- u投在线
-
ξ这个符号的意思是:表示数学上的随机变量。
ξ(ξ)Xi(大写Ξ,小写ξ),是第十四个希腊字母。希腊字母柯西Ξ大写Ξ用于:粒子物理学中的Ξ重子小写ξ用于:数学上的随机变量西里尔字母的u046e(Ksi)是由Xi演变而成。
按照随机变量可能取得的值,可以把它们分为两种基本类型:
1、离散型
离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。
2、连续型
连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。
泊松分布公式里哪些符号和英文是什么意思 何谓随机变量
X:随机变量. P(λ):随机变量X的分布称为泊松分布,记作P(λ). λ:是单位时间(或单位面积)内随机事件的平均发生率.它是泊松分布的均值,也是泊松分布的方差,泊松分布P(λ)中唯一的一个参数. k:单位时间内随机事件发生的次数(k=0,1,2,…),如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等. e:自然对数. P.S.基本就这么理解,没明白的地方请指出来.2023-06-06 07:49:301
二项分布,泊松分布,正太分布中哪些是离散型随机变量,哪些是连续型随机变量
离散型随机变量:二项分布与泊松分布。连续型随机变量:正态分布。1、离散变量是指其数值只能用自然数或整数单位计算的,则为离散变量。例如,企业个数、职工人数、设备台数等。只能按计量单位数计数,这种变量的数值一般用计数方法取得。2、连续随机变量,在一定区间内可以任意取值的变量,其数值是连续不断的,相邻两个数值可作无限分割,即可取无限个数值。例如, 生产零件 的 规格尺寸 , 人体测量 的身高、体重、胸围等为连续变量,其数值只能用测量或计量的方法取得。扩展资料:区别离散型随机变量只可能出现可数型的实现值,比如自然数集,{0,1}等等,常见的有二项随机变量,泊松随机变量等。连续型随机变量的实现值是属于不可数集合的,比如(0,1],实数集,常见的有正态分布,指数分布,均匀分布等。参考资料:百度百科-离散型随机变量参考资料:百度百科-连续型随机变量2023-06-06 07:49:371
泊松分布随机变量可以取负值吗?
泊松分布随机变量,可以一起复制吗?也是可以去复制的没人提的2023-06-06 07:50:097
设随机变量x服从参数为λ的泊松分布,且已知E[(x-1)(x-2)]=1,求λ
因为x服从参数为λ的泊松分布,那么可知E(X)=λ,D(X)=λ。而D(X)=E(X^2)-[E(X)]^2,那么E(X^2)=λ+λ^2又因为E[(X-1)(X-2)]=E(X^2-3X+2)=E(X^2)-E(3X)+E(2)=λ+λ^2-3λ+2=λ^2-2λ+2由题意可知,λ^2-2λ+2=1,解的λ=1。2023-06-06 07:50:253
设随机变量x服从参数为入的泊松分布,则P(X=m)=?
泊松分布是一种离散型概率分布,用于描述在一段时间或区间内,某一事件发生的次数。其概率质量函数为:$$P(X=m)=frac{lambda^me^{-lambda}}{m!}$$其中,$lambda$为事件发生的平均次数,m为实际发生的次数。该分布的特点是:平均值等于方差,即$E(X)=Var(X)=lambda$。举个例子,假设某商店每小时平均有5名顾客进店,那么在某一小时内,有0、1、2、3、4、5……名顾客进店的概率分别为:$$P(X=0)=frac{5^0e^{-5}}{0!}=0.0067$$$$P(X=1)=frac{5^1e^{-5}}{1!}=0.0337$$$$P(X=2)=frac{5^2e^{-5}}{2!}=0.0842$$$$P(X=3)=frac{5^3e^{-5}}{3!}=0.1404$$$$P(X=4)=frac{5^4e^{-5}}{4!}=0.1755$$$$P(X=5)=frac{5^5e^{-5}}{5!}=0.1755$$……以此类推。因为泊松分布是一个概率分布,所以所有可能的概率之和应该等于1,即:$$sum_{m=0}^{infty}frac{lambda^me^{-lambda}}{m!}=1$$这个式子其实就是泊松分布的概率质量函数的和。2023-06-06 07:50:431
如何用c语言生成符合泊松分布的随机变量?
