欧几里得

欧几里得距离的三角不等式怎么证啊.我说的是n维空间里

具体你得说明是什么空间啊!我们通常的N维欧几里得空间的话,每个元素可赋予坐标,即一个N元组,它的柯西不等式跟我们平时见的没啥不同呀,另外它的证明可以使用内积不等式更快证明出来,等号成立当且仅当你构造的两个向量方向相同,即对应分量。
苏州马小云2023-07-23 18:51:401

欧几里得空间距离三角不等式证明

跟着他一起上来进行接种的时候,所以就应该说送话费吗?
拌三丝2023-05-24 22:50:232

欧几里得几何适用于整个宇宙空间。()

欧几里得几何适用于整个宇宙空间。() A.正确 B.错误 正确答案:B
苏萦2023-05-24 22:50:231

欧几里得距离的三角不等式怎么证啊. 我说的是n维空间里。

根据欧式空间的性质以及(Cauchy—Schwarz不等式),有 |α+ β|=√(α+β,α+β)=√(|α|²+2(α,β)+|β|²)
Chen2023-05-24 22:50:221

欧几里得空间与伪欧空间的区别?

四维空间中要用伪殴几米,由于把时间加了上去,时间与空间所对的符号是相反的,若只是空间则用欧几里得。欧几里得空间斜边的平方等于直角边的平方和,但是伪欧几里得空间是斜边的平方等于直角变得平方差,因而在解释双生子佯谬时会考虑伪欧几里得空间
人类地板流精华2023-05-24 22:50:211

欧几里得空间中 内积运算怎么算 就是 (a,b)c 怎么算 还有 ((a,b),(c,d))怎么算

首先你得理解基的作用。一般的向量是比较抽象和绝对的概念,引入了基之后向量就可以用相对于这组基的坐标来表示,这样就把抽象的向量转化到具体的坐标(也就是一组数)。在有了基之后抽象的线性变换也就可以用具体的矩阵来描述了。这里的道理是一样的,用Gram矩阵可以把抽象的内积转化到一组具体的数。比如说e_1,e_2,...,e_n是V的一组基,若向量a和b在这组基下的向量分别是x和y,记E=(e_1,e_2,...,e_n),那么形式上就有a=Ex,b=Ey,而它们的内积恰好就是<a,b>=(Ey)^H*(Ex)=y^H*G*x这里G=E^H*E就是Gram矩阵,跳过中间的形式推导,内积运算就转化到了矩阵乘法。当然,形式推导也可以严格化,一种方式是直接按分量来写,另一种方式是对向量直接定义诸如转置共轭和乘法运算。
陶小凡2023-05-24 22:50:211

什么是标准欧几里得距离

在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。欧几里得度量(euclidean metric)(也称欧氏距离)是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。扩展资料:欧氏距离变换所谓欧氏距离变换,是指对于一张二值图像(在此我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。欧几里得度量是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度(即该点到原点的距离)。在二维和三维空间中的欧氏距离就是两点之间的实际距离。参考资料来源:百度百科-欧几里得度量
u投在线2023-05-24 22:50:211

非欧几里得空间

非欧几里得空间如下:一、基础解释欧几里得几何是在约公元前300年,由古希腊数学家欧几里得建立的角和空间中距离之间联系的法则。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理被编排到几何原本。这些数学空间可以被扩展来应用于任何有限维度,而这种空间叫做 n维欧几里得空间(甚至简称  维空间)或有限维实内积空间。二、详细解释这些数学空间还可被扩展到任意维的情形,称为实内积空间(不一定完备),希尔伯特空间在高等代数教科书中也被称为欧几里得空间。为了开发更高维的欧几里得空间,空间的性质必须非常仔细的表达并被扩展到任意维度。尽管结果的数学非常抽象,它却捕获了我们熟悉的欧几里得空间的根本本质,根本性质是它的平面性。另存在其他种类的空间,例如球面非欧几里得空间,相对论所描述的四维时空在重力出现的时候也不是欧几里得空间。三、直觉概述有一种方法论把欧几里得平面看作满足可依据距离和角表达的特定联系的点所成的集合。其一是平移,它意味着移动这个平面就使得所有点都以相同方向移动相同距离。其二是关于在这个平面中固定点的旋转,其中在平面上的所有点关于这个固定点旋转相同的角度。欧几里得几何的一个基本原则是,如果通过一序列的平移和旋转可以把一个图形变换成另一个图形,平面的两个图形(也就是子集)应被认为是等价的(全等)。
九万里风9 2023-05-24 22:50:211

为什么欧几里得距离在高维空间没有意义?

请参考链接:知乎:网页链接网页链接国外网站:网页链接
Chen2023-05-24 22:50:212

欧几里得空间内积怎么计算?比如α=(α1,α2,……,αn)β=(β1,β2,……,βn) 那么(

对应坐标乘积之和。(α,β)=α1β1+α2β2+......+αnβn
阿啵呲嘚2023-05-24 22:50:211

欧几里得空间内积怎么算

这个经过查询可以知道,这个应该这样计算,首先你得理解基的作用。一般的向量是比较抽象和绝对的概念,引入了基之后向量就可以用相对于这组基的坐标来表示,这样就把抽象的向量转化到具体的坐标(也就是一组数)。在有了基之后抽象的线性变换 也就可以用具体的矩阵来描述了。这里的道理是一样的,用Gram矩阵可以把抽象的内积 转化到一组具体的数。比如说e_1,e_2,...,e_n是V的一组基,若向量a和b在这组基下的向量分别是x和y,记E=(e_1,e_2,...,e_n),那么形式上就有a=Ex,b=Ey,而它们的内积恰好就是<a,b>=(Ey)^H*(Ex)=y^H*G*x这里G=E^H*E就是Gram矩阵,跳过中间的形式推导,内积运算就转化到了矩阵乘法当然,形式推导也可以严格化,一种方式是直接按分量来写,另一种方式是对向量直接定义诸如转置共轭和乘法运算。
小菜G的建站之路2023-05-24 22:50:211

到底什么是欧几里得空间?讲得通俗易懂一点,不要在网上复制粘贴谢谢!

可以啊
陶小凡2023-05-24 22:50:202

线代--空间的定义,欧几里得空间和向量空间

什么是空间,空间的本质是一个集合,集合里面包含元素。这个空间的含义与我们生活中描述的空间含义是一致的,如我们说"宇宙空间"就是因为宇宙是一个大的集合,里面包括有恒星,行星等等。 线性代数中接触的有如二维空间,三维空间, 维空间等空间的本质也是一个集合,我们管这种空间叫做 。在基础的几何学里,就是在欧几里得空间处理诸如 点,线,面 这样的几何元素之间的关系。 从有序实数元组集合来看,欧几里得空间可以理解为一个点集,每个点的实质就是一个有序的实数元组。 从向量视角来看,欧几里得空间就是一个起点为原点的向量集合; 在欧几里得空间,一个点其实可以看成一个向量。 在线性代数领域,我们不讨论其它空间(如宇宙空间,一个房子所形成的空间),而是研究一种特殊的空间,就是欧几里得空间(有序实数元组集合 ),更进一步欧几里得空间不仅仅是一个 空间 (空间作为一个集合,它可能是杂乱无章的,也可以是有序的,这不方便进行研究),同时还是一个 向量空间 (一种具有特殊性质的空间)。 向量空间: 空间中的元素是“向量”。其中“向量”这个名词的定义是很广泛的,不仅仅指之前学习的“起点在原点,并且有方向”这种概念的向量(这种向量是定义在欧几里得空间里的描述)。 “向量”的具体定义,或者说一个元素具体满足哪些性质可以称之为“向量”?数学家给出的定义是对于向量来说必须定义两种运算:①加法运算 ,②数量乘法 。 是向量空间,在欧几里得空间的这些向量(元素)是有序实数元组,对这些向量定义的加法和数量乘法两种基础运算也都满足“向量的十条性质”。 在这个世界上 向量空间 不仅仅只有欧几里得空间,而是存在有无数的向量空间,不同的向量空间对应的元素是不一样的,其中零向量是谁,负的向量是谁,包括向量的加法,数量乘法的定义都有可能不一样。 对于我们接触到的很多具体的实际问题的处理上近乎都是在欧几里得空间中进行处理的。
拌三丝2023-05-24 22:50:201

