面面垂直的向量方法:证明这两个平面的法向量是______;面面垂直的判定定理:文字语言:______,符号语言
(1)面面垂直的向量方法是:证明这两个平面的法向量互相垂直,即法向量的数量积等于0;(2)面面垂直的判定定理中:文字语言是“一个平面过另一个平面的一条垂线,则这两个平面垂直”,符号语言是“若l⊥β,l?α,则α⊥β”.故答案为:垂直的;一个平面过另一个平面的一条垂线,则这两个平面垂直;若l⊥β,l?α,则α⊥β.北境漫步2023-07-21 09:14:311
高数,求平面的法向量
你好!答案如图所示:答案是6x+10y+7z-50=0先求两点各自形成的向量,三点共面的平面,法向量n就是该两个向量的内积,求出平面法向量后再用点向式方程表示出来即可。很高兴能回答您的提问,您不用添加任何财富,只要及时采纳就是对我们最好的回报。若提问人还有任何不懂的地方可随时追问,我会尽量解答,祝您学业进步,谢谢。CarieVinne 2023-07-14 07:14:302
平面的法向量怎么求
法向量是有无数个,但每个法向量都垂直于平面,且互相平行;如果限定为从原点出发的单位法向量,那就只剩一个了。题中图片上直线L的向量(5,2,10),平面π的一个法向量:(4,0,-2),因两向量不成比例,故直线不予平面垂直,但两向量的点乘积等于0,说明两向量垂直,即直线L平行于平面π;肖振2023-07-14 07:14:276
如何用平面的法向量求两平面的夹角
设法向量为(xyz),找平面内的任意两条直线(但不平行),线段也行,并写出他们的向量p1p2。法向量与p1p2的乘积为0,得到xyz的三元一次方程(2个)。将其中任意一个未知数当成已知,例如z,则可以用z将x和y表示出来。这时这个法向量只有z的未知数,此时可以根据情况设z的值,这个是自己随便设,怎么方便怎么设,没有其他的意义。当然最好是设出来的值,最后写出法向量是最简的,换句话就是他们几个数之间没有公因数了。mlhxueli 2023-05-25 07:25:101
怎样确定平面的法向量?
方法一(平面束)首先设已知的两平面交线为L,过L的平面束方程为(4x-y+3z-1)+k(x+5y-z+2)=0,然后因为过原点,将坐标(x,y,z)=(0,0,0,)代入平面束方程,求得k=1/2,再代回平面束方程得到一个确定平面9x+3y+5z=0即为所求平面. 方法二(交线与原点的关系)首先设已知的两平面交线为L,L的方向向量由两已知平面的法向量求向量积,即由(4,-1,3)与(1,5,-1)求向量积得向量a(-2,1,3).再由两已知平面的方程联立为三元一次方程组(两个方程,三个未知量),从中取y为任一数,譬如取y=0,代入方程组解出x=-5/7,z=9/7,这是直线上的一个点的坐标.将点(0,0,0)和直线上点(-5/7,0,9/7)联成向量b(-5/7,0,9/7).再由向量a、b求向量积c,c即为所求平面的法向量,原点坐标已知,根据点法式即可求得平面方程.左迁2023-05-25 07:25:101
如何计算平面的法向量
方法如下: 1、先画出一个碗的碗底。准备找出这个平面的法向量。 2、在画出整个碗。 3、在碗中放置一根筷子,筷子垂直与碗底。筷子尾端向上的方向就是平面的法向量。 4、所以法线有两条。一个垂直也正面,一个垂直于反面。 5、通常用n上面有个箭头表示,取的时候,要配合其他直线取有利于计算的。西柚不是西游2023-05-25 07:25:101
平面的法向量方向怎么判断
空间平面的法向量可通过坐标法或几何法求得,坐标法即对空间几何图形选取合适的点为原点,根据尺寸求得面上点的坐标,进而求得线的向量形式,由法线垂直于平面内的线,即法线向量点乘面内线向量为0,求出法线向量即可。几何法根据空间面线、面面间的关系,通过做面的垂线或延伸面求两面间的交线等手段求解,不如坐标法直接,但运算量小。方向有两个拌三丝2023-05-25 07:25:101
空间平面的法向量怎么求
直接法:找一条与平面垂直的直线,求该直线的方向向量。待定系数法:建立空间直角坐标系。①设平面的法向量为n=(x,y,z)。②在平面内找两个不共线的向量a和b。③建立方程组:n点乘a=0,n点乘b=0。④解方程组,取其中的一组解即可。法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。meira2023-05-25 07:25:101