#include "stdio.h" #include "conio.h" #include "stdlib.h" #define MAXNUM 8 #define MAXTIME 10000 float p_before[MAXNUM]={0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.2, 0.1}; //预期概率 float p_after[MAXNUM]; //计算后的概率 float cnt[MAXNUM]; //记录实际出现的概率 void init() { int i; float total=0; for(i=MAXNUM-1;i>=0;i--) { total+=p_before; p_after=p_before/total; cnt=0; } } int randp(float p) //调用本函数将以p的概率返回1,以(1-p)的概率返回0 { float rand_num ; rand_num=random(1000) ; //产生一个 0~(MAXNUM-1) 之间的整数 if (rand_num < 1000*p) return(1) ; else return(0) ; } int randnum() { int i; for(i=0;i<MAXNUM;i++) if(randp(p_after)) return(i); return(MAXNUM-1); } main() { int i,num; init(0); for(i=0;i<MAXTIME;i++) { num=randnum(); cnt[num]++; } for(i=0;i<MAXNUM;i++) printf("cnt[%d]=%.4f, p_before[%d]=%.4f ",i,cnt/MAXTIME,i,p_before); getch(); }2023-06-06 07:50:502
设随机变量X服从参数为2的泊松分布,E(X),D(X)=?求详细解答
泊松分布P(λ)中只有一个参数λ,它既是泊松分布的均值,也是泊松分布的方差现在X是服从参数为2的泊松分布,所以E(X)=D(X)=22023-06-06 07:50:561
请问泊松分布的问题: 设随机变量X~π(2),则P(X
间本来就有一种隔阂,但是有些人互相关爱,让他们更加亲近、和谐、还记得那一天发生的事…… 那天,要数学考试.离考试还有五分钟的时候,我再一次检查我的文具盒,看看文具准备好了没.中性笔,好好地躺在文具盒中;铅笔,乖乖地趴在文具盒里内;橡皮,安静地坐在文具盒里;尺子,咦?尺子跑哪去了?我再一次检查,嘴里还喃喃自语“中性笔,铅笔,橡皮……”还是不见尺子.我看了看表,糟了,快上课了,怎么办?怎2023-06-06 07:51:031
随机变量 X 服从入=2的泊松分布,P(X>=1)等于?
简单计算一下,答案如图所示2023-06-06 07:51:092
设随机变量x服从参数为入的泊松分布,已知p0,p12p2成等差数列求ex,dx
P(X=k)=(λ^k/k!) * e^(-λ) E(X)=λ P(X=1)=(λ^1/1!) * e^(-λ)=λ * e^(-λ) P(X=2)=(λ^2/2!) * e^(-λ)=0.5λ^2 * e^(-λ) λ * e^(-λ) = 0.5λ^2 * e^(-λ) λ=0或λ=2 λ=0舍去,故λ=2 E(X)=22023-06-06 07:51:581
设离散型随机变量X服从参数为λ的泊松分布,已知P(X=1)=P(X=2),试求参数λ 的值 求具体过程 有图更好
P{X=1}=P{X=2},λ*e^-λ=λ^2*e^-λ/2,λ=λ^2/2,λ=2,P{X=4}=2^4*e^-2/4!=2e^-2/3。随机变量分为离散型随机变量与 非离散型随机变量两种,随机变量的函数仍为随机变量。有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,也可以说概率1以一定的规律分布在各个可能值上。这种随机变量称为"离散型随机变量"。扩展资料:离散型随机变量概率分布定义1:如果随机变量X只可能取有限个或至多可列个值,则称X为离散型随机变量。定义2:设X为离散型随机变量,它的一切可能取值为X1,X2,……,Xn,……,记P=P{X=xn},n=1,2...称上式为X的概率函数,又称为X的概率分布,简称分布。应用范围:自变量的变换、卷积和、傅里叶级数、傅里叶变换、Z变换。2023-06-06 07:52:071
设随机变量x服从参数为3的泊松分布 则p(x=2)
P(X=2)=[9e^(-3)]/22023-06-06 07:52:211
概率论问题:若X服从参数为λ的泊松分布,则EX和DX有什么关系?求解释
都等于λ2023-06-06 07:52:283
X(t)是参数为λ的泊松过程,问X(t)是平稳过程吗?为什么? 随机过程简答题,谢谢了。
不是,是否平稳得根据相关函数来判断2023-06-06 07:53:012
设随机变量X服从参数为2的泊松分布,则E(X^2)=? 求解答过程
X~π(2) E(x)=2 D(X)=2 D(X)=E(X^2)-[E(X)]^2 2=E(X^2)-4 E(X^2)=62023-06-06 07:53:071
设随机变量X服从参数为3的泊松分布,随机变量Y~N(1,4),则E(X^2+Y^2)=?
