的概念33二、随机变量的分布函数34§2.2 离散型随机变量37一、离散型随机变量的概率分布37二、离散型随机变量的分布函数39三、常用离散型随机变量的分布41§2.3 连续型随机变量46一、连续型随机变量的概率密度函数46二、连续型随机变量的分布函数48三、常用连续型随机变量的分布49§2.4 随机变量函数的分布56一、离散型随机变量函数的分布56二、连续型随机变量函数的分布57第三章 随机向量及其分布64§3.1 二维随机向量及其联合分布函数64一、随机向量的概念64二、随机向量的联合分布函数65三、随机向量的边际分布函数66§3.2 二维离散型随机向量66一、二维离散型随机向量的联合概率分布66二、二维离散型随机向量的边际概率分布69三、二维离散型随机向量的条件概率分布71§3.3 二维连续型随机向量72一、二维连续型随机向量的联合密度函数72二、二维连续型随机向量的边际密度函数77三、条件密度函数78四、两种常用的二维连续型随机向量的分布78§3.4 随机变量的独立性81一、随机变量独立性的定义81二、离散型随机向量独立的等价命题81三、连续型随机向量独立的等价命题84§3.5 二维随机向量函数的分布86一、二维离散型随机向量函数的分布86二、二维连续型随机向量函数的分布88三、可加性92等参考资料:百度百科——概率论
2023-05-26 01:32:201

概率计算的概率的加法法则

概率的加法法则:定理:设A、B是互不相容事件(AB=φ),则:P(A∪B)=P(A)+P(B)推论1:设A1、 A2、?、 An互不相容,则:P(A1+A2+...+ An)= P(A1) +P(A2) +?+ P(An)推论2:设A1、 A2、?、 An构成完备事件组,则:P(A1+A2+...+An)=1推论3: 为事件A的对立事件。推论4:若B包含A,则P(B-A)= P(B)-P(A)推论5(广义加法公式):对任意两个事件A与B,有P(A∪B)=P(A)+P(B)-P(AB)扩展资料柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件Ω,有P(Ω)=1;(3)可列可加性:设A1,A2??是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2??),则有P(A1∪A2∪??)=P(A1)+P(A2)+??参考资料:百度百科-概率计算
2023-05-26 01:32:281

概率论中σ2和S²有什么区别?谢谢大神!!

s^2是方差的意思,第一个没看出来是什么字符!
2023-05-26 01:32:463

频率等于概率正确吗

不对,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。 统计定义 在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义称为概率的统计定义。 在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli)。 从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。 由于频率 总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。 公理化定义 柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下: 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件: (1)非负性:对于每一个事件A,有P(A)≥0; (2)规范性:对于必然事件,有P(Ω)=1; (3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……
2023-05-26 01:32:531

一定的概率是什么意思

2023-05-26 01:33:023

一定的概率是什么意思

概率,又称或然率、机率或可能性,它是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。来源概率(Probability)一词来源于拉丁语“probabilitas”,又可以解释为 probity.Probity的意思是“正直、诚实”,在欧洲probity用来表示法庭案例中证人证词的权威性,且通常与证人的声誉相关。总之与现代意义上的概率“可能性”含义不同。古典定义如果一个试验满足两条:(1)试验只有有限个基本结果;(2)试验的每个基本结果出现的可能性是一样的。这样的试验便是古典试验。对于古典试验中的事件A,它的概率定义为:P(A)=  ,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。 频率定义随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。统计定义在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli)  。从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。由于频率 总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。公理化定义柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件Ω,有P(Ω)=1;(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……性质:概率具有以下7个不同的性质:性质1:P(Φ)=0;性质2:(有限可加性)当n个事件A1,…,An两两互不相容时: P(A1∪...∪An)=P(A1)+...+P(An);性质3:对于任意一个事件A:P(A)=1-P(非A);性质4:当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B);性质5:对于任意一个事件A,P(A)≤1;性质6:对任意两个事件A和B,P(B-A)=P(B)-P(AB);性质7:(加法公式)对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)。
2023-05-26 01:33:551

有关数学概率的问题,求详细内容

这哥们是奇葩。。。膜拜
2023-05-26 01:34:165

集合正则性是什么意思

概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。 1、这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理。 2、根据概率的公理化定义,概率指的是满足如下三个特点的集合函数(亦即以集合为定义域的实值函数):(1)非负性。亦即概率的取值不能是负数。 实际上,任何“测度”,例如长度、面积、体积、重量等,都不能取负数。因此,作为针对“可能性”的测度,概率自然也不能取负数。 (2)正则性。亦即概率的取值不能超过1。 相较于其它的测度,正则性是概率这种测度的特别之处。因为诸如长度、面积、体积以及重量之类的测度都没有取值上限这种约束。而概率的取值之所以要求不能超过1,实在是基于我们对“可能性”大小这一判断的经验(或习惯)做法。 (3)(无限)可列可加性。亦即无限个互不相容集合(事件)的并的概率,等于无限个(与每一个集合相对应的)概率之和。 概率的可列可加性有两个含义: 一是互不相容的集合的并的概率,等于其中每一个集合的概率之和。这一规定仍是基于现实的经验。 二是要求在“可能性”的测度过程中不能出现无限个概率之和不存在的情况,因为这也是违背经验的事情。 扩展资料: 概率的无限可列可加性的应用: 满足公理化定义的概率还具有连续性,亦即它既具有下连续性,也具有上连续性。 基于概率的无限可列可加性,我们很容易推导出概率的有限可列可加性。但基于概率的有限可列可加性,我们并不能逆推出概率的无限可列可加性。 在概率满足有限可列可加性的基础上,还必须再增加一个概率满足下连续的假设,才能推出这个概率函数满足无限可列可加性的结论。
2023-05-26 01:34:321

概率统计问题,麻烦解释下为什么P(A-B)=P(A-AB)=P(A)-P(AB)呢?

其实你这个问题的条件应该是不完整的,这个公式应该在B属于A时才成立。当B属于A时,你做图可以发现,此时B就是A与B的交集,即B=AB,因此P(A-B)=P(A-AB)=P(A)-P(AB)
2023-05-26 01:34:411

在每次试验中,事件a发生的概率为0.5,利用切比雪夫不等式估计在1000次试验中,求事件a发生的次

我是 xtimz 的小号,我早已回答了这题,百度不给我通过,上来抱怨一下!
2023-05-26 01:34:503