无限级数

数列nAn收敛,无穷级数∑n(An-An-1)收敛,证无限级数∑An也收敛

级数(n+1)(u[n+1]-u[n])收敛,那么前n项和(部分和)Sn" = 2(u[2]-u[1]) +3(u[3]-u[2])+。。。+(n+1)(u[n+1]-u[n]) = -2u[1]-u[2]-u[3]-。。。-u[n]+(n+1)u[n+1] = -u[1] -Sn + (n+1)u[n+1] 那么当zhin→∞时, S" = -u[1] - S + 0 其中0为nu[n]的极限。 故un收敛。按一定次序排列的一列数称为数列,而将数列{an} 的第n项用一个具体式子(含有参数n)表示出来,称作该数列的通项公式。这正如函数的解析式一样,通过代入具体的n值便可求知相应an 项的值。而数列通项公式的求法,通常是由其递推公式经过若干变换得到。扩展资料等差数列的其他推论:① 和=(首项+末项)×项数÷2;②项数=(末项-首项)÷公差+1;③首项=2x和÷项数-末项或末项-公差×(项数-1);④末项=2x和÷项数-首项;⑤末项=首项+(项数-1)×公差;⑥2(前2n项和-前n项和)=前n项和+前3n项和-前2n项和。
左迁2023-05-25 18:52:013

高数 微积分 定积分 椭圆 周长 泰勒公式 无限级数

,你试试:先对 f 的积分上限函数F(x) = ∫[0,x]f(t)dt = sqr(1+x^2)-1展开成Miclaurin级数,再求导
陶小凡2023-05-25 18:52:001

数列nAn收敛,无穷级数∑n(An-An-1)收敛,证无限级数∑An也收敛

简单计算一下即可,答案如图所示
小菜G的建站之路2023-05-25 18:51:592

数列nAn收敛,无穷级数∑(An-An-1)收敛,证无限级数∑An收敛。速度求思路~

没有具体一般向表达式,只能从收敛定义出发。 应用柯西审敛原理。用E-N 语言,就可以判定级数收敛。无穷级数∑(An-An-1)收敛,用柯西E-N 语言表达,而后通过放缩法,可以得到E/2,这样就可以判定∑An收敛。
Jm-R2023-05-25 18:51:592