怎样用行列式求出平面的法向量?急 要详细
一般不必用行列式,而是直接写出法向量;例如3x-5t+4z-7=0的法向量为{3,-5,4}=3i-5j+4k.但是如果知道平面上两个向量(不平行),或者三个点(不共线),则可以用行列式表示一个法向量。①α={a,b,c},β={d,e,f}是平面上两个向量(不平行),则法向量可以用α×β=行列式|ijk||abc||def|表示②A(a1,b1c1),B(a2,b2.c2).C(a3,b3,c3)是平面上三个点(不共线),则法向量可以用AB×BC=行列式|i,j,k.||a2-a1,b2-b1,c2-c1||a3-a2,b3-b2,c3-c2|表示。CarieVinne 2023-05-25 07:25:101
平面的法向量怎么求
平面的法向量的求法:1、建立恰当的直角坐标系。2、设平面法向量n=(x,y,z)。3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)。4、根据法向量的定义建立方程组①n·a=0②n·b=0。5、解方程组,取其中一组解即可。法向量简介法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量。因此一个平面都存在无数个法向量,但是这些法向量之间相互平行。从理论上述,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。gitcloud2023-05-25 07:25:092
怎样求平面的法向量。
计算:对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。如果S是曲线坐标x(s,t)表示的曲面,其中s及t是实数变量,那么用偏导数叉积表示的法线为如果曲面S用隐函数表示,点集合(x,y,z)满足 F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。扩展资料:三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面(tangent plane)的向量。法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。参考资料:百度百科-法向量hi投2023-05-25 07:25:091
空间平面的法向量怎么求
设法向量n=(x,y,z),与平面内两条相交的直线分别相乘等于0,联立方程就可以得到法向量n。n为平面的法向量则n*a=0x*x1+y*y1+z*z1=0,n*b=0x*x2+y*y2+z*z2=0两个方程,三个未知数x,y,z故设出其中一个,例如设x=1(不能为0),从而求出y,z的值,即可得到平面的一个法向量。在平面内找两个不共线的向量,待求的法向量与这两个向量各做数量积为零就可以确定出法向量了,为方便运算,提取公因数,若其中含有未知量x,为x代值即可得到一个最简单的法向量。如已知向量a和b为平面ɑ内不共线的。ardim2023-05-25 07:25:092
空间平面的法向量方向怎么确定
空间平面的法向量可通过坐标法或几何法求得,坐标法即对空间几何图形选取合适的点为原点,根据尺寸求得面上点的坐标,进而求得线的向量形式,由法线垂直于平面内的线,即法线向量点乘面内线向量为0,求出法线向量即可.几何法根据空间面线、面面间的关系,通过做面的垂线或延伸面求两面间的交线等手段求解,不如坐标法直接,但运算量小.方向有两个瑞瑞爱吃桃2023-05-25 07:25:091
平面的法向量怎么求
平面法向量的具体步骤:(待定系数法)1、建立恰当的直角坐标系2、设平面法向量n=(x,y,z)3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)4、根据法向量的定义建立方程组①n·a=0②n·b=05、解方程组,取其中一组解即可。此后故乡只2023-05-25 07:25:092
如何用空间向量求平面的法向量
1.找一个与这个点连接的向量pa(a在平面内)2.求出平面的法向量n3.求出cos<向量pa,向量n>4.点到平面距离d=|向量pa|*cos<向量pa,向量n>铁血嘟嘟2023-05-25 07:25:092
大学数学求空间平面的法向量怎么求?