152023-06-06 07:53:142
设随机变量X服从参数λ=1的泊松分布,记随机变量Y= ,试求随机变量Y的分布律
P(x=k)=∑k=0~无穷1/k!*e-1P(Y=0)=P(X<=1)=P(X=0)+P(X=1)=2e-1;P(Y=1)=P(X>1)=1-P(X<=1)=1-2e-12023-06-06 07:53:282
为什么随机变量服从泊松分布则P{X=10}=P{X≥10}-P{X≥11
泊松分布只能取整数值,所以P(X≥10)=P(X=10)+P(X=11)+P(X=12)+...,P(X≥11)=P(X=11)+P(X=12)+...,两者相减就是P(X≥10)-P(X≥11)=P(X=10)。2023-06-06 07:53:421
概率论:设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)为
因题干条件不完整,缺少文字,不能正常作答。2023-06-06 07:53:492
- 随机变量x服从参数为λ的泊松分布p{x=k}=e^(-λ)*λ^k/k!p{x=1}=e^(-λ)*λ^1/1!p{x=2}=e^(-λ)*λ^2/2!若p{x=1}=p{x=2}λ=2e(x)=d(x)=2如有意见,欢迎讨论,共同学习;如有帮助,请选为满意回答!2023-06-06 07:54:011
设离散型随机变量X的分布律为P(X=n)=P(X=-n)=1/2n(n+1),1,2,...,求E(X)
E(x)=u2211x*px=u2211{[n*1/2n(n+1)]+[-n*1/2n(n+1)]} (n=1,2,...) =u2211[(n-n)*1/2n(n+1)] =02023-06-06 07:54:112
泊松分布公式里哪些符号和英文是什么意思 何谓随机变量
X:随机变量. P(λ):随机变量X的分布称为泊松分布,记作P(λ). λ:是单位时间(或单位面积)内随机事件的平均发生率.它是泊松分布的均值,也是泊松分布的方差,泊松分布P(λ)中唯一的一个参数. k:单位时间内随机事件发生的次数(k=0,1,2,…),如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等. e:自然对数. P.S.基本就这么理解,没明白的地方请指出来.2023-06-06 07:54:391
二项分布,泊松分布,正太分布中哪些是离散型随机变量,哪些是连续型随机变量
你好!二项分布与泊松分布是离散型随机变量,正态分布是连续型随机变量。经济数学团队帮你解答,请及时采纳。谢谢!2023-06-06 07:54:462
数学实验中:”求服从以为参数的泊松分布的随机变量的函数f(x)=x^2的数学期望“,是什么意思?
这个表明,随机变量X服从泊松分布,求X的函数x^2的期望。用随机变量函数的期望公式求解即可。解答见下图:2023-06-06 07:55:021
设随机变量X服从参数为2的泊松分布,E(X),D(X)=?求详细解答
泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差 现在X是服从参数为2的泊松分布, 所以E(X)=D(X)=22023-06-06 07:55:191
设随机变量x服从参数为λ的泊松分布,求E(X+1)^-1
你好 这题的思路是把期望展开,然后利用泊松分布的概率质量公式将期望的表达式进行整理,具体步骤如下 最后的结果是(1-e^{-λ})/λ 如果发现有问题的话,再问我吧 望采纳2023-06-06 07:55:274
设随机变量X服从参数为2的泊松分布,E(X),D(X)=?求详细解答
泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差现在X是服从参数为2的泊松分布,所以E(X)=D(X)=22023-06-06 07:56:111
泊松分布的特征函数
泊松分布的特征函数如下:泊松分布概率密度函数是P{X=k}=λ^k/(k!e^λ)k=0,1,2……k代表的是变量的值。泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。泊松分布的期望和方差相等,当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。分布函数:分布函数(英文Cumulative Distribution Function, 简称CDF),是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。若已知X的分布函数,就可以知道X落在任一区间上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。如果将X看成是数轴上的随机点的坐标,那么,分布函数F(x)在x处的函数值就表示X落在区间上的概率。2023-06-06 07:56:271
设随机变量 X 服从参数为 λ 的泊松分布,则特征函数() =?