四维空间(标准欧几里得空间)详细资料大全

四维空间不同于三维空间,四维空间指的是标准欧几里得空间,可以拓展到n维;四维时空指的是闵可夫斯基空间概念的一种误解。人类作为三维物体可以理解四维时空(三个空间维度和一个时间维度)但无法认识以及存在于四维空间,因为人类属于第三个空间维度生物。通常所说时间是第四维即四维时空下的时间维度。四维空间的第四维指与x,y,z同一性质的空间维度。然而四维时空并不是标准欧几里得空间,时间的本质是描述运动的快慢。 通过一维、二维、三维空间的演变,人们提出了关于四维空间的一些猜想。尽管这些猜想现在并不能证明是正确的,但科学理论有很多是由猜想开始的。现今科学理论一般是基于现象总结规律,而关于四维空间的现象没有足够准确清晰的认识,或者看到了这种现象却并没有想到是四维空间引起的。 可以定义可以度量的都可以有维度。比如时间、温度。点、线、面、时间、温度,构成五维空间也能说的通。 当然也可以定义点线面的拓扑空间为第四维、第五维、第六维以至第N维。这在数学公式推理推导中很容易实现,但现实很难对应和想像。 基本介绍 中文名 :四维空间 外文名 :four-dimensional space 别称 :四度空间 表达式 :ax+by+cz+du+e=0 套用学科 :数学,物理学 适用领域范围 :量子、宇宙学 定义,概念,四维研究,发展历程,研究,轴对称性, 定义 在物理学中描述物质变化时所需的参数,这个参数就叫做维。几个参数就是几个维。比如描述“门”的位置就只需要角度,所以是一维的而不是二维。 简单地说:零维是点,没有长度、宽度及高度。一维是由无数的点组成的一条线,只有长度,没有其中的宽度、高度。二维是由无数的线组成的面,有长度、宽度没有高度。三维是由无数的面组成的体,有长度、宽度、高度。 因为人的眼睛只能看到二维,二维生物看对方只有一条线。人的双眼看到的是两个二维投影,经过大脑处理形成一个整体的视觉。 一个简单的说法:N维就是两个以上的N-1维物体垂直所形成的空间。 1维的线,由1-1=0维的点均分;2维的面,由2-1=1维的线相互垂直均分;3维的空间,由3-1-2维的平面相互垂直均分。 因为,人类只能理解3维,所以后面的维度可以通过数学理论构建,但要仔细理解就很难。在量子力学,仍在建立的弦理论,认为世界是11维的。(十维空间+一维时间) 首先,错误的说法是把”四维空间定义为三维空间+时间轴”,而”三维空间+时间维”是另一种说法。前者也并非是什么四维时空,而且本身四维时空是个伪概念。很简单“时间只是因为粒子运动、宇宙膨胀而出现的概念,为什么它就能成为第四维” 另外,时空和四维空间的概念是有区别的 将四维空间定义为三维空间+时间轴的说法是对于闵可夫斯基空间( Minkowski space)这个概念的误解,而为什么这个误解这么广泛呢?很简单,无数科幻小说甚至于科普读物刻意去硬生生地套用了这么一个东西,造成广泛的读者影响。其中这个里面涉及到了一组四维矢量场,也就是: 四维矢量依据它们(闵可夫斯基)内积的正负号来区分。可分类如下: 是 类时 ( timelike ), 是 类空 ( spacelike ), 是 零 ( null )或称 类光 ( lightlike ), 然而, 关于零矢量一个有用的结果:“若两个零矢量、正交(即:零内积值),则它们必定是呈比例关系(为常数)。” 以上的零基底部的时间方向选定,以及类时向量的概念,让很多人误以为“空间和时间组成了另一个空间”,而实际上上面只是描述了时间和空间的协同作用罢了。这便是前面那个说法的来源。 而实际上时间维是一种替代说法,并不是说第四个维度是时间,和前面那种说法并非一回事,第四维在主流的说法中具有连续性,著名的数学模型克莱因瓶,第四维穿过三维这个本质多面体,但四维空间的本质还是空间。而为什么这一维会定义为时间维度呢,是因为某一派观点认为广延的“时间”具有空间性,故而出现的一种替代说法,你要将它叫什么其实都可以,它是一个统一,确定的定义概念下产生的依据不同学派自主概念的命名法。 有些同学有点纠结于“时空”这个说法,我先说,没有四维时空这种说法还有另一个理由,也就是时空在近代物理学中的概念本来就是四维的,所以不会冒出五维时空,也不存在时空前面特别说明为四维。近代物理学某一派认为,时间空间相互且可变,且其变数互相存于其中,而他们在特定条件下所对应的这一个广域叫做时空(最早的人确实将时空等同于空间加时间轴,现在更多在避开这种本初定义),时空可能受到物质和能量的影响发生扭曲或者凹陷,且其最小单位是普朗克时间和普朗克长度。这是这个概念的由来,但是很多人把时空和四维空间混用,这两者有相关性,但不能混用。 从广义上讲:维度是事物“有联系”的抽象概念的数量,“有联系”的抽象概念指的是由两个抽象概念联系而成的抽象概念,如面积。所以四维就是四个有联系的抽象概念组成的,第四个抽象概念是 实时间, 第四联系值为速度。 高维度时空和高维度空间是不同的。举例来说,在三维空间中只有一个时间维度,但它是一个伪维度,即它的单位和其他三个维度不同。四维空间的第四维仍然和三维空间的维度具有相同性质,时间仍是伪维度。因此,不可把时空和空间混为一谈。 概念 从广义上讲:维度是事物“有联系”的抽象概念的数量,“有联系”的抽象概念指的是由两个抽象概念联系而成的抽象概念,如面积。[1]所以四维就是四个有联系的抽象概念组成的,第四个抽象概念是实时间,第四联系值为速度。 四维研究 摘要 几何不一定是真实现象的描述,几何空间和自然空间并不能完全等同看待,纯概念的研究几何的发展是数学界的一个里程碑。从零维空间到三维空间,尤其是从三维空间到四维空间的发展更是几何学的的一次革命。 关键字 零维;一维;二维;三维;四维;n维;几何元素;点;直线;平面。 发展历程 n维空间概念,在18世纪随着分析力学的发展而有所前进。在达朗贝尔.欧拉和拉格朗日的著作中无关紧要的出现第四维的概念,达朗贝尔在《百科全书》关于维数的条目中提议把时间想像为第四维。在19世纪高于三维的几何学还是被拒绝的。麦比乌斯(karl august mobius 1790-1868)在其《重心的计算》中指出,在三维空间中两个互为镜像的图形是不能重叠的,而在四维空间中却能叠合起来。但后来他又说:这样的四维空间难于想像,所以叠合是不可能的。这种情况的出现是由于人们把几何空间与自然空间完全等同看待的结果。以至直到1860年,库摩尔(ernst eduard kummer 1810-1893)还嘲笑四维几何学。但是,随着数学家逐渐引进一些没有或很少有直接物理意义的概念,例如虚数,数学家们才学会了摆脱“数学是真实现象的描述”的观念,逐渐走上纯观念的研究方式。虚数曾经是很令人费解的,因为它在自然界中没有实在性。把虚数作为直线上的一个定向距离,把复数当作平面上的一个点或向量,这种解释为后来的四元数,非欧几里得几何学,几何学中的复元素,n维几何学以及各种稀奇古怪的函式,超限数等的引进开了先河,摆脱直接为物理学服务这一观念迎来了n维几何学。 1844年格拉斯曼在四元数的启发下,作了更大的推广,发表《线性扩张》,1862年又将其修订为《扩张论》。他第一次涉及一般的n维几何的概念,他在1848年的一篇文章中说: 我的扩张的演算建立了空间理论的抽象基础,即它脱离了一切空间的直观,成为一个纯粹的数学的科学,只是在对(物理)空间作特殊套用时才构成几何学。 然而扩张演算中的定理并不单单是把几何结果翻译成抽象的语言,它们有非常一般的重要性,因为普通几何受(物理)空间的限制。格拉斯曼强调,几何学可以物理套用发展纯智力的研究。几何学从此开始割断了与物理学的联系而独自向前发展。 经过众多的学者的研究,遂于1850年以后,n维几何学逐渐被数学界接受。 研究 四维空间的概念也可以通过解析几何的手段来研究。在那里我们可以利用代数方程来表示几何概念。为了利用这个手段进行观察以导致对四维空间的理解,我们来研究三维空间体系中的三个几何元素——点、直线和平面的方程。利用笛卡尔系统表示,我们可以写出: 点的方程:ax + b = 0 (坐标系:直线上的一个点)。 直线的方程:ax + by + c = 0 (坐标系:平面上的两条正交直线)。 平面的方程:ax + by + cz + d = 0 (坐标系:三维空间的三个互相垂直的平面)。 从上面的研究我们可以看出: 所表示的每一个几何元素(或空间)的方程中的变数数目,等于这个空间的维数加1。 坐标系中的几何元素与被表示的几何空间的几何元素的维数相同。 在这个坐标系中,几何元素的数目等于被表示的空间的维数加1。在坐标系中,几何元素的这个数目是最低要求。 用来表示几何元素的坐标系,位于比它所含有的几何元素高一维的空间里。 根据上述观察,我们可以写出三维空间的下述方程。应当注意:这个方程有四个变数(x、y、z、u)。 ax + by + cz + du + e = 0 根据这公式我们可以断定: 1. 这个坐标系的几何元素有三维,即它们是三维空间。 2. 在这个坐标系中有四个三维空间。 3. 这个坐标系位于一个四维空间里。 我们对于四维空间乃至更高空间的研究,不是通过实验总结的方式,在现实中我们很难发现并推导出它们的一般规律,对于这些问题,我们可以采取一种新的研究方式。即:纯概念的研究。通过这种方式,我们可以容易的推导出这些很重要但在现实中不易想像的新内容。 如果一个三维空间的东西,当他的密度为负值时,是否会变成四维空间的事物呢? 轴对称性 对于四维空间,人们普遍认为空间有轴对称性,或是中心对称。譬如,倘若一个三维空间的人进入四维空间,并且按照适当的方式“旋转”一下再回到三维空间,那么他会被‘轴对称"一下(这在三维空间中当然是不可能实现的,除非运用三维版本的麦比乌斯带)。当然,由于没有人进入四维空间,所以这只是一个从二维空间类比而得的假设,无法进行验证。但是关于时间轴的观点以及时空错乱瞬间的现象与这是相符的。 从二维空间的一个图形是不能在二维空间进行对称的,但进入三维空间,就可以通过进行翻转回到二维空间时,就可以实现对称,因为在二维空间是不能进行翻转的,只能旋转或平移。因此我们可以推测三维物体进入了四维空间,再回到三维空间可能物体会被“轴对称”一下。
kikcik2023-05-24 22:50:201

素数定理-欧几里得算法-乘法逆元

          素数定理给出的是估计素数个数的方法:           设π(x)是小于x的素数的个数,则           π(x)≈x/lnx           eg:                64位二进制表示的素数的个数为                     (1)欧拉定理            提及欧拉定理,需要先引出欧拉函数的定义:            欧拉函数Φ(n)是定义在正整数上的函数,Φ(n)的值等于序列0,1,2,3,…,n-1中与n互素的数的个数            欧拉函数的性质:                    (1)m的素数时,有Φ(m)=m-1                    (2)m=pq,且p和q均是素数时,有Φ(m)=Φ(p)Φ(q)=(p-1)(q-1)                    (3)若m和n互素,则Φ(m×n)=Φ(m)×Φ(n)                    (4)若p是一个素数,则Φ(p^e)=p^e-p^(e-1)                    (5)          由欧拉函数可以延伸出欧拉定理的内容:                     欧拉定理:                               对于任何互素的两个整数a和n,有                                         1(mod n)                                如果n=p是素数,则有                                         1(mod p)                              显然欧拉定理可以看成是费马定理的推广形式。                     欧拉定理可以用来简化幂的模运算                     Eg:                            求 的后三位数字                           解:     (mod 1000)的结果                                                                          有 (mod 1000)      (2)费马定理            如果p是素数,a是正整数,且gcd(a,p)=1,那么                    1(mod p)           另一种形式:                如果p是素数,a是任意正整数,则对gcd(a,p)=1,有                    (mod p)      (3)二次探测定理           如果p是一个素数,且0<x<p,则方程 1(mod p)的解为 x = -1、p-1。           即如果符合 1(mod p),那么p很有可能是素数,但是仍不能肯定p就是素数。      (1)Wilson定理           对于给定的正整数n,判断n是一个素数的充要条件是 -1(mod n)。           虽然是充要条件,且Wilson的定理有很高的的理论介质。因为带有阶乘,在检测的时候计算量大,不适合检测较大素数的检测。      (2)米勒-拉宾算法           米勒-拉宾算法是一个多项式算法,能以接近概率1保证判断结果的正确性。           Miller-Rabin(n)           把n-1写成 ,其中m是一个奇数           选取随机整数a,使得                (mod n)                If (mod n)                     Return (‘n是素数")                End                For i=0到k-1                     If b≡-1(mod n)                          Return (‘n是素数")                     Else                          b=b^2(mod n)                     End                End                     Return(‘n是合数") 欧几里得算法描述:           两个整数用a,b表示,商用q表示,余数用r表示           Step1      取a,b较大者为a,较小者为b           Step2      做除法,计算并保留余数r=mod(a,b)           Step3      将原来的除数改做被除数,余数作为除数a=b,b=r           重复Step1和Step2直到r=0,返回b 乘法逆元的定义:           假设gcd(a,n)=1,则存在整数s,使得 (mod n),即s是a(mod n)的乘法逆元素。      关于ax+by=d           设a和b是两个正整数(至少有一个非零),d=gcd(a,b),则存在整数x和y使得ax+by=d成立,如果a、b互素,那 么存在整数x和y使得ax+by=1成立,此时可以求出ax≡1(mod b)中的x,即为逆元。 扩展欧几里得算法: 构造两个数列:                 Eg:                  求28mod75的乘法逆元(a=75,b=28)                       gcd(28,75)=1 所以存在逆元                       75=2×28+19                       28=1×19+9                       19=2×9+1                       9=9×1+0                        3×78+(-8)×28=1                        所以28mod75的乘法逆元为-8     中国剩余定理完整版            Eg:                    已知下列同余方程组,求解x                    第一步:求M                          M=2×3×5×7=210                    第二步:求                                            第三步:求                         1(mod )(i=1,2,...,k)                    第四步:                          (mod M)                          (105×1×1+70×1×2+42×3×3+30×4×5)(mod 210)                          173(mod 210)
可桃可挑2023-05-23 22:48:011

中国的欧几里得是什么?