已知一个平面的两个法向量a=(x1,y1,z1),b=(x2,y2,z2) 其中x1,x2,y1,y2,z1,z2均为已知设平面法向量为n=(x,y,z)n为平面的法向量则n*a=0 x*x1+y*y1+z*z1=0n*b=0 x*x2+y*y2+z*z2=0 两个方程,三个未知数x,y,z故设出其中一个,例如设x=1(不能为0),从而求出y,z的值,即可得到平面的一个法向量,因为平面的法向量有无数个,且模可以任意,故可以这样假设善士六合2023-05-25 07:25:091
如何用空间向量求平面的法向量?
在空间求平面的法向量的方法: (1)直接法:找一条与平面垂直的直线,求该直线的方向向量. (2)待定系数法:建立空间直角坐标系, ①设平面的法向量为 n=(x,y,z) ②在平面内找两个不共线的向量a 和 b, ③建立方程组:n点乘a=0 n点乘b=0 ④解方程组,取其中的一组解即可.u投在线2023-05-25 07:25:091
平面的法向量和直线的方向向量可以是零向量吗
法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量.由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但是这些法向量之间相互平行.从理论上说,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息.一般不选择零向量为平面的法向量.把直线上的向量以及与之共线的向量叫做直线的方向向量wpBeta2023-05-25 07:25:091
空间解析几何中,xoy平面的法向量是多少啊
(0,0,1)是平面XOY的一个法向量,但一个平面的法向量有无数个,而且法向量的模不一定就是1的,所以只要你找一个在平面XOY的向量,再根据法向量的定义(法向量垂直于平面XOY内的那个向量)来列式,你就可以得到了!还有不明白的可以问我!bikbok2023-05-25 07:25:091
空间平面的法向量怎么求
设法向量n=(x,y,z),与平面内两条相交的直线分别相乘等于0,联立方程就可以得到法向量n真颛2023-05-25 07:25:093
平面的法向量怎么求
建立恰当的直角坐标系;设平面法向量n=(x,y,z);在平面内找出两个不共线的向量,记为a=(a1,a2, a3),b=(b1,b2,b3);根据法向量的定义建立方程组n·a=0与n·b=0;解方程组,取其中一组解即可。 平面法向量的具体步骤(待定系数法) 1、建立恰当的直角坐标系 2、设平面法向量n=(x,y,z) 3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3) 4、根据法向量的定义建立方程组①n·a=0②n·b=0 5、解方程组,取其中一组解即可。FinCloud2023-05-25 07:25:081
平面的法向量怎么求
方法如下: 1、建立恰当的直角坐标系; 2、设平面法向量n; 3、在平面内找出两个不共线的向量a、b; 4、根据法向量的定义建立方程组,法向量n和向量a、b的乘积都为0; 5、解方程组,取其中一组解即可。 法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量。拌三丝2023-05-25 07:25:081
已知平面的方程,怎么求平面的法向量?
这个你可以在数学书上可以找得到水元素sl2023-05-25 07:25:083
空间平面的法向量怎么求
空间平面的法向量的求法如下:建立恰当的直角坐标系。设平面法向量n=(x,y,z)。在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3)。根据法向量的定义建立方程组:n·a=0 n·b=0、解方程组,取其中一组解即可。 扩展资料:平面的法向量(normal vector of a plane)确定平面位置的重要向量,指与平面垂直的非零向量,一个平面的法向量可有无限多个,但单位法向量有且仅有两个。例如在空间直角坐标系中平面Ax+By+Cz+D=0的法向量为n=(A,B,C),而它的单位法向量即法向量除以法向量的长度,正负代表方向。对于像三角形这样的多边形来说,多边形两条相互不平行的边的叉积就是多边形的法线。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。如果曲面在某点没有切平面,那么在该点就没有法线。例如,圆锥的顶点以及底面的边线处都没有法线,但是圆锥的法线是几乎处处存在的。通常一个满足Lipschitz连续的曲面可以认为法线几乎处处存在。待定系数法的一般用法:设某一多项式的全部或部分系数为未知数,利用两个多项式恒等式同类项系数相等的原理或其他已知条件确定这些系数,从而得到待求的值。例如,将已知多项式分解因式,可以设某些因式的系数为未知数,利用恒等的条件,求出这些未知数。苏州马小云2023-05-25 07:25:081
如何计算平面的法向量
其实一个平面有无数法向量,这些法向量都平行。任意一个平面:ax+by+cz+d=0,取一组数x0,y0,z0满足该方程,则:ax0+by0+cz0+d=0,两式相减得:a(x-x0)+b(y-y0)+c(z-z0)=0,这就是平面的点法式方程表示过点(x0,y0,z0),以n=(a,b,c)为法线的平面。ax+by+cz+d=0就是平面的一般方程记住:方程中x,y、z的系数就是该平面的一个法向量如果答案对您有帮助,真诚希望您的采纳和好评哦!!祝:学习进步哦!!*^_^* *^_^*Chen2023-05-25 07:25:082
平面的法向量怎么求
1、建立恰当的直角坐标系。2、设平面法向量n=(x,y,z)。3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)。4、根据法向量的定义建立方程组①n·a=0②n·b=0。5、解方程组,取其中一组解即可。 法向量是什么意思 法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但是这些法向量之间相互平行。从理论上述,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。大鱼炖火锅2023-05-25 07:25:081
怎样确定平面的法向量?