2023-06-06 07:56:472
泊松分布公式里哪些符号和英文是什么意思
X:随机变量。P(λ):随机变量X的分布称为泊松分布,记作P(λ)。λ:是单位时间(或单位面积)内随机事件的平均发生率。它是泊松分布的均值,也是泊松分布的方差,泊松分布P(λ)中唯一的一个参数。k:单位时间内随机事件发生的次数(k=0,1,2,…),如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。e:自然对数。P.S.基本就这么理解,没明白的地方请指出来。2023-06-06 07:57:121
二维随机变量P(X/Y
P(X/Y<0)=0.5本题使用正态分布与独立性分析:(x,y)~N(0,0,1,1,0)说明X~N(0,1),Y~N(0,1)且X与Y独立X/Y<0,即X与Y反号所以 P(X/Y<0)=P(X>0,Y<0)+P(X<0,Y>0)=P(X>0)P(Y<0)+P(X<0)P(Y>0)=0.5×0.5+0.5×0.5=0.5二维随机变量( X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。扩展资料:在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。参考资料来源:百度百科——二维随机变量2023-06-06 07:57:341
设随机变量X服从参数为2的泊松分布,随机变量Y=2X-2,则E(Y)=?
泊松分布的期望和方差均为 λ(就是参数)。所以E(Y)=2*E(X)-2=2E(Y)=22023-06-06 07:57:431
泊松分布的参数该怎么计算
说下λ(poisson分布参数)的意义吧λ表示在一定时间(单位时间)内事件发生的平均次数。例如在一天内访问某个商场的人数服从poisson分布,并且估计出平均人数为x人,这里poisson分布的参数就是平均人数。与λ相对,1/λ为指数分布的期望,表示需要的时间(每个事件)LZ是不是要按照实际意义去计算λ?2023-06-06 07:57:515
设随机变量X服从泊松分布,且3P{X=1}+2P{X=2}=4P{X=0},求X的期望和方差?
P(x=k)=(m^k/k!)*e^(-m)x=1,x=2,x=0分别代入3p(X=1)+2P(X=2)=4P(X=0),化简3u+u^2-4=0u=1X~P(1)E(X)=D(X)=1扩展资料在做实验时,常常是相对于试验结果本身而言,主要还是对结果的某些函数感兴趣。例如,在掷骰子时;常常关心的是两颗骰子的点和数,而并不真正关心其实际结果,就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。2023-06-06 07:58:393
设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则EX=? DX=?
随机变量X服从参数为λ的泊松分布 P{X=k}=e^(-λ) * λ^k / k! P{X=1}=e^(-λ) * λ^1 / 1! P{X=2}=e^(-λ) * λ^2 / 2! 若P{X=1}=P{X=2} λ=2 E(x)=D(x)=2 如有意见,欢迎讨论,共同学习;如有帮助,2023-06-06 07:59:021
随机变量x服从泊松分布,P(X=1)=P(X=2),E(3X-1)=?
P(X<=1 )=P(X=1)2023-06-06 07:59:091
泊松分布:设随机变量X服从参数为5泊松分布,求P{X=10}为什么让P{X=10}=P{X大于=10}-P{X大于=11}
因P{X大于=10}=P10+P11+P12+......P{X大于=11}=P11+P12+......故P{X大于=10}-P{X大于=11}=(P10+P11+P12+......) - (P11+P12+......) = P102023-06-06 07:59:161
设随机变量X服从参数为2的泊松分布,则P{X=E(X)}=?
泊松分布的期望就是参数值,所以此题就是求X=2的概率,如图代公式即得。经济数学团队帮你解答,请及时采纳。谢谢!2023-06-06 07:59:221
随机变量X~N(μ,σ^2),则P(∣X-μ∣
答案如图所示,有任何疑惑,欢迎追问2023-06-06 07:59:352
设随机变量X服从参数为4的泊松分布,则DX =____________.
泊松分布的期望Ex=λ=4,Dx=λ=4 PS:泊松分布式(λ^k)/k!*e(-λ)2023-06-06 08:00:211
概率论:随机变量X服从参数λ的泊松分布,当k取何值时概率最大?
设X=k时概率最大P(X=k)/P(X=k+1)=[λ^k*e^(-λ)/k!]/[λ^(k+1)*e^(-λ)/(k+1)!]=(k+1)/λ>=1即k>=λ-1P(X=k)/P(X=k-1)=[λ^k*e^(-λ)/k!]/[λ^(k-1)*e^(-λ)/(k-1)!]=λ/k>=1即k<=λ故当λ为整数时,k=λ或λ-1时,概率最大当λ不为整数时,k=[λ]时,概率最大2023-06-06 08:00:291
设随机变量X服从参数为3的泊松分布,则X平方数学期望,
依题意可以得到λ=3,; 所以E(X)=D(X)=3; 而D(X)=E(X^2)-E(X)^2=3; 所以E(X^2)=E(X)^2+D(X)=12;2023-06-06 08:00:371
设随机变量X服从参数为4的泊松分布,则DX =____________.