中国的欧几里得是刘徽。魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。刘徽的成就刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。
kikcik2023-05-20 22:10:041

欧几里得定理是勾股定理吗

欧几里得定理是勾股定理。勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
大鱼炖火锅2023-05-18 13:56:181

欧几里得定理是什么?

如果一个正整数整除另外两个正整数的乘积,第一个整数与第二个整数互质,那么第一个整数整除第三个整数。可以这样表达这个引理:如果a|bc ,gcd(a,b)=1 那么 a|c。命题30是这样说的:如果一个素数整除两个正整数的乘积,那么这个素数可以至少整除这两个正整数中的一个。如果 p|bc,那么p|b或者p|c。表述如果一个正整数整除另外两个正整数的乘积,第一个整数与第二个整数互质,那么第一个整数整除第三个整数。或说:如果一个素数整除两个正整数的乘积,那么这个素数可以至少整除这两个正整数中的一个。
凡尘2023-05-18 13:56:161

欧几里得定理什么时候学

欧几里德(Euclid)定理(又叫直角三角形射影定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。人教A选修4-1,看各个地方高中的教学计划吧。
tt白2023-05-18 13:56:151

欧几里得空间、黎曼空间是什么?

欧几里德空间(EuclideanSpace),简称为欧氏空间,在数学中是对欧几里德所研究的2维和3维空间的一般化。这个一般化把欧几里德对于距离、以及相关的概念长度和角度,转换成任意数维的坐标系。这是有限维、实和内积空间的“标准”例子。欧氏空间是一个的特别的度量空间,它使得我们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。内积空间和度量空间都在泛函分析中得到了探讨。欧几里德空间在对包含了欧氏几何和非欧几何的流形的定义上发挥了作用。一个定义距离函数的数学动机是为了定义空间中围绕点的开球。这一基本的概念正当化了在欧氏空间和其他流形之间的微分。微分几何把微分,会同导入机动性手法,局部欧氏空间,探讨了非欧氏流形的许多性质。黎曼空间(Riemannianspace)
tt白2023-05-18 13:56:061

欧几里得空间中,半开闭方体的区间如何表示?

设V是实数域R上的线性空间(或称为向量空间),若V上定义着正定对称双线性型g(g称为内积),则V称为(对于g的)内积空间或欧几里德空间(有时仅当V是有限维时,才称为欧几里德空间).具体来说,g是V上的二元实值函数,满足如下关系: (1)g(x,y)=g(y,x); (2)g(x+y,z)=g(x,z)+g(y,z); (3)g(kx,y)=kg(x,y); (4)g(x,x)>=0,而且g(x,x)=0当且仅当x=0时成立. 这里x,y,z是V中任意向量,k是任意实数.
北有云溪2023-05-18 13:56:061

什么是欧几里得空间?

具体我 不太记得了 好像是说满足欧几里得 的那几个假设的空间 就是 欧几里得空间 其中有 两条平行线相不相交 是它和另一个什么空间 (不记得名字去了) 的根本不同
kikcik2023-05-18 13:56:045

欧几里得空间是什么

欧几里德空间,简称为欧氏空间,也可以称为平直空间,在数学中是对欧几里德所研究的2维和3维空间的一般化。这个一般化把欧几里德对于距离、以及相关的概念长度和角度,转换成任意数维的坐标系。这是有限维、实和内积空间的“标准”例子。 欧氏空间是一个特别的度量空间,它使得人们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。 约在公元前300年,古希腊数学家欧几里得建立了角和空间中距离之间联系的法则,现称为欧几里得几何。欧几里得首先开发了处理平面上二维物体的“平面几何”,他接着分析三维物体的“立体几何”,所有欧几里得的公理已被编排到叫做二维或三维欧几里得空间的抽象数学空间中。 欧几里德空间在对包含了欧氏几何和非欧几何的流形的定义上发挥了作用。一个定义距离函数的数学动机是为了定义空间中围绕点的开球,这一基本的概念正当化了在欧氏空间和其他流形之间的微分。微分几何把微分,会同导入机动性手法,局部欧氏空间,探讨了非欧氏流形的许多性质。
Ntou1232023-05-18 13:56:041

欧几里得空间的维是怎么定义的?

欧几里德空间(Euclidean Space),简称为欧氏空间,在数学中是对欧几里德所研究的2维和3维空间的一般化。这个一般化把欧几里德对于距离、以及相关的概念长度和角度,转换成任意数维的坐标系。 这是有限维、实和内积空间的“标准”例子。 欧氏空间是一个的特别的度量空间,它使得我们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。内积空间和度量空间都在泛函分析中得到了探讨。 欧几里德空间在对包含了欧氏几何和非欧几何的流形的定义上发挥了作用。一个定义距离函数的数学动机是为了定义空间中围绕点的开球。这一基本的概念正当化了在欧氏空间和其他流形之间的微分。微分几何把微分,会同导入机动性手法,局部欧氏空间,探讨了非欧氏流形的许多性质。
Ntou1232023-05-18 13:56:042

什么是标准欧几里得距离

欧几里得距离定义: 欧几里得距离( Euclidean distance)也称欧式距离,它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。 在二维和三维空间中的欧式距离的就是两点之间的距离,二维的公式是 d = sqrt((x1-x2)^+(y1-y2)^) 三维的公式是 d=sqrt(x1-x2)^+(y1-y2)^+(z1-z2)^) 推广到n维空间,欧式距离的公式是 d=sqrt( ∑(xi1-xi2)^ ) 这里i=1,2..n xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标 n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式. 欧氏距离看作信号的相似程度。 距离越近就越相似,就越容易相互干扰,误码率就越高。
真颛2023-05-18 13:55:582

欧几里得算法

  欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b)=gcd(b,amodb)。   欧几里得算法是用来求两个正整数最大公约数的算法。古希腊数学家欧几里得在其著作《TheElements》中最早描述了这种算法,所以被命名为欧几里得算法。扩展欧几里得算法可用于RSA加密等领域。
铁血嘟嘟2023-05-18 13:55:581

中国的欧几里得是指哪一位

1、被称为中国的欧几里德的是刘徽。刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。2、欧几里得(英文:Euclid;希腊文:Ευκλειδης,公元前330年-公元前275年),古希腊人,数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为"几何之父"。更多关于中国的欧几里得是指哪一位,进入:https://www.abcgonglue.com/ask/fa09031616093476.html?zd查看更多内容
bikbok2023-05-18 13:55:581

欧几里得辗转相除法

辗转相除法, 又名欧几里德算法(Euclidean algorithm),是求最大公约数的一种方法。它的具体做法是:用较大数除以较小数,再用出现的余数(第一余数)去除除数,再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。如果是求两个数的最大公约数,那么最后的除数就是这两个数的最大公约数。 另一种求两数的最大公约数的方法是更相减损法。辗转相除法是用来计算两个整数的最大公约数。假设两个整数为a和b,他们的公约数可以表示为gcd(a,b)。如果gcd(a,b) = c,则必然a = mc和b = nc。a除以b得商和余数,余数r可以表示为r = a - bk,k这里是系数。因为c为 a和b的最大公约数,所以c也一定是r的最大公约数,因为r = mc - nck = (m-nk)c。因此gcd(a,b) = gcd(b,r),相当于把较大的一个整数用一个较小的余数替换了,这样不断地迭代,直到余数为0,则找到最大公约数。举例两个整数为1071和462:第一步:1071 / 462 = 2 * 462 + 147第二步:462 / 147 = 3 * 147 + 21第三步:147 / 21 = 7 * 21 + 0此时余数为零,则21为两个数的最大公约数。贝祖公式表明对于任意两个整数a和b,都可以找到一对可为负的整数x和y,可以使等式xa + yb = m,其中m为a和b的最大公约数,合理性稍加思考可得。如果m为1说明a和b互素。所以在互素的情况下,xa + yb = 1。这个等式对于求乘法逆元有很大的帮助。那么如何通过贝祖公式及扩展欧几里得算法来求乘法逆元呢?举一个例子来描述什么是乘法逆元。如果ab mod m = 1,或者可以表示为ab ≡ 1 mod m,这里b就是a关于模数m的乘法逆元。计算乘法逆元的方法就是扩展欧几里得算法,以下通过一个例子来帮助理解:假设我们要求3 关于模26的乘法逆元(隐含了3和26的最大公约数为1,即互素)。当a = 3,b = 26,则根据贝祖公式,存在整数x和y,3x + 26y = 1。思路就是等号两边同时mod 26,等式则变成(3x + 26y) mod 26 = 1 mod 26,根据模运算的性质(a + b) mod m = (a mod m + b mod m) mod m。所以展开等式(3x mod 26 + 26y mod 26) mod 26 = 1 mod 26。化简最终得到(3x mod 26) mod 26 = 1 mod 26。我们发现3x mod 26 = 1正好符合了乘法逆元的定义,所以欧几里得算法就是解x的关键。下面将通过辗转相除法来求x:第一步:26 = 3 * 8 + 2第二步:3 = 2 * 1 + 1统一将余数换到等号左边:2 = 26 - 3 * 81 = 3 - 2 * 1将第一行的2替换到第二行,保证等式左边永远为1,等式右边变成仅由3x + 26y组成。1 = 3 - (26 - 3 * 8) * 1 = 3 * 9 + (-1) * 26可得x = 9最后9就是3关于模26的乘法逆元。它可以应用于仿射加密。附:仿射加密的公式e(x) = ax + b mod m, 其中a与m互素, b为移动距离。仿射解密公式d(x) = a-1(x - b) mod m
左迁2023-05-18 13:55:581

欧几里得作出的贡献有哪些?