方法一(平面束)首先设已知的两平面交线为L,过L的平面束方程为(4x-y+3z-1)+k(x+5y-z+2)=0,然后因为过原点,将坐标(x,y,z)=(0,0,0,)代入平面束方程,求得k=1/2,再代回平面束方程得到一个确定平面9x+3y+5z=0即为所求平面. 方法二(交线与原点的关系)首先设已知的两平面交线为L,L的方向向量由两已知平面的法向量求向量积,即由(4,-1,3)与(1,5,-1)求向量积得向量a(-2,1,3).再由两已知平面的方程联立为三元一次方程组(两个方程,三个未知量),从中取y为任一数,譬如取y=0,代入方程组解出x=-5/7,z=9/7,这是直线上的一个点的坐标.将点(0,0,0)和直线上点(-5/7,0,9/7)联成向量b(-5/7,0,9/7).再由向量a、b求向量积c,c即为所求平面的法向量,原点坐标已知,根据点法式即可求得平面方程.左迁2023-05-25 07:25:081
如果知道平面的方程,怎么求平面的法向量?
方法一:①设3点A,B,C,计算向量AB和AC。②那么法向量n = AB × AC 注意这里用向量积③得到n(ni,nj,nk)后,设方程为,ni * X + nj * Y + nk * Z = K。随便代入一个点的坐标得出K值后就可以得到平面方程。方法二:把方程设为x+ay+cz+d = 0,那么就是3个未知数了,代入3个点,解这个方程就可以。扩展资料:一、截距式设平面方程为Ax+By+Cz+D=0,若D不等于0,取a=-D/A,b=-D/B,c=-D/C,则得平面的截距式方程:x/a+y/b+z/c=1它与三坐标轴的交点分别为P(a,0,0),Q(0,b,0),R(0,0,c),其中,a,b,c依次称为该平面在x,y,z轴上的截距。二、点法式n为平面的法向量,n=(A,B,C),M,M"为平面上任意两点,则有n·MM"=0, MM"=(x-x0,y-y0,z-z0),从而得平面的点法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0 参考资料:平面方程_百度百科Ntou1232023-05-25 07:25:081
已知平面的方程怎么求平面的法向量
你好!如果平面的方程是Ax+By+Cz+D=0,则平面的法向量为(A,B,C)。经济数学团队帮你解答,请及时采纳。谢谢!水元素sl2023-05-25 07:25:084
空间平面的法向量怎么求
直接法:找一条与平面垂直的直线,求该直线的方向向量。待定系数法:建立空间直角坐标系。设平面的法向量为n=(x,y,z)。在平面内找两个不共线的向量a和b。建立方程组:n点乘a=0,n点乘b=0。解方程组,取其中的一组解即可。法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。<br>法线是与多边形的曲面垂直的理论线,一个平面存在无限个法向量。在电脑图学的领域里,法线决定着曲面与光源的浓淡处理,对于每个点光源位置,其亮度取决于曲面法线的方向。左迁2023-05-25 07:25:082
平面的法向量是什么啊?出道题解解
垂直于平面的方向向量,有正负,如果平面的方程式3x+y+7z-5=0,则平面的法向量是(3,1,7)此后故乡只2023-05-25 07:25:081
空间向量中,如何求平面的法向量 如题
已知一个平面的两个法向量a=(x1,y1,z1),b=(x2,y2,z2) 其中x1,x2,y1,y2,z1,z2均为已知 设平面法向量为n=(x,y,z) n为平面的法向量则 n*a=0 x*x1+y*y1+z*z1=0 n*b=0 x*x2+y*y2+z*z2=0 两个方程,三个未知数x,y,z 故设出其中一个,例如设x=1(不能为0),从而求出y,z的值,即可得到平面的一个法向量,因为平面的法向量有无数个,且模可以任意,故可以这样假设hi投2023-05-25 07:25:081
高数,求平面的法向量
根据三个点随意整出两个向量,然后求这两个向量向量积,求出来的向量就是平面法向量真颛2023-05-25 07:25:072
高中数学中平面的法向量是怎么求的?