泊松分布的期望Ex=λ=4,Dx=λ=4 PS:泊松分布式(λ^k)/k!*e(-λ)2023-06-06 08:00:441
填空 设随机变量X服从参数为1的泊松分布,则P(X〉0)=?
因为X服从参数为1的泊松分布,所以P(X=k)=[e^(-1)*1^k]/k!=e^(-1)/k!, P(X>0)=1-P(X=0)=1-e^(-1)/0!=1-e^(-1)=(e-1)/e2023-06-06 08:00:511
设随机变量X服从参数为λ的泊松分布,且p{X=1}=p{X=2},则EX=?DX=?求过程~
过程的话,有些符号不会打。但有这样的结论:泊松分布的数学期望与方差相等,都等于参数λ.因为泊松分布只含有一个参数,只要知道它的数学期望或者方差就能完全确定它的分布2023-06-06 08:01:112
泊松分布到底是什么??麻烦说清楚,泊松事件呢?
概率论中常用的一种离散型概率分布。若随机变量 X 只取非负整数值,取k值的概率为λke-l/k!(记作P (k;λ),其中k可以等于0,1,2,则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率 λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位。 泊松分布(Poisson distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 泊松分布的概率密度函数为: P(X=k)=frac{e^{-lambda}lambda^k}{k!} 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。(Poisson distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家(Siméon-Denis Poisson)在1838年时发表。泊松分布的概率密度函数为::P(X=k)=frac{e^{-lambda}lambda^k}{k!}泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: P(x)=(mx/x!)e-m 称为泊松分布。例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: P(0)=e-3=0.05; P(1)=(3/1!)e-3=0.15; P(2)=(32/2!)e-3=0.22; P(3)=0.22; P(4)=0.17;…… P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率。一种累计随机事件发生次数的最基本的独立增量过程。例如随着时间增长累计某电话交换台收到的呼唤次数,就构成一个泊松过程。用数学语言说,满足下列三条件的随机过程X={X(t),t≥0}叫做泊松过程。①P(X(0)=0)=1。②不相交区间上增量相互独立,即对一切0≤t1<t2<…<tn,X(t1),X(t2)-X(t1),…,X(tn)-X(tn-1)相互独立。③增量X(t)-X(s) (t>s)的概率分布为泊松分布,即,式中Λ(t)为非降非负函数。若X还满足④X(t)-X(s)的分布仅依赖于t-s,则称X为齐次泊松过程;这时Λ(t)=λt,式中常数λ>0称为过程的强度,因为EX(t)=Λ(t)=λt,λ等于单位时间内事件的平均发生次数。非齐次泊松过程可通过时间尺度的变换变为齐次泊松过程。对泊松过程,通常可取它的每个样本函数都是跃度为1的左(或右)连续阶梯函数。可以证明,样本函数具有这一性质的、随机连续的独立增量过程必是泊松过程,因而泊松过程是描写随机事件累计发生次数的基本数学模型之一。直观上,只要随机事件在不相交时间区间是独立发生的,而且在充分小的区间上最多只发生一次,它们的累计次数就是一个泊松过程。在应用中很多场合都近似地满足这些条件。例如某系统在时段【0,t)内产生故障的次数,一真空管在加热t秒后阴极发射的电子总数,都可假定为泊松过程。1943年C.帕尔姆在电话业务问题的研究中运用了这一过程,后来Α.Я.辛钦于50年代在服务系统的研究中又进一步发展了它。 齐次泊松过程的特征 描述随机事件累计发生次数的过程通常称为计数过程(见点过程)。