公元前3世纪时,最著名的数学中心是亚历山大城;在亚历山大城,最著名的数学家是欧几里得。欧几里得知识渊博,数学造诣精湛,尤其擅长于几何证明。连当时的国王也经常向他请教数学问题。有一次,国王做一道几何证明题,接连做了许多天都没有做出来,就问欧几里得,能不能把几何证明搞得稍微简单一些。欧几里得认为国王想投机取巧,于是不客气地回答说:“陛下,几何学里可没有专门为您开辟的大道!”这句话长久地流传下来,许多人把它当做学习几何的箴言。在数学上,欧几里得最大的贡献是编了一本书。当然,仅凭这一本书,就足以使他获得不配的声誉。这本书,也就是震烁古今的数学巨著《几何原本》。为了编好这本书,欧几里得创造了一种巧妙的陈述方式。一开头,他介绍了所有的定义,让大家一翻开书,就知道书中的每个概念是什么意思。例如,什么叫做点?书中说:“点是没有部分的。”什么叫做线?书中说:“线有长度但没有宽度。”这样一来,大家就不会对书中的概述产生歧义了。接下来,欧几里得提出了5个公理和5个公设:公理1与同一件东西相等的一些东西,它们彼此也是相等的。公理2等量加等量,总量仍相等。公理3等量减等量,总量仍相等。公理4彼此重合的东西彼此是相等的。公理5整体大于部分。公设1从任意的一个点到另外一个点作一条直线是可能是。公设2把有限的直线不断循直线延长是可能的。公设3以任一点为圆心和任一距离为半径作一圆是可能的。公设4所有的直角都相等。公设5如果一直线与两直线相交,且同侧所交两内角之和小于两直角,则两直线无限延长后必相交于该侧的一点。在现在看来,公理与公设实际上是一回事,它们都是最基本的数学结论。公理的正确性是无庸置疑的,因为它们都经过了长期实际践的反复检验。而且,除了第5公设以外,其他公理的正确性几乎是“一目了然”的。想想看,你能找出一个例子,说明这些公理不正确吗?这些公理是干什么用的?欧几里得把它们作为数学推理的基础。他想,既然谁也无法否认公理的正确性,那么,用它们作理论依据去证明数学定理,只要证明的过程不出差错,定理的正确性也是理论证据,却能推导出新的数学定理来。这样,就可以用一根逻辑的链条,把所有的定理都串联起来,让每一个环节都衔接得丝丝入扣,无懈可击。在《几何原本》里,欧几里得用这种方式,有条不紊地证明了467个重要的数学定理。从此,古希腊丰富的几何学知识,形成了一个逻辑严谨的科学体系。这是一个奇迹!2000多年后,大科学家爱因斯坦仍然怀着深深的敬意称赞说:这是“世界第一次目睹了一个逻辑体系的奇迹”。
Jm-R2023-05-18 13:55:581

欧几里得有哪些主要成就?

欧几里得大约生于公元前330年,死于公元前275年。他深受亚里士多德的影响。他把亚里士多德的公理法则用到几何学中,推演出几何学的五条公理。这五条公理对几何学发展产生过巨大影响。现在看来,五条公理都非常简单,但在当时很了不起。比如说,两点之间可以连接一条线;如果两条直线和第三条直线相交,所交出的同旁内角和小于180°,那么两条直线延长,总会在同旁内角一侧相交。五条公理最后一条就是平行公理。在当时,平行公理引起过怀疑。它的文字多,读起来又不是那么显而易见。以后历经两千年,一些数学家均未证实。一直到19世纪20年代,德国的高斯、俄国的罗巴切斯基、匈牙利的亚•鲍耶三位数学家重新提出平行公理的不可证性,作出了正确解答,才消除了人们对平行公理的怀疑。三位伟大的数学家在证实中发现了一种新的几何学——非欧几何学,对近代物理学、天文学以及人类的思维方式的变革产生了深远的影响。
mlhxueli 2023-05-18 13:55:581

“欧几里得’的名言

在几何里,没有专为国王铺设的大道。几何无王者之道。——欧几里德 ~~~望采纳~~~
北有云溪2023-05-18 13:55:581

中国的欧几里得是谁?

刘徽,为九章算术做注解。
gitcloud2023-05-18 13:55:582

几何学是什么意思?欧几里得是谁?

几何学,简称几何,是研究空间区域关系的数学分支。 亚历山大里亚的欧几里得(希腊文:Ευκλειδης ,约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人
铁血嘟嘟2023-05-18 13:55:571

欧几里得是怎么死的?

老死的,目前都没有知道他是具体哪一年生,哪一年死的,除了留下【原本】,没有其他可考资料约生于公元前330年,约殁于公元前260年
北境漫步2023-05-18 13:55:571

欧几里得定理是什么?

欧几里得定理是指射影定律。直角三角形射影定理,又称“欧几里德定理”,定理内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。证明思路因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的平方比。所以就是图形的长度(三角形中称高)的比。那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线),那么三角形的斜边和另一直角边的比值就是其多边形的长度比,即为平面多边形的面积比,而将这个比值放到该平面三角形中去运算即可。以上内容参考:百度百科-射影定律
豆豆staR2023-05-18 13:55:571

我想问问中国的欧几里得是哪一位

被称为“中国的欧几里德”的是刘徽,刘徽是魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。刘徽是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。更多关于中国的欧几里得是哪一位,进入:https://m.abcgonglue.com/ask/7e1f3b1615835376.html?zd查看更多内容
北有云溪2023-05-18 13:55:571

简述欧几里得原本的现代意义

《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。 欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。
苏萦2023-05-18 13:55:571

欧几里得、刘微、秦九韶、笛卡尔、费马几位数学家有什么贡献?它们有什么成长经历?

找这种资料,去百科里看下。
瑞瑞爱吃桃2023-05-18 13:55:574

有中国的欧几里得中国数学史上的牛顿之称的是谁

有“中国的欧几里德”、“中国数学史上的牛顿”之称的是刘徽。刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。扩展资料:代表著作其代表作《九章算术注》是对《九章算术》一书的注解。《九章算术》是中国流传至今最古老的数学专著之一,它成书于西汉时期。这部书的完成经过了一段历史过程,书中所收集的各种数学问题,有些是秦以前流传的问题,长期以来经过多人删补、修订,最后由西汉时期的数学家整理完成。现今流传的定本的内容在东汉之前已经形成。《九章算术》是中国最重要的一部经典数学著作,它的完成奠定了中国古代数学发展的基础,在中国数学史上占有极为重要的地位。现传本《九章算术》共收集了246个应用问题和各种问题的解法,分别隶属于方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。参考资料来源:百度百科--刘徽
拌三丝2023-05-18 13:55:571

欧几里得距离是什么?

欧几里得距离是衡量的是多维空间中两个点之间的绝对距离。欧几里得距离也称欧式距离,它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧式距离的就是两点之间的距离。在数学中,欧几里得距离或欧几里得度量是欧几里得空间中两点间“普通”(即直线)距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。欧氏距离:所谓欧氏距离变换,是指对于一张二值图像(再此我们假定白色为前景色,黑色为背景色),将前景中的像素的值转化为该点到达最近的背景点的距离。n维欧氏空间是一个点集,它的每个点X可以表示为(x,x,x) ,其中x (i = 1,2,n)是实数,称为X的第i个坐标,两个点A = (a,a,a)和B = (b,b,b)之间的距离d(A,B)定义为下面的公式。
kikcik2023-05-18 13:55:571

证明欧几里得空间

由已知 (β,αi) = 0,i=1,2,...,m 所以 (β,∑kiαi) = ∑(β,kiαi) = ∑ki(β,αi) = 0. 所以 β 与 ∑kiαi 正交.
韦斯特兰2023-05-18 13:55:571

古希腊数学家欧几里得的著作是什么?

古希腊数学家欧几里得的著作是《几何原本》
人类地板流精华2023-05-18 13:55:571

有中国的欧几里得中国数学史上的牛顿之称的是

有中国的欧几里得中国数学史上的牛顿之称的是:刘徽。刘徽(约225年-约295年),山东滨州邹平市。魏晋时期的数学家,是我国古典数学的奠基人之一,著有《九章算术注》和《海岛算经》。《九章算术注》是给《九章算术》作的注解,他提出了。正负数的概念及其加减运算法则,他利用割圆术求出圆周率π=3.1416,在代数和几何方面都做出了很多创造性的贡献,有“中国的欧几里德”“中国数学史上的牛顿”之称。《海岛算经》因为第一题就是测量一个海岛的高远问题,所以书名就叫了“海岛算经”。
肖振2023-05-18 13:55:571

什么是欧几里得空间?

欧几里得空间,简称欧氏空间,也可以称为平直空间,在数学中是对欧几里得所研究的二维和三维空间的一般化?这个一般化把欧几里得对于距离以及相关的概念长度和角度,转换成任意数维的坐标系?当一个线性空间定义了内积运算之后它就成为了欧几里得空间,欧几里得空间是无穷大的?
FinCloud2023-05-18 13:55:571

数学家欧几里得小时候的故事

欧几里得是希腊亚历山大大学的数学教授。著名的古希腊学者阿基米德,是他“学生的学生”——卡农是阿基米德的老师,而欧几里得是卡农的老师。   欧几里得不仅是一位学识渊博的数学家,同时还是一位有“温和仁慈的蔼然 拉斐尔名画《雅典学派》中的欧几里得长者 ”之称的教育家。在著书育人过程中,他始终没有忘记当年挂在“柏拉图学园”门口的那块警示牌,牢记着柏拉图学派自古承袭的严谨、求实的传统学风。他对待学生既和蔼又严格,自己却从来不宣扬有什么贡献。对于那些有志于穷尽数学奥秘的学生,他总是循循善诱地予以启发和教育,而对于那些急功近利、在学习上不肯刻苦钻研的人,则毫不客气地予以批评。在柏拉图学派晚期导师普罗克洛斯的《几何学发展概要》中,就记载着这样一则故事,说的是数学在欧几里得的推动下,逐渐成为人们生活中的一个时髦话题(这与当今社会截然相反),以至于当时亚里山大国王托勒密一世也想赶这一时髦,学点儿几何学。虽然这位国王见多识广,但欧氏几何却令他学的很吃力。于是,他问欧几里得“学习几何学有没有什么捷径可走?”,欧几里得笑到:“抱歉,陛下!学习数学和学习一切科学一样,是没有什么捷径可走的。学习数学,人人都得独立思考,就像种庄稼一样,不耕耘是不会有收获的。在这一方面,国王和普通老百姓是一样的。” 从此,“在几何学里,没有专为国王铺设的大道。”这句话成为千古传诵的学习箴言。   又有则故事。那时候,人们建造了高大的金字塔,可是谁也不知道金字塔究竟有多高。有人这么说:“要想测量金字塔的高度,比登天还难!”这话传到欧几里得耳朵里。他笑着告诉别人:“这有什么难的呢?当你的影子跟你的身体一样长的时候,你去量一下金字塔的影子有多长,那长度便等于金字塔的高度!”   来拜欧几里得为师,学习几何的人,越来越多。有的人是来凑热闹的,看到别人学几何,他也学几何。一位学生曾这样问欧几里得:“老师,学习几何会使我得到什么好处?”欧几里得思索了一下,请仆人拿点钱给这位学生,冷冷地说道:“看来你拿不到钱,是不肯学习几何学的!”
小白2023-05-18 13:55:571