写出与这个平面平行的两个向量坐标,如(1,2,3),(4,5,6).不共线的.然后设法向量为(x,y,z),分别与前面两个向量相乘使其为零,即x+2y+3z=0,4x+5y+6z=0.任意设一个如设X=1,解方程即可求出Y与Z,设事可根据具体题目设的简单些.真颛2023-05-25 07:25:071
平面的法向量怎么求
xoy面的夹角余弦为1/3;与yoz面的夹角余弦为2/3;与zox面的夹角余弦为2/3。解题思路:求平面与平面夹角余弦值即求两个平面对应法向量夹角的余弦绝对值即可。计算过程:已知条件有:平面方程为2x-2y+z+5=0;xoy面的法向量为(0,0,1);xoz面的法向量为(0,1,0);yoz面的法向量为(1,0,0)。向量点积公式:a·b=|a||b|·cosθ。则有:平面的法向量为(2,-2,1)与xoy面的夹角余弦为(0+0+1)/{√(2²+2²+1²)·1}=1/3;与yoz面的夹角余弦为|0-2+0|/3=2/3;与zox面的夹角余弦为|2-0+0|/3=2/3。扩展资料:法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。用方程ax+by+cz=d表示的平面,向量(a,b,c)就是其法线。参考资料:百度百科_法向量 百度百科_向量积Ntou1232023-05-25 07:25:071
如何求平面的法向量?
过该点,作直线垂直该平面。假设交点为(x0,y0,z0),该点就是投影以为该点在平面内,所以满足平面方程,同时,该垂线垂直平面,所以,该直线的方向向量就是平面的法向量,所以,(x1-x0)/a=(y1-y0)/b=(z1-z0)/c(x1,y1,z1)为已知点,(a,b,c)为平面法向量。利用上面的关系,即可求得(x0,y0,z0)u投在线2023-05-25 07:25:071
怎么求平面的法向量?
垂直于平面的方向向量,有正负,如果平面的方程式3x+y+7z-5=0,则平面的法向量是(3,1,7)ardim2023-05-25 07:25:072
平面的法向量怎么求?
如图所示:根据平面的点法式方程得出设一平面通过已知点M0(x1,y1,z1)且垂直于非零向量n=(A,B,C),则有:A(x-x1)+B(y-y1)+C(z-z1)=0上式称为平面的点法式方程由x+y+z=0可知,该平面通过原点(因为D=0),当D=0时,Ax+By+Cz=0的平面过原点将原点代入平面的点法式方程得Ax+By+Cz=0即A=1,B=1,C=1法向量n=(1,1,1)扩展资料法向量的主要应用如下:1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余.利用这个原理也可以证明线面平行;2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补;3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。利用这个原理也可以求异面直线的距离。hi投2023-05-25 07:25:061
在数学中,“平面的法向量”要怎么求?