一个简单而且局部有限的计数过程{X(t),t≥0},往往也可以用它依次发生跳跃(即发生随机事件)的时刻{Tn,n≥1}来规定,即取T0=0,Tn=inf{t:X(t)≥n},n≥1,而当Tn<t≤Tn+1时,X(t)=n。若以,表示X(t)发生相邻两次跳跃的时间间距,则计数过程是齐次泊松过程的充分必要条件为{τn,n≥1}是相互独立同分布的,且,其中λ为某一非负常数。齐次泊松过程的另一个特征是:固定t,X(t)是参数为λt的泊松分布随机变量,而当X(t)=k已知的条件下,X的k个跳跃时刻与 k个在[0,t)上均匀分布且相互独立的随机变量的次序统计量(见统计量)有相同的分布。泊松过程的这一特征常作为构造多指标泊松过程的出发点。从马尔可夫过程来看,齐次泊松过程是时间空间都为齐次的纯生马尔可夫链。从鞅来看,齐次泊松过程X是使{X(t)-λt,t≥0}为鞅的跃度为1的计数过程。 泊松过程的推广 较泊松过程稍为广泛的计数过程是更新过程,更新过程的跳跃时间间距是相互独立同分布的,但不一定是指数分布。这类过程常被用来描写某些设备的累计故障次数。若对跳跃时间间距不作任何假定,就成为一般的计数过程或称一维点过程。假如某设备在【0,t)时段内故障的累计次数N(t)是泊松过程,而每次故障造成的耗损不尽相同,用随机变量Yi表示第i次耗损,则在【0,t)内总的耗损为。当{N(t),t≥0}为齐次泊松过程,{Yi,i≥1}又是相互独立同分布且与{N(t)}独立时,X={X(t),t≥0}称为复合泊松过程。由于{N(t),t≥0}可以用其跳跃时刻{Ti,i≥1}来规定,因而复合泊松过程可用{(TnYn),n≥1}来规定,即。若对{(Tn,Yn),n≥1}的统计特性不作任何假定,这样规定的X 便是一种一般地描述系统跳跃变化的随机过程,常称为标值点过程,也称多变点过程或跳跃过程。 泊松过程除作为计数过程的一种重要数学模型外,又是众多重要随机过程的特例。独立增量过程的莱维-伊藤分解表明,利用它还可构成一般的独立增量过程,因而它在随机过程中占有特殊地位,也有人把它与布朗运动一起称之为随机过程的基石。2023-06-06 08:01:201
泊松分布的λ和e是什么意思?公式是怎么来的?
率论中常用的一种离散型概率分布.若随机变量nbsp;Xnbsp;只取非负整数值,取k值的概率为λke-l/k!(记作Pnbsp;(k;λ),其中k可以等于0,1,2,则随机变量Xnbsp;的分布称为泊松分布,记作P(λ).这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的.泊松分布Pnbsp;(λ)中只有一个参数λnbsp;,它既是泊松分布的均值,也是泊松分布的方差.在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率nbsp;λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布.因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位.nbsp;nbsp;nbsp;泊松分布(Poissonnbsp;distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discretenbsp;probabilitynbsp;distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denisnbsp;Poisson)在1838年时发表.nbsp;泊松分布的概率密度函数为:nbsp;P(X=k)=frac{e^{-lambda}lambda^k}{k!}nbsp;泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率.nbsp;泊松分布适合于描述单位时间内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等.nbsp;nbsp;(Poissonnbsp;distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discretenbsp;probabilitynbsp;distribution),由法国数学家(Siméon-Denisnbsp;Poisson)在1838年时发表.nbsp;nbsp;泊松分布的概率密度函数为:nbsp;nbsp;:P(X=k)=frac{e^{-lambda}lambda^k}{k!