欧几里得和阿基米德的生平简介和主要科学成就

阿基米德(Archimedes)生卒年代:前287-212简介:古希腊伟大的数学家、力学家。生于西西里岛的叙拉古,卒于同地。早年在当时的文化中心亚历山大跟随欧几里得的学生学习,以后和亚历山大的学者保持紧密联系,因此他算是亚历山大学派的成员。后人对阿基米德给以极高的评价,常把他和I.牛顿、C.F.高斯并列为有史以来三个贡献最大的数学家。他的生平没有详细记载,但关于他的许多故事却广为流传。生平:阿基米德(Archimedes,约前287—212),诞生于希腊叙拉古附近的一个小村庄。他出生于贵族,与叙拉古的赫农王(King Hieron)有亲戚关系,家庭十分富有。阿基米德的父亲是天文学家兼数学家,学识渊博,为人谦逊。阿基米德受家庭的影响,从小就对数学、天文学特别是古希腊的几何学产生了浓厚的兴趣。当他刚满十一岁时,借助与王室的关系,被送到埃及的亚历山大里亚城去学习。亚历山大位于尼罗河口,是当时文化贸易的中心之一。这里有雄伟的博物馆、图书馆,而且人才荟萃,被世人誉为“智慧之都”。阿基米德在这里学习和生活了许多年,曾跟很多学者密切交往。他兼收并蓄了东方和古希腊的优秀文化遗产,在其后的科学生涯中作出了重大的贡献。公元前二一二年,古罗马军队入侵叙拉古,阿基米德被罗马士兵杀死,终年七十五岁。阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球的图形,以纪念他在几何学上的卓越贡献。 阿基米德的成就阿基米德无可争议的是古代希腊文明所产生的最伟大的数学家及科学家,他在诸多科学领域所作出的突出贡献,使他赢得同时代人的高度尊敬。阿基米德求得了抛物线弓形、螺线、圆形的面积和体积以及椭球体、抛物面体等复杂几何体的体积。在推演这些公式的过程中,他熟练的启用了“穷竭法”,即我们今天所说的逐步近似求极限的方法,因而被公认为微积分计算的鼻祖。他还利用此法估算出∏值在 和 之间,并得出了三次方程的解法。面对古希腊繁冗的数字表示方式,阿基米德提出了一套有重要意义的按级计算法,并利用它解决了许多数学难题。 阿基米德在力学方面的成绩最为突出,这些成就主要集中在静力学和流体静力学方面。他在研究机械的过程中,发现了杠杆原理,并利用这一原理设计制造了许多机械。他在研究浮体的过程中发现了浮力定律,也就是有名的阿基米德定律。阿基米德在天文学方面也有出色的成就。他设计了一些圆球,用细绳和木棒将它们联接起来模仿日月和星辰的运动,并利用水力使它们转动。这样日食和月食就可以生动的表现出来了。阿基米德认为地球是圆球状的,并围绕着太阳旋转,这一观点比哥白尼的“日心地动说”要早一千八百年。限于当时的条件,他并没有就这个问题做深入系统的研究。但早在公元前三世纪就提出这样的见解,是很了不起的。 阿基米德的著作很多,作为数学家,他写出了《论球和圆柱》、《论劈锥曲面体与球体》、《抛物线求积》、《论螺线》等数学著作。作为力学家,他著有《论平板的平衡》、《论浮体》、《论杠杆》、《论重心》等力学著作。在《论平板的平衡》中,他系统地论证了杠杆原理。在论浮体中、他论证了浮体定律。阿基米德不仅在理论上成就璀璨,还是一个富有实践精神的工程学家。他一生设计、制造了许多机构和机器,除了杠杆系统外,值得一提的还有举重滑轮、灌地机、扬水机以及军事上用的投射器等。被称作“阿基米德举水螺旋”的扬水机是为了将水从大船的船舱中排出而发明的。扬水机可以利用螺旋把搬运到高处,在埃及得到了广泛的应用,是现代螺旋泵的前身。 “给我一个支点,我将移动地球”阿基米德不仅是个理论家,也是个实践家,他一生热衷于将其科学发现应用于实践,从而把二者结合起来。在埃及,公元前一千五百年前左右,就有人用杠杆来抬起重物,不过人们不知道它的道理。阿基米德潜心研究了这个现象并发现了杠杆原理。赫农王对阿基米德的理论一向持半信半疑的态度。他要求阿基米德将它们变成活生生的例子以使人信服。阿基米德说:“给我一个支点,我就能移动地球。”国王说:“这恐怕实现不了,你还是来帮我拖动海岸上的那条大船吧。”这条船是赫农王为埃及国王制造的,体积大,相当重,因为不能挪动,搁浅在海岸上已经很多天了。阿基米德满口答应下来。 阿基米德设计了一套复杂的杠杆滑轮系统安装在船上,将绳索的一端交到赫农王手上。赫农王轻轻拉动绳索,奇迹出现了,大船缓缓地挪动起来,最终下到海里。国王惊讶之余,十分佩服阿基米德,并派人贴出告示“今后,无论阿基米德说什么,都要相信他。”金冠之谜赫农王让金匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了银子,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。后来,国王将它交给了阿基米德。阿基米德冥思苦想出很多方法,但都失败了。有一天,他去澡堂洗澡,他一边坐进澡盆里,一边看到水往外溢,同时感到身体被轻轻拖起。他突然恍然大悟,跳出澡盆,连衣服都顾不得穿就直向王宫奔去,一路大声很着“尤里卡”, “尤里卡”(Eureka,我知道了,我找到了)原来他想到,如果王冠放入水中后,排出的水量不等于同等重量的金子排出的水量,那肯定是掺了别的金属。这就是有名的浮力定律,既浸在液体中的物体受到向上的浮力,其大小等于物体所排出液体的重量。后来,该定律就被命名为阿基米德定律。爱国者阿基米德在阿基米德晚年时,罗马军队入侵叙拉古,阿基米德指导同胞们制造了很多攻击和防御的武器。当侵略军首领马塞勒塞率众攻城时,他设计的投石机把敌人打得哭爹喊娘。他制造的铁爪式起重机,能将敌船提起并倒转,抛至大海深处。传说他还率领叙拉古人民制作了一面大凹镜,将阳光聚焦在靠近的敌船上,使它们焚烧起来。罗马士兵在这频频的打击中已经心惊胆战,草木皆兵,一见到有绳索或木头从城里扔出,他们就惊呼“阿基米德来了”,随之抱头鼠窜。罗马军队被阻入城外达三年之久。最终,于公元前二一二年,罗马人趁叙拉古城防务稍有松懈,大举进攻闯入了城市。此时,阿基米德正在潜心研究一道深奥的数学题,一个罗马士兵闯入,用脚践踏他所画的图形,阿基米德愤怒地与之争论,残暴的士兵哪里肯听,只见他举刀一挥,一位璀璨的科学巨星就此陨落。关于他的传闻及贡献:据说他确立了力学的杠杆定律之后,曾发出豪言壮语:“给我一个立足点,我就可以移动这个地球!”叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银子,便请阿基米德鉴定一下5彼��朐∨柘丛枋?水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回家中,口中大呼:“尤里卡!尤里卡!”(希腊语意思是“我找到了”)他将这一流体静力学的基本原理,即物体在液体中减轻的重量,等于排去液体的重量,总结在他的名著《论浮体》中,后来以“阿基米德原理”著称于世。第二次布匿战争时期,罗马大军围攻叙拉古,阿基米德献出自己的一切聪明才智为祖国效劳。传说他用起重机抓起敌人的船只,摔得粉碎;发明奇妙的机器,射出大石、火球。还有一些书记载他用巨大的火镜反射日光去焚毁敌船,这大概是夸张的说法。总之,他曾竭尽心力,给敌人以沉重打击。最后叙拉古因粮食耗尽及奸细的出卖而陷落,阿基米德不幸死在罗马士兵之手。流传下来的阿基米德的著作,主要有下列几种。《论球与圆柱》,这是他的得意杰作,包括许多重大的成就。他从几个定义和公理出发,推出关于球与圆柱面积体积等50多个命题。《平面图形的平衡或其重心》,从几个基本假设出发,用严格的几何方法论证力学的原理,求出若干平面图形的重心。《数沙者》,设计一种可以表示任何大数目的方法,纠正有的人认为沙子是不可数的,即使可数也无法用算术符号表示的错误看法。《论浮体》,讨论物体的浮力,研究了旋转抛物体在流体中的稳定性。阿基米德还提出过一个“群牛问题”,含有八个未知数。最后归结为一个二次不定方程。其解的数字大得惊人,共有二十多万位! 阿基米德当时是否已解出来颇值得怀疑。除此以外,还有一篇非常重要的著作,是一封给埃拉托斯特尼的信,内容是探讨解决力学问题的方法。这是1906年丹麦语言学家J.L.海贝格在土耳其伊斯坦布尔发现的一卷羊皮纸手稿,原先写有希腊文,后来被擦去,重新写上宗教的文字。幸好原先的字迹没有擦干净,经过仔细辨认,证实是阿基米德的著作。其中有在别处看到的内容,也包括过去一直认为是遗失了的内容。后来以《阿基米德方法》为名刊行于世。它主要讲根据力学原理去发现问题的方法。他把一块面积或体积看成是有重量的东西,分成许多非常小的长条或薄片,然后用已知面积或体积去平衡这些“元素”,找到了重心和支点,所求的面积或体积就可以用杠杆定律计算出来。他把这种方法看作是严格证明前的一种试探性工作,得到结果以后,还要用归谬法去证明它。他用这种方法取得了大量辉煌的成果。阿基米德的方法已经具有近代积分论的思想。然而他没有说明这种“元素”是有限多还是无限多,也没有摆脱对几何的依赖, 更没有使用极限方法。尽管如此, 他的思想是具有划时代意义的,无愧为近代积分学的先驱。他还有许多其他的发明,没有一个古代的科学家,象阿基米德那样将熟练的计算技巧和严格证明融为一体,将抽象的理论和工程技术的具体应用紧密结合起来。后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。 《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。 《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为:22/7 <π<223/71 ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。 《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。 《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。 《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。 《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。 《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。 《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体体积。 丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。 正因为他的杰出贡献,美国的E.T.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。 欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有很大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。欧几里得 (活动于约前300-) 古希腊数学家。以其所著的《几何原本》(简称《原本》)闻名于世。关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “ 在几何里,没有专为国王铺设的大道。 ” 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:给他三个钱币,因为他想在学习中获取实利。 欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少著作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体的结果。还有一些著作未能确定是否属于欧几里得,而且已经散失。 欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。
wpBeta2023-05-18 13:55:571