平面法向量的具体步骤:(待定系数法)1、建立恰当的直角坐标系2、设平面法向量n=(x,y,z)3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3)4、根据法向量的定义建立方程组①n·a=0 ②n·b=05、解方程组,取其中一组解即可。韦斯特兰2023-05-25 07:25:062
已知平面的方程怎么求平面的法向量
你好!如果平面的方程是Ax+By+Cz+D=0,则平面的法向量为(A,B,C)。经济数学团队帮你解答,请及时采纳。谢谢!kikcik2023-05-25 07:25:063
如何求平面的法向量
99、迢迢牵牛星tt白2023-05-25 07:25:065
如何求平面的法向量?
设法向量为( X Y Z) ,找平面内的任意两条直线(但不平行),线段也行,并写出他们的向量 P1 P2. 法向量与P1 P2的乘积为0,得到 X Y Z的三元一次方程(2个).将其中任意一个未知数当成已知,例如Z,则可以用Z将X 和Y表示出来.这时这个法向量只有Z的未知数,此时可以根据情况设Z的值,这个是自己随便设,怎么方便怎么设,没有其他的意义. 当然最好是设出来的值,最后写出法向量是最简的,换句话就是他们几个数之间没有公因数了.NerveM 2023-05-25 07:25:061
空间平面的法向量怎么求
(1)直接法:找一条与平面垂直的直线,求该直线的方向向量。(2)待定系数法:建立空间直角坐标系。①设平面的法向量为n=(x,y,z)。②在平面内找两个不共线的向量a和b。③建立方程组:n点乘a=0,n点乘b=0。④解方程组,取其中的一组解即可。 法向量简介 法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。 法线是与多边形的曲面垂直的理论线,一个平面存在无限个法向量。在电脑图学的领域里,法线决定着曲面与光源的浓淡处理,对于每个点光源位置,其亮度取决于曲面法线的方向。ardim2023-05-25 07:25:061
空间向量中,如何求平面的法向量 如题
已知一个平面的两个法向量a=(x1,y1,z1),b=(x2,y2,z2) 其中x1,x2,y1,y2,z1,z2均为已知 设平面法向量为n=(x,y,z) n为平面的法向量则 n*a=0 x*x1+y*y1+z*z1=0 n*b=0 x*x2+y*y2+z*z2=0 两个方程,三个未知数x,y,z 故设出其中一个,例如设x=1(不能为0),从而求出y,z的值,即可得到平面的一个法向量,因为平面的法向量有无数个,且模可以任意,故可以这样假设豆豆staR2023-05-25 07:25:061
如何求平面的法向量?
如图所示:根据平面的点法式方程得出设一平面通过已知点M0(x1,y1,z1)且垂直于非零向量n=(A,B,C),则有:A(x-x1)+B(y-y1)+C(z-z1)=0上式称为平面的点法式方程由x+y+z=0可知,该平面通过原点(因为D=0),当D=0时,Ax+By+Cz=0的平面过原点将原点代入平面的点法式方程得Ax+By+Cz=0即A=1,B=1,C=1法向量n=(1,1,1)扩展资料法向量的主要应用如下:1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余.利用这个原理也可以证明线面平行;2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补;3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。利用这个原理也可以求异面直线的距离。此后故乡只2023-05-25 07:25:061
高数,求平面的法向量
最低0.27元/天开通百度文库会员,可在文库查看完整内容>原发布者:单翠萍3.2.2平面的法向量与平面的向量表示r已知平面α,如r果向量n的基线与平面α垂直,则r向量叫n做平面α的法向量或说向量与n平面α正交。由平面法向量的定义可知,平面α的一个法向量垂直于与平面共面的所有向量。由于同时垂直于同一平面的两条直线平行,可以推知,一个平面的所有法向量互相平行。由平面法向量的性质,很容易通过向量运算证明直线与平面垂直的判定定理。直线与平面垂直的判定定理如果一条直线和平面的两条相交直线垂直,那么这条直线垂直于这个平面。已知:a、b是平面α内的两条相交直线,且直线n⊥a,n⊥b,nl求证:n⊥α.cbannbmmbaa证明:设m是平面α内任意一条直线,在n,a,b,rrrurm上分别取非零向量n,a,b,m,因为a与b相交,由共面向量定理可知,存在urrr惟一的数对(x,y),使mxayb,rurrrrrnmxnaynb,由已知rrrrrurna0,nb0,所以nm0,即n⊥m.因为直线n垂直于平面α内的任一直线,所以直线n垂直于平面α.现在我们来研究问题:r设A是空间任一点,n为空间任一非零向量,uuuurr问适合条件AMn0①的点M的集合构成什么样的图形?容易看出,如果任取两点M1,M2(M1,M2和Auuuurruuuuurr三点不共线),且AM1n0,AM2n0,rn则n⊥西柚不是西游2023-05-25 07:25:062
平面的法向量是何概念?它与该平面垂直吗?平面方程有几种?