}nbsp;nbsp;泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率.nbsp;nbsp;泊松分布适合于描述单位时间内随机事件发生的次数.如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等.nbsp;nbsp;观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:nbsp;nbsp;nbsp;P(x)=(mx/x!)e-mnbsp;nbsp;称为泊松分布.例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体.实际上每个基因组二体的分布是服从泊松分布的,将取如下形式:nbsp;nbsp;P(0)=e-3=0.05;nbsp;nbsp;P(1)=(3/1!)e-3=0.15;nbsp;nbsp;P(2)=(32/2!)e-3=0.22;nbsp;nbsp;P(3)=0.22;nbsp;nbsp;P(4)=0.17;……nbsp;nbsp;P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的.由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率.2023-06-06 08:01:271
读后感的作文300字
在学习、工作、生活中,大家或多或少都会接触过作文吧,作文根据体裁的不同可以分为记叙文、说明文、应用文、议论文。那么问题来了,到底应如何写一篇优秀的作文呢?以下是我为大家整理的读后感的作文300字6篇,欢迎大家分享。 读后感的作文300字 篇1 《我的儿子皮卡》系列是著名作家曹文轩的作品。它生动的描写了皮卡小时候在乡村爷爷家生活的点点滴滴。 小皮卡在五个月时就被送到乡下。他在那里快乐的度过了他的童年生活。那有一群群鸭子、溪流、山川、树木…… 皮卡的乡村生活是多么美好呀。真让人羡慕。白天在那山间游玩,在草丛里捉蜻蜓,看蓝天下飞翔的鸽子,在指甲花开的时候摘一些染红指甲,看赶鸭人放鸭。晚上抬头看月亮,低头看月光下的池塘,呼朋唤友一起去看露天电影……真是快乐的生活。只可惜现在的同学都居住在大都市。领略不到那大自然的风光。 我十分喜欢这本书,因为它让我感受到了乡村特有的生活。原来月亮是十分亮的,鸭子在“怀孕”的时候受到惊吓会把蛋下出来、在农村夏天小孩子是不穿衣服的…… 城市里的许多小孩子,平时一大堆的作业,写都写不完好不容易到了周末,还要上各种各样的辅导班……哪有时间到那美丽的大自然去领略那迷人的景色? 读了这本书,我仿佛自己也置身大自然,陶醉在美景里。有多少个孩子都渴望有一个像皮卡一样的童年呀! 说到这,我想,你也想读读这本书了吧。一起来领略大自然的美,感受皮卡快乐的童年吧! 读后感的作文300字 篇2 她感动着我们每一个读者的心? 这本书讲了麦格他们一家的事情。使我们懂得了时间可以让人衰老、坚强、爱是不会苍老的,它永远在我们每一个人心中,这本五彩斑斓的小书里,但三个小伙伴从没有动摇过他们要找到爸爸的决心。15岁的女孩麦格为了寻找失踪的科学家爸爸。 麦格肩负着这些爱,爸爸对麦格的亲子之爱,加尔文与麦格的朋友之谊、友情,有一个感人至深的故事,踏上了一条非同寻常的道路,尽管旅途布满了艰辛和危险,但是亲情,让我们长满皱纹,大家一定会想到时间哪来的皱纹说到时间的皱纹?这太不可思议了,弟弟与麦格的手足之情,战胜了邪恶重返家园┉ 读了这本书,一代又一代,我深受书中主人公麦格的勇气、为爱忍受的磨难以及不达目的"誓不罢休的决心所感染!有谁看见了时间的皱纹吗? 读后感的作文300字 篇3 寒假里,我读了《尼尔斯骑鹅旅行记》,这本书讲的是一个名叫尼尔斯的男孩子,他的父母是十分善良、勤奋但十分贫困的农民,尼尔斯由一个非常顽皮、欺负小动物、爱搞恶作剧的男孩子成长为一个善良、乐于助人的好孩子。 一个初春,尼尔斯的父母上教堂去了,尼尔斯在家因为捉弄一直小精灵,被小精灵变成了一个拇指大小的小人儿。正在这时,一群大雁从空中飞过,家中的一只鹅莫顿也想展翅跟随大雁们飞行。尼尔斯为了不让大雄鹅飞走,就紧紧抱住大雄鹅的脖子,就在这一瞬间,大雄鹅腾空而起,它来不及把尼尔斯抖掉,就带着尼尔斯一起飞到了天空中,从此,尼尔斯在大雄鹅的背上,跟随着大雁走南闯北,一直飞到最北部的拉普兰省。 