欧几里得空间是什么

欧几里德空间(Euclidean Space),简称为欧氏空间,在数学中是对欧几里德所研究的2维和3维空间的一般化。这个一般化把欧几里德对于距离、以及相关的概念长度和角度,转换成任意数维的坐标系。 这是有限维、实和内积空间的“标准”例子。 欧氏空间是一个的特别的度量空间,它使得我们能够对其的拓扑性质,例如紧性加以调查。内积空间是对欧氏空间的一般化。内积空间和度量空间都在泛函分析中得到了探讨。 欧几里德空间在对包含了欧氏几何和非欧几何的流形的定义上发挥了作用。一个定义距离函数的数学动机是为了定义空间中围绕点的开球。这一基本的概念正当化了在欧氏空间和其他流形之间的微分。微分几何把微分,会同导入机动性手法,局部欧氏空间,探讨了非欧氏流形的许多性质.拓扑,一个跟门萨同样古怪的“科技Word”。其定义,对绝大多数读者而言,不一定需要理解,但无妨知道———拓扑学,数学的一门分科,研究几何图形在一对一的双方连续变换下不变的性质。不少门萨题,来自拓扑学,其典例,是2005年10月8日刊发在《晚会·游戏》版上的那篇《四种颜色与地图》。此例在拓扑学中大名鼎鼎,叫做“四色问题”。 拓扑理论用途广泛,涉及空间规划、网络设计、通讯邮递乃至心理分析等诸多领域,人们不大了解罢了。说来趣怪,致使这门学科得以诞生的契机却是一款很是独特的消闲。 话说俄罗斯有座哥尼斯堡市,两条河于此间汇合,汇合处有个小岛,小岛跟其相对的3处河岸架设了7座桥。市民经常沿着河岸和小岛散步,于是很自然地就提出了一个实际问题:有无可能找到一条路线,能够沿它行走,经过全部7座桥却又不会重踏其中任何一座? 时为18世纪中叶,著名数学家、瑞士人欧拉旅游至该市,他对这个消闲点子作了一番琢磨,确定了这条路线。当其时,欧拉的指划,只不过是逢场作戏,被称为“七桥问题”。 迨至19世纪上半叶,有心人对欧拉的思路作了认真研究,在“七桥问题”基础之上,居然建立起一门崭新学科!显然极具文史素养的某位数学专家给这门学科起了个跟欧拉的原初研究无比贴切的学名———Topology!Topology是英文,其实质性部分Topo是一个同音同义的古希腊词的英文形变,意思是“地方、方位”。logy这个后缀也来自古希腊文,原意是“词语的聚集”,明治维新期间日本人大量翻译西方典籍,把它通译为“学科”之“学”。因之,若然对Topology作汉语直接对译,当为“方位学”。按,欧拉破解“七桥问题”之际,把3处河岸和1座小岛绘画成4个点,把7座桥绘画成7条线,点线相连,构成一个封闭的几何图形。想想看,以Topology概括欧拉的整个思路,是不是浑然天成? 有位中国人把Topo译为“拓扑”!谁?江泽涵先生是也! 江泽涵(1902-1994年),安徽旌德人,1926年毕业于南开大学,1930年获哈佛大学博士学位,1931年任北京大学数学系教授,1955年当选为中国科学院数理学部委员。他是把拓扑学引入中国的第一人,他出版的《拓扑学引论》是中国人编写的第一部拓扑学教材。 译Topo为拓扑,音义兼顾,形神俱备———“拓”者,对土地之开发也,“扑”者,全面覆盖也。 上世纪前半叶,学界中人大抵通今博古,学贯中西,对于国外学术及科技用语的汉译,令人拍案叫绝之作迭出,如霓虹(neon)、引擎(engine)、绷带(bandage)、图腾(totem),等等。反观近世,知识爆炸,外间新事物有如潮水般涌入,但在水中央的国人东张西望,却瞩目皆是IT、IE、ADSL、modem、WindowsXP、CT、CD、VCD、DVCD、DVD、mp3、G4……Oh,myGod,果真是一代新人胜旧人? 拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。 拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。 连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识
苏州马小云2023-05-18 13:55:571

古希腊数学家欧几里得的著作是什么?

欧几里得,古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。
拌三丝2023-05-18 13:55:561

欧几里得算题讲的是什么呢?

几何学之父,古希腊数学家欧几里得曾出过这样一道题:螺子和驴驮着谷物并排走在路上,螺子在途中对驴子说:“如果把你驮的谷物给我一袋,咱俩驮的袋数就相等。”请你算一下,它们各自驮了多少袋谷物?我们可以做一下假设。如果螺子给驴一袋,二者就相等,说明螺子驮的谷物是驴的2倍。刚才我们分析,螺子比驴多驮2袋,驴子再给它一袋,螺子比驴多(2+1+1)=4(袋),比驴子多4袋时,同时也是驴子的2倍,可见,这4袋谷物是驴子剩下谷物的1倍。所以我们可以通过计算得到所求的结果:驴子驮的代数为(2+1+1)÷(2-1)+1=5(袋);螺子驮的代数为5+1+1=7(袋)。
北营2023-05-18 13:55:561

古希腊数学家欧几里得是谁的老师的老师

古希腊数学家,被称为“几何之父”. 他是(阿基米德)的老师的老师 著名的古希腊学者阿基米德,是他“学生的学生”——卡农是阿基米德的老师,而欧几里得是卡农的老师。
bikbok2023-05-18 13:55:561

欧几里得对学术界的重要作用以及他对后世产生的影响是什么?

欧几里得是一个杰出的科学家,他标志着当时的科学中心从雅典过渡到了亚历山大城。欧几里得的名字与几何学是不可分割的,因为他写了一本几何教科书《几何原本》,此书至今还是几何学的权威著作,当然也经过一些修改。印刷术发明后,出过一千多版。“我学了欧几里得”就是“我学了几何学”的同义语,这句话并非很久以前说的。所以,欧几里得是最成功的不朽的几何教科书作者。然而欧几里得作为一位数学家的盛名,并非由于他本人的研究成果。在他书中,只有极少的定理是他自己创立的。他所做的一切,以及使他成为伟大的数学家的,就在于他利用了泰勒斯时代以来积累的数学知识,把两个半世纪的劳动成果条理化、系统化,并且编纂成了一本著作。在编写此书时,他一开始就推出一系列令人钦佩的简要而精致的公理和公式。然后他将定理一一排列,其逻辑性非常强,几乎无须改进。历来公认归功于欧几里得本人的惟一定理,就是他为毕达哥拉斯定理提出的证明。虽然他的这一伟大论著主要涉及几何学,但也提出了比率和比例的问题,以及现在为大家所知的数论问题,正是欧几里得证明了素数是无限的。他还通过一系列干脆利落至今尚未作过任何改进的论证,证明了2的平方根是无理数。他还通过将光视为直线,使光学成为几何学的一部分。当然欧几里得并没有概括希腊的全部数学,甚至也没有概括全部几何学。继他之后,希腊数学在相当长时期内,一直生气蓬勃,像阿波洛尼乌斯和阿基米德等人,都为数学增添了一大笔财富。后来的哥白尼、开普勒、伽利略、牛顿这些卓越的科学人物,统统都接受了欧几里得的传统。他们都认真地学习过欧几里得的《几何原本》,并使之成为他们数学知识的基础。欧几里得对牛顿的影响尤为明显。牛顿的《数学原理》一书,就是按照类似于《几何原本》的“几何学”的形式写成的。自那以后,许多西方的科学家都效仿欧几里得,说明他们的结论是如何从最初的几个假设推导出来的。许多数学家,像伯莎德·罗素、阿尔弗雷德·怀特海,以及一些哲学家,如斯宾诺莎也都如此。除《几何原本》外,欧几里得还有不少著作,如《已知数》、《图形的分割》、《纠错集》、《圆锥典线》、《曲面轨迹》、《观测天文学》等,可惜大都失传了。不过,经过两干多年的历史考验,影响最大的仍然是《几何原本》。
北营2023-05-18 13:55:561

欧几里得几何中的点是怎么定义

其实《几何原本》是一个数学知识的逻辑体系,结构是由定义、公设、公理、定理组成的演绎推理系统.在第1卷开始他首先提出 23个定义,前6个定义是: ①点没有大小; ②线有长度没有宽度; ③线的界是点; ④直线上的点是同样放置的; ⑤面只有长度和宽度; ⑥面的界是线. 在定义之后有5个公设: ①从任意点到另一点可以引直线; ②有限直线可以无限延长; ③以任意点为圆心,可用任意半径作圆; ④所有直角都相等; ⑤如果两条直线与另一条直线相交,所成的同侧内角的和小于两直角,那么这两条直线在这一侧必相交. 其次,有5个公理: ①等于同量的量相等; ②等量加等量其和相等; ③等量减等量其差相等; ④可重合的图形全等; ⑤全体大于部分. 你所提到的这些定义并不能成为一种数学定义,不过是几何对象点、线、面的一种直观描述
u投在线2023-05-18 13:55:561

欧几里得圆的定义

欧几里得几何指按照古希腊数学家欧几里得的《几何原本》构造的几何学。欧几里得几何有时单指平面上的几何,即平面几何。本文主要描述平面几何。三维空间的欧几里得几何通常叫做立体几何。 高维的情形请参看欧几里得空间。
NerveM 2023-05-18 13:55:561

欧几里得是谁?

欧几里得(Euclid,约公元前325年—公元前265年)是古希腊数学家,以其所著的《几何原本》(简称《原本》)闻名于世。曾受业于柏拉图学园。后应埃及托勒密国王邀请,从雅典移居亚历山大,从事数学教学和研究工作。他一生治学严谨。所著《几何原本》共13卷,是世界上最早公理化的数学著作,影响着历代科学文化的发展和科技人才的培养。
拌三丝2023-05-18 13:55:561

欧几里得的人物故事

一天一群年轻人来到位于雅典城郊外的林荫中的“柏拉图学院”.只见大门紧闭着,门口挂着一块木块,上面写着:“不懂数学者,不得入内!”这是柏拉图亲自立下的规矩,为的是让学生们知道他重视数学,然而却把前来求教的年轻人们给闹糊涂了.有人在想正是因为我不懂数学才前来求教的啊,如果懂了,还来这儿干什么?正当人们面面相觑,不只是退还是进的时候,欧几里得从人群中走了出来,只见他整了整衣冠,看了看那块牌子,然后果断的推开了学院大门,头也没回就走了进去.
铁血嘟嘟2023-05-18 13:55:563

欧几里得算法是什么?

欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。辗转相除法的算法步骤为,两个数中用较大数除以较小数,再用出现的余数除除数。再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。辗转相除法是利用以下性质来确定两个正整数a和b的最大公因子的:1、若r是a ÷ b的余数,且r不为0,则gcd(a,b) = gcd(b,r)。⒉、a和其倍数之最大公因子为a。另一种写法是:⒈、令r为a/b所得余数(0≤r),若r= 0,算法结束;b即为答案。⒉、互换:置a←b,b←r,并返回第一步。
水元素sl2023-05-18 13:55:561

欧几里得分数线

欧几里得分数线如下:平均分:56, 获奖分数:69 。欧几里德一般指欧几里得(古希腊数学家几何之父)。欧几里得(希腊文:Ευκλειδης ,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。欧几里德的人物评价:欧几里得是古希腊最负盛名、最有影响的数学家之一。欧几里得的《几何原本》对于几何学、数学和科学的未来发展,对于西方人的整个思维方式都有极大的影响。《几何原本》是古希腊数学发展的顶峰。欧几里得将公元前7世纪以来希腊几何积累起来的丰富成果,整理在严密的逻辑系统运算之中,使几何学成为一门独立的、演绎的科学。中国的欧几里得是刘徽。魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。在中国数学史上作出了极大的贡献,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。
善士六合2023-05-18 13:55:561

欧几里得的成就与简介?

欧几里德(Euclid of Alexandria),生活在亚历山大城的欧几里得(约前330~约前275)是古希腊最享有盛名的数学家。以其所著的《几何原本》(简称《原本》)闻名于世。《几何原本》是我国历史上最早翻译的西方名著欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。欧几里德写过一本书,书名为《几何原本》(Elements)共有13卷。这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,但它还处理了数论、无理数理论等其他课题。欧几里德使用了公理化的方法。公理(axioms)就是确定的、不需证明的基本命题,一切定理都由此演绎而出。在这种演绎推理中,每个证明必须以公理为前提,或者以被证明了的定理为前提。这一方法后来成了建立任何知识体系的典范,在差不多2000年间,被奉为必须遵守的严密思维的范例。《几何原本》是古希腊数学发展的顶峰。欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少著作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何著作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学著作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体结果。还有一些著作未能确定是否属于欧几里得所著,而且已经散失。 欧几里德的《几何原本》中收录了23个定义,5个公理,5个公设,并以此推导出48个命题(第一卷)。
西柚不是西游2023-05-18 13:55:561

请问中国的欧几里得是指哪一位

1、被称为中国的欧几里德的是刘徽。刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。2、欧几里得(英文:Euclid;希腊文:Ευκλειδης,公元前330年-公元前275年),古希腊人,数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为"几何之父"。更多关于中国的欧几里得是指哪一位,进入:https://www.abcgonglue.com/ask/fa09031616093476.html?zd查看更多内容
大鱼炖火锅2023-05-18 13:55:561

请问中国的欧几里得是哪位?