1、垂直于平面的直线所表示的向量为平面的法向量。空间内有无数个直线垂直于已知平面,因此一个平面存在无数个法向量,这些法向量之间相互平行。2、平面的法向量与该平面垂直3、平面的方程有一般方程Ax+By+Cz+D=0三点式方程(行列式表示)和截距式方程x/a+y/b+z/c=1,还有参数方程阿啵呲嘚2023-05-25 07:25:062
平面的法向量怎么求
平面的法向量通过这个平面中不同的两个向量的叉乘求得。假设向量a和向量b是平面内的两个向量,那么平面法向量n=a×b凡尘2023-05-25 07:25:062
空间解析几何中,xoy平面的法向量是多少啊
参数方程x=x0y=y0z=z0+t北有云溪2023-05-25 07:25:064
平面的法向量是什么?
是一个平面。法向量是(1,1,1),用点法式方程表示就是1*(x-0)+1*(y-0)+1*(z-0)=0,所以是一个通过原点的平面。水平的平面可以画成一个平行四边形;当平面水平放置时,把平行四边形的锐角画成45°,钝角画成135°,横边画成邻边的2倍长;看不见的线段画成虚线或不画。扩展资料:三角形切割平面是指用三角形将平面划分成多个部分。n个三角形最多将平面分割成3n(n-1)+2个部分,最少将平面分割成2n个部分。如果一条直线上的两点在一个平面内,那么这条直线在此平面内。过不在一条直线上的三点,有且只有一个平面。如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。北有云溪2023-05-25 07:25:051
平面的法向量是什么?
平面的法向量(normal vector of a plane)确定平面位置的重要向量.指与平面垂直的非零向量。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。陶小凡2023-05-25 07:25:051
怎样求平面的法向量
高中数学的那个设法向量p设错了 不是a苏萦2023-05-25 07:25:054
平面的法向量怎么求
展开全部平面法向量的具体步骤:(待定系数法)1、建立恰当的直角坐标系2、设平面法向量n=(x,y,z)3、在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)4、根据法向量的定义建立方程组①n·a=0②n·b=05、解方程组,取其中一组解即可。康康map2023-05-25 07:25:052
请问平面的法向量怎么求?谢谢
以三维空间举例。设某平面内有两个不平行的向量A=(1,0,-1)和B=(0,1,2),C(x,y,z)是A、B所在平面的一个法向量,则C*A=0,C*B=0。即:x-z=0,y+2z=0令z=1,则x=1,y=-2.于是(1,-2,1)是A、B所在平面的一个法向量。大鱼炖火锅2023-05-25 07:25:053
平面的法向量
平面的法向量(normal vector of a plane)确定平面位置的重要向量.指与平面垂直的非零向量.一个平面的法向量可有无限多个,但单位法向量有且仅有两个.例如在空间直角坐标系中平面AX+By+CZ+D=0的法向量为n=(A.B.C),而它的单位法向量即法向量除以法向量的长度,正负代表方向。平面向量去区分于空间问量的一个概念。而平面向星的分内中包括零向量、非零向量(又包括单位向量等)。求法是在平面内找两个不共线的向量;待求的法向量与这两个向量各做数量积为零就可以确定出法向量了。法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向星为该平面的法向星。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。北有云溪2023-05-25 07:25:051
如何求点到一个平面的距离(已知这个平面的法向量
d=| ( n*PA) / n | (n为法向量,P为该点,A为平面内任意一点)n*PA是向量的点乘可桃可挑2023-05-25 07:24:491