对读书丝毫没有兴趣的孩子,最后却变成了一个善良,乐于助人的好孩子。 所以我也要向尼尔斯学习,挑出自己的缺点,添加自己的有点,在帮助别人的过程中,自己也要感到快乐,做一个乐于助人的好孩子。 读后感的作文300字 篇4 《草房子》一书共有九章,我最喜欢的一张是第八章《红门》,读完,就让我受益匪浅。 书中的立字向我们描绘了这一个情景。杜小康家是油麻地最富有的一户人家,是一个开杂货铺的人。别人的孩子只有两个季节的衣服,杜小康还有一条皮带,别孩子都是用绳子来代替的,常常系死,就很高傲。有一天,杜小康的父亲,买了一条大木船和一般的货物,都被一条飞一般的划过来的大铁船给到河底了,此时,家里一贫如?。后来,它们又借钱买了鸭子,又赔了。但桑桑又借钱给杜小康20元钱,杜小康又做了小买卖。 这篇文章告诉我们,杜小康从无数次的挫拆中站了走出来,不怕困难。告诉我们不怕困,要迎风而上,打败困难。 读着,感概万千;读着,感动常;读着,意犹未尽;读着,好一次难忘的阅读之旅。 读后感的作文300字 篇5 以前有一部家喻户晓的一部电视剧曾经热播名叫:《家有儿女》除了跟明星加盟增色,也有许多小演员本色出演,这部电视剧,剧情生动,跟真的一样,仿佛跟自己家发生的或是邻居家的都差不多。 尤其是其中的第五集,一个不知名的小朋友,因为他受到了家庭太大的负担,他渴望自己能离家出走,有一天他终于离家出走了。后来他爸爸妈妈也知错就改。改变了教育的方法...... 当我看到这部电视剧的时候。客厅里的小雨正在嬉笑打闹这在沙发上的爸爸,小雨叫辛巴也上来打,其实辛巴玩的很开心,他们温馨和睦的一起玩。现在一些父母强迫孩子学这个学那一个,小朋友因压力大迫不得已走上方法极端的路---离家出走,我真希望自己的父母也看到这部电影。 如果我也在家庭里被妈妈控制,我们是不是因该像辛巴那样......我真想我的父母也像小雨的父母一样。 读后感的作文300字 篇6 一个地点,一次巧合,蟋蟀柴斯特被玛利欧收留了,并和塔克鼠、亨利猫成为了好朋友。 在这,我敬佩它们的友谊。就如某天,柴斯特在梦游中一不小心把2元钱当树叶吃了,眼看柴斯特就要被赶出报摊,为了不让柴斯特被赶走,塔克把自己苦苦赚来的积蓄“送”给了柴斯特,让它留了下来。它们让我知道了什么是友谊,友谊不是对方危难时袖手旁观,而是自己能挺身而出,王蒙说:“友谊不用碰杯,友谊无需礼物,友谊只不过是我们不会忘记。”接下来,柴斯特用它那惊人的天赋一跃成名,走向了音乐的巅峰,正当我以为它要名扬四海时,它却要“退休”了,在这,它放心不下玛利欧,放心不下塔克和亨利……可是,它并不属于纽约,它还是要回家的。看到这里,我的心莫名抽痛了一下,这是为什么?可能是因为爱上了它的音乐吧。一本书看完,我从《时代广场的蟋蟀》中领悟出2个道理:一、友谊只在彼此的尊重中产生。二、无论自己翅膀多硬,能飞多远,自己的根在老家,还是要回去的。2023-06-06 07:57:231
用灵活造句二年级
灵活 [líng huó]敏捷;不呆板。善于应变;不拘泥。近义词伶俐 聪惠 聪颖 灵巧 智慧 机警 聪敏 机智 敏捷 灵敏 机灵 圆活 灵活 奢睿 明智 明慧 能干 精明 聪慧反义词傻气 蠢货 愚蠢 笨蛋 愚笨 鲁钝 笨拙 糊涂 呆笨 拙笨 愚昧 傻瓜词性形容词,褒义词。“灵活”的造句1我们要理解和灵活运用学过的知识。2猴子在石头上跳来跳去,又灵活又轻巧。3张老师教学方法灵活多变,课堂气氛很活跃。4脚法灵活的同学们在绿草如茵的操场上兴致勃勃地踢着足球。5我们做事要根据实际的情况进行灵活调整,千万不能像郑人买履一样。6它更加灵活,并且比磁带录像机更易于制作节目。7兵无常势,我们要灵活机动随时改变战略方针。8在这次比赛中,他们整齐和谐的节律,铿锵优美的舞步,舒展灵活的动作,舞出了青春的活力。9整天里,赤松鼠来来去去,它们的灵活尤其娱悦了我。10放水灵活,可做连线及转盘,可加装遥控或智能程序,盈利无忧。11做事要灵活一些,不要显得笨头笨脑。12这个道具可悬挂、壁挂、手动推移随意设置安装,不占用工作场地,灵活方便。13时而严厉地追问,时而又要温柔的关心,灵活地运用傲娇的原理,去掌握那家伙的内心。14小型矿泉壶使用方便,摆放灵活。15他心思慎密,头脑灵活,是猎狼人部队的大脑。16多交朋友主要不是靠头脑灵活,而是靠心地善良、单纯。17所有的建设是匿藏于它灵活的皮肤。18最厉害的是大象的鼻子,像我们的手一样灵活。19通过数字化使公司更加灵活。20从侧面看,球节略微倾斜,坚固,但是是灵活的。2023-06-06 07:57:185