1、中国的欧几里得是刘徽。2、刘徽(约225年—约295年),汉族,山东滨州邹抄平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。3、刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。4、用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论袭述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。更多关于中国的欧几里得是哪位,进入:https://www.abcgonglue.com/ask/d1bb711616094659.html?zd查看更多内容
苏州马小云2023-05-18 13:55:561

欧几里得的著作有哪些?

公元前337年,马其顿国王腓力二世用武力征服了希腊各城邦。次年亚历山大即位,在很短的时间内,他继承父业,开创了一个横跨欧、亚、非三大陆的马其顿王国。在地中海沿岸的尼罗河三角洲上,亚历山大建立了以他名字命名的城市——亚历山大城,并把它作为这个庞大帝国的文化、商业和工业中心,同时也是科学思想的中心。这儿有称誉世界拥有70万卷藏书的图书馆,还有博物馆、天文台和闻名天下的博学园,成为当时欧洲乃至世界数学的中心。欧几里得就是被亚历山大的后继者——托勒密一世重金聘请到博学园的教师。欧几里得本人始终是个难解的秘密。无人知道他的生死年月和诞生地,惟一可以确定的是他在托勒密一世(公元前305年至公元前285年)执政期间在亚历山大城工作过。根据一些间接的记载推测,欧几里得早年可能在雅典接受过教育,而且曾就学、工作于柏拉图学院,因此熟知希腊的数学知识。古籍中记述了两则故事说明了欧几里得的治学态度。一个故事说:有一天,托勒密国王问欧几里得,除了他的《几何原本》之外,有没有其他学习几何的捷径。欧几里得回答道:“几何无王者之道。”意思是在几何学里,没有专门为国王铺设的大路。这句话后来被引申为“求知无坦途”,成为千古传诵的箴言。另一个故事说:一个学生才开始学习第三个几何命题,就问学了几何之后将得到些什么。欧几里得说:“给他三个钱币让他走吧,因为他只想在学习中获取实力。”从古籍记载的这两则故事可知,欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧、急功近利的作风。欧几里得是一个杰出的科学家,他标志着当时的科学中心从雅典过渡到了亚历山大城。欧几里得的名字与几何学是不可分割的,因为他写了一本几何教科书《几何原本》,此书至今还是几何学的权威著作,当然也经过一些修改。印刷术发明后,出过一千多版。“我学了欧几里得”就是“我学了几何学”的同义语,这句话并非很久以前说的。所以,欧几里得是最成功的不朽的几何教科书作者。然而欧几里得作为一位数学家的盛名,并非由于他本人的研究成果。在他书中,只有极少的定理是他自己创立的。他所做的一切,以及使他成为伟大的数学家的,就在于他利用了泰勒斯时代以来积累的数学知识,把两个半世纪的劳动成果条理化、系统化,并且编纂成了一本著作。在编写此书时,他一开始就推出一系列令人钦佩的简要而精致的公理和公式。然后他将定理一一排列,其逻辑性非常强,几乎无须改进。历来公认归功于欧几里得本人的惟一定理,就是他为毕达哥拉斯定理提出的证明。虽然他的这一伟大论著主要涉及几何学,但也提出了比率和比例的问题,以及现在为大家所知的数论问题,正是欧几里得证明了素数是无限的。他还通过一系列干脆利落至今尚未作过任何改进的论证,证明了2的平方根是无理数。他还通过将光视为直线,使光学成为几何学的一部分。当然欧几里得并没有概括希腊的全部数学,甚至也没有概括全部几何学。继他之后,希腊数学在相当长时期内,一直生气蓬勃,像阿波洛尼乌斯和阿基米德等人,都为数学增添了一大笔财富。后来的哥白尼、开普勒、伽利略、牛顿这些卓越的科学人物,统统都接受了欧几里得的传统。他们都认真地学习过欧几里得的《几何原本》,并使之成为他们数学知识的基础。欧几里得对牛顿的影响尤为明显。牛顿的《数学原理》一书,就是按照类似于《几何原本》的“几何学”的形式写成的。自那以后,许多西方的科学家都效仿欧几里得,说明他们的结论是如何从最初的几个假设推导出来的。许多数学家,像伯莎德·罗素、阿尔弗雷德·怀特海,以及一些哲学家,如斯宾诺莎也都如此。除《几何原本》外,欧几里得还有不少著作,如《已知数》、《图形的分割》、《纠错集》、《圆锥典线》、《曲面轨迹》、《观测天文学》等,可惜大都失传了。不过,经过两干多年的历史考验,影响最大的仍然是《几何原本》。
左迁2023-05-18 13:55:561

欧几里得距离是多少?

欧几里得距离是z=√x2+y2。欧式距离也就是我们常说的欧几里得距离也就是z=x2+y2,然后也就是对应到平面上求两个点的距离的时候用横纵坐标之差然后开根号即可,就是现在在班里学习文化课的同学数学课本上的计算公式,很好理解不过这种一般用于题目给定你是这样计算距离。欧几里得度量也称欧氏距离,是一个通常采用的距离定义,指在m维空间中两个点之间的真实距离,或者向量的自然长度即该点到原点的距离,在二维和三维空间中的欧氏距离就是两点之间的实际距离。欧氏的距离所谓欧氏距离变换,是指对于一张二值图像再此我们假定白色为前景色,黑色为背景色,将前景中的像素的值转化为该点到达最近的背景点的距离,欧氏距离变换在数字图像处理中的应用范围很广泛,尤其对于图像的骨架提取,是一个很好的参照。
北境漫步2023-05-18 13:55:561

欧几里得一生的故事

出生 受罪 死去
大鱼炖火锅2023-05-18 13:55:563

古希腊欧几里得称为()

称为几何之父
墨然殇2023-05-18 13:55:562

阿基米德是欧几里得的学生的学生吗

阿基米德(Archimedes) 生卒年代:前287-212 古希腊伟大的数学家、力学家。 欧几里德(Euclid of Alexandria),希腊数学家。约生于公元前330年,约殁于公元前260年。 欧几里德是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。
kikcik2023-05-18 13:55:561

欧几里得的故事

  欧几里得是古希腊的 数学 家,世界最伟大的数学家之一,被人们成为“几何之父”。下面是我搜集整理的欧几里得的 故事 ,希望对你有帮助。  欧几里得的故事   那时候的人们都崇敬欧几里得的学问,都纷纷前来拜欧几里得为师。学生越来越多,但也有一些人只是来凑热闹,看别人来学几何,他也来。一位学生这样问欧几里得:“老师,我们学习几何有什么用?”欧几里得思考后,叫人拿了一点钱给那位学生,并对他说:“看来你拿不到钱是不会学几何的。”   据说那时候几何学几乎成了一个人们的话题,就连亚历山大大国王也想来赶赶时髦。于是他把欧几里得请进王宫,为他讲授几何学。没想到才学了一会儿,国王便觉得很吃力了。于是他问欧几里得有什么捷径能够学习几何。欧几里得很抱歉的对陛下说学习几何就跟学习科学一样是没有捷径可以走的。   那时候没有人知道金字塔到底有多高,甚至有人说想要测量金字塔比登天还难。欧几里得听了就笑着对别人说:当你的影子和你一样高的时候,你就可以测金字塔的影子,这样你就知道金字塔多高了。   欧几里得的简介   欧几里得(希腊文:Ευκλειδης,公元前330年—公元前275年),古希腊数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,欧几里得有一本数学著作,叫做《几何原本》。欧几里得这名字是希腊文的中 文化 名,意思是好的名誉。著名的古希腊学者阿基米德是他的徒孙。作为亚历山大大学的教授,欧几里得不仅是一位学识渊博的数学家,也是一位和蔼和亲、孜孜不倦的 教育 家。他始终牢记柏拉图学园的严谨求实的学风,对待学生该严格时严格,该仁慈时仁慈,对于在学习上不肯努力的学生,欧几里得都会毫不留情的批评他们。   曾经有书中记载着这样一个故事:说是当时的数学成为人们生活中一个时髦的话题的功劳都来自于欧几里得对数学的推动作用。当时的国王也想赶赶时髦,但是欧几里得研究的几何也确实让国王犯了头疼,他问欧几里得学习几何的捷径,欧几里得说学习数学和学习科学一样是没有捷径可走的。   欧几里得空间是什么   欧几里得空间是一个特别的度量空间,简称为欧式空间。欧几里得空间是对古希腊数学家欧几里得所研究的二维和三维空间的一般化,所谓的一般化就是把欧几里得对于距离的长度和角度转化为坐标系。当一个线性空间定义了内积以后就成了欧式空间。   古希腊时候,人们都喜欢建筑又高又大的金字塔,可是那时候没有人知道金字塔究竟有多高。甚至有人说想要测量金字塔的高度比上天还难。欧几里得听了以后就笑着告诉别人:这一点也不难,你的影子和身体一样长的时候就可以测量金字塔的高度了。   欧几里得在数学上的造诣颇深,当时的雅典是古希腊的文明中心,浓浓的文化气息深深吸引着欧几里得。欧几里得在数学上的学问很高,来拜他为师的学生也不计其数,甚至越来越多。曾经一位学生问欧几里得学习几何有什么好处,欧几里得听后就 命令 人把钱拿给这位学生,并且说道:“看来你拿不到钱是不会学几何的。”   欧几里得作为亚历山大大学的教授,他对学生的态度既和蔼又严肃,对待那些不肯再学习上下功夫的学生,他都会严厉的批评。因为他始终牢记柏拉图学园的严谨求实的学风。他创作的《几何原本》里面的内容记述了自己的观点与前任的思想,是一本数学 历史 巨著。
Chen2023-05-18 13:55:551

欧几里得算法

欧几里得算法又称辗转相除法,用于计算两个正整数的最大公约数。 此算法用于求解方程 的整数解。 证明推导过程: 首先列出方程组: 根据欧几里得算法: 根据多项式恒等定理: 以此递推公式可以用递归函数求解。
kikcik2023-05-18 13:55:551

什么是欧几里得距离?

欧几里得距离定义: 欧几里得距离也称欧式距离,它是一个通常采用的距离定义,它是在m维空间中两个点之间的真实距离。在二维和三维空间中的欧式距离的就是两点之间的距离。使用这个距离,欧氏空间成为度量空间。相关联的范数称为欧几里得范数。较早的文献称之为毕达哥拉斯度量。计算公式二维空间公式:d=sqrt((x1-x2)^+(y1-y2)^)。三维空间公式:d=sqrt(x1-x2)^+(y1-y2)^+(z1-z2)^) 。推广到n维空间,欧式距离的公式是:d=sqrt(∑(xi1-xi2)^ )这里i=1,2...n xi1表示第一个点的第i维坐标,xi2表示第二个点的第i维坐标。n维欧氏空间是一个点集,它的每个点可以表示为(x(1),x(2),...x(n)),其中x(i)(i=1,2...n)是实数,称为x的第i个坐标,两个点x和y=(y(1),y(2)...y(n))之间的距离d(x,y)定义为上面的公式。欧氏距离看作信号的相似程度。距离越近就越相似,就越容易相互干扰,误码率就越高。
Jm-R2023-05-18 13:55:551

欧几里得定理是啥

欧几里得定理是指射影定律直角三角形射影定理,又称“欧几里德定理”,定理内容是直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项,每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。证明思路:因为射影就是将原图形的长度(三角形中称高)缩放,所以宽度是不变的,又因为平面多边形的面积比=边长的平方比。所以就是图形的长度(三角形中称高)的比。那么这个比值应该是平面所成角的余弦值。在两平面中作一直角三角形,并使斜边和一直角边垂直于棱(即原多边形图的平面和射影平面的交线),那么三角形的斜边和另一直角边的比值就是其多边形的长度比,即为平面多边形的面积比,而将这个比值放到该平面三角形中去运算即可。
ardim2023-05-18 13:55:551

欧几里得是古希腊的什么家?

欧几里得是古希腊的数学家。欧几里得(希腊文:Ευκλειδη,公元前330年—公元前275年),古希腊数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公式,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于圆锥曲线、球面几何学及数论的作品。轶事典故那时候,人们建造了高大的金字塔,可是谁也不知道金字塔究竟有多高。有人这么说:“要想测量金字塔的高度,比登天还难!”这话传到欧几里得耳朵里。他笑着告诉别人:“这有什么难的呢?当你的影子跟你的身体一样长的时候,你去量一下金字塔的影子有多长,那长度便等于金字塔的高度!”
瑞瑞爱吃桃2023-05-18 13:55:551

请问中国的欧几里得是指哪一位?

1、被称为中国的欧几里德的是刘徽。刘徽(约225年—约295年),汉族,山东滨州邹平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。2、欧几里得(英文:Euclid;希腊文:Ευκλειδης,公元前330年-公元前275年),古希腊人,数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为"几何之父"。更多关于中国的欧几里得是指哪一位,进入:https://www.abcgonglue.com/ask/fa09031616093476.html?zd查看更多内容
再也不做站长了2023-05-18 13:55:551

欧几里得是哪国人?

亚历山大里亚的欧几里得(希腊文:Ευκλειδη�0�9 ,约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人
凡尘2023-05-18 13:55:551

中国的欧几里得是哪位

1、中国的欧几里得是刘徽。2、刘徽(约225年—约295年),汉族,山东滨州邹抄平市人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。3、刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。4、用数的同类与异类阐述了通分、约分、四则运算,以及繁分数化简等的运算法则;在开方术的注释中,他从开方不尽的意义出发,论袭述了无理方根的存在,并引进了新数,创造了用十进分数无限逼近无理根的方法。更多关于中国的欧几里得是哪位,进入:https://www.abcgonglue.com/ask/d1bb711616094659.html?zd查看更多内容
大鱼炖火锅2023-05-18 13:55:551

欧几里得证明的勾股定理

瑞瑞爱吃桃2023-05-18 13:55:553

欧几里得有哪些著作?

公元前337年,马其顿国王腓力二世用武力征服了希腊各城邦。次年亚历山大即位,在很短的时间内,他继承父业,开创了一个横跨欧、亚、非三大陆的马其顿王国。在地中海沿岸的尼罗河三角洲上,亚历山大建立了以他名字命名的城市——亚历山大城,并把它作为这个庞大帝国的文化、商业和工业中心,同时也是科学思想的中心。这儿有称誉世界拥有70万卷藏书的图书馆,还有博物馆、天文台和闻名天下的博学园,成为当时欧洲乃至世界数学的中心。欧几里得就是被亚历山大的后继者——托勒密一世重金聘请到博学园的教师。欧几里得本人始终是个难解的秘密。无人知道他的生死年月和诞生地,惟一可以确定的是他在托勒密一世(公元前305年至公元前285年)执政期间在亚历山大城工作过。根据一些间接的记载推测,欧几里得早年可能在雅典接受过教育,而且曾就学、工作于柏拉图学院,因此熟知希腊的数学知识。古籍中记述了两则故事说明了欧几里得的治学态度。一个故事说:有一天,托勒密国王问欧几里得,除了他的《几何原本》之外,有没有其他学习几何的捷径。欧几里得回答道:“几何无王者之道。”意思是在几何学里,没有专门为国王铺设的大路。这句话后来被引申为“求知无坦途”,成为千古传诵的箴言。另一个故事说:一个学生才开始学习第三个几何命题,就问学了几何之后将得到些什么。欧几里得说:“给他三个钱币让他走吧,因为他只想在学习中获取实力。”从古籍记载的这两则故事可知,欧几里得主张学习必须循序渐进、刻苦钻研,不赞成投机取巧、急功近利的作风。欧几里得是一个杰出的科学家,他标志着当时的科学中心从雅典过渡到了亚历山大城。欧几里得的名字与几何学是不可分割的,因为他写了一本几何教科书《几何原本》,此书至今还是几何学的权威著作,当然也经过一些修改。印刷术发明后,出过一千多版。“我学了欧几里得”就是“我学了几何学”的同义语,这句话并非很久以前说的。所以,欧几里得是最成功的不朽的几何教科书作者。然而欧几里得作为一位数学家的盛名,并非由于他本人的研究成果。在他书中,只有极少的定理是他自己创立的。他所做的一切,以及使他成为伟大的数学家的,就在于他利用了泰勒斯时代以来积累的数学知识,把两个半世纪的劳动成果条理化、系统化,并且编纂成了一本著作。在编写此书时,他一开始就推出一系列令人钦佩的简要而精致的公理和公式。然后他将定理一一排列,其逻辑性非常强,几乎无须改进。历来公认归功于欧几里得本人的惟一定理,就是他为毕达哥拉斯定理提出的证明。虽然他的这一伟大论著主要涉及几何学,但也提出了比率和比例的问题,以及现在为大家所知的数论问题,正是欧几里得证明了素数是无限的。他还通过一系列干脆利落至今尚未作过任何改进的论证,证明了2的平方根是无理数。他还通过将光视为直线,使光学成为几何学的一部分。当然欧几里得并没有概括希腊的全部数学,甚至也没有概括全部几何学。继他之后,希腊数学在相当长时期内,一直生气蓬勃,像阿波洛尼乌斯和阿基米德等人,都为数学增添了一大笔财富。后来的哥白尼、开普勒、伽利略、牛顿这些卓越的科学人物,统统都接受了欧几里得的传统。他们都认真地学习过欧几里得的《几何原本》,并使之成为他们数学知识的基础。欧几里得对牛顿的影响尤为明显。牛顿的《数学原理》一书,就是按照类似于《几何原本》的“几何学”的形式写成的。自那以后,许多西方的科学家都效仿欧几里得,说明他们的结论是如何从最初的几个假设推导出来的。许多数学家,像伯莎德?罗素、阿尔弗雷德?怀特海,以及一些哲学家,如斯宾诺莎也都如此。除《几何原本》外,欧几里得还有不少著作,如《已知数》、《图形的分割》、《纠错集》、《圆锥典线》、《曲面轨迹》、《观测天文学》等,可惜大都失传了。不过,经过两千多年的历史考验,影响最大的仍然是《几何原本》。
凡尘2023-05-18 13:55:551

欧几里得几何适用于

欧几里得几何适用于A. 正曲率空间(如球面) B. 负曲率空间(如马鞍面) C. 平直空间(如平面) D. 所有空间 相关知识点: 解析 C 欧几里得(希腊文:Ευκλειδης ,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。最早的几何学兴起于公元前7世纪的古埃及,后经古希腊人传到古希腊的都城,又借毕达哥拉斯学派系统奠基。在欧几里得以前,人们已经积累了许多几何学的知识,然而这些知识存在一个很大的缺点和不足,就是缺乏系统性。大多数是片断、零碎的知识,公理与公理之间、证明与证明之间并没有什么很强的联系性,更不要说对公式和定理进行严格的逻辑论证和说明。在柏拉图学派晚期导师普罗克洛斯(约公元410年~公元485年)的《几何学发展概要》中,就记载着这样一则故事,说的是数学在欧几里得的推动下,逐渐成为人们生活中的一个时髦话题以至于当时亚里山大国王托勒密一世也想赶这一时髦,学一点几何学。
小菜G的建站之路2023-05-18 13:55:551

什么是欧几里得几何?

简称“欧氏几何”。几何学的一门分科。公元前3世纪,古希腊数学家欧几里德把人们公认的一些几何知识作为定义和公理,在此基础上研究图形的性质,推导出一系列定理,组成演绎体系,写出《几何原本》,形成了欧氏几何。在其公理体系中,最重要的是平行公理,由于对这一公理的不同认识,导致非欧几何的产生。按所讨论的图形在平面上或空间中,分别称为“平面几何”与“立体几何”。
拌三丝2023-05-18 13:55:553

欧几里得数学竞赛含金量

欧几里得是这几个竞赛里知名度最 高,也是加拿大最 具认可度的数学竞赛,含金量极高。刘徽(约225年-约295年),山东滨州邹平市。魏晋时期的数学家,是我国古典数学的奠基人之一,著有《九章算术注》和《海岛算经》。《九章算术注》是给《九章算术》作的注解,他提出了。正负数的概念及其加减运算法则,他利用割圆术求出圆周率π=3.1416,在代数和几何方面都做出了很多创造性的贡献,有“中国的欧几里德”“中国数学史上的牛顿”之称。《海岛算经》因为第一题就是测量一个海岛的高远问题,所以书名就叫了“海岛算经”。拓展:欧几里得和梦戴维都是几何学上的重要定理,它们之间的区别在于:1. 定理内容:欧几里得定理,也称勾股定理,指的是直角三角形的两条直角边的平方和等于斜边的平方;梦戴维定理则涉及到三角形的面积,它规定三角形的面积等于底边与高的乘积的一半。2. 研究领域:欧几里得定理属于平面几何学中的基础内容,是大多数人在学习数学时必须掌握的知识点,而梦戴维定理则是立体几何学中的内容,较少被广泛运用。3. 历史背景:欧几里得定理的命名来源于公元前300年左右的希腊数学家欧几里得,而梦戴维定理则是在17世纪由法国数学家梦戴维发现并命名的。总之,欧几里得定理和梦戴维定理虽然都是几何学上的重要定理,但在研究领域、定理内容和历史背景上存在区别。
Jm-R2023-05-18 13:55:551

我想问一下中国的欧几里得是哪一位

被称为“中国的欧几里德”的是刘徽,刘徽是魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。刘徽是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。更多关于中国的欧几里得是哪一位,进入:https://m.abcgonglue.com/ask/7e1f3b1615835376.html?zd查看更多内容
再也不做站长了2023-05-18 13:55:551

欧几里得与《几何原本》有什么关系?

欧几里得(约公元前330~前275年)欧几里得,古希腊数学家,出生于雅典。欧几里得是柏拉图的学生。他的科学活动主要在亚历山大进行,在那里建立了以他为首的数学学派。在欧几里得以前,已有一些数学家证明了几何学的某些基本定理,并取得了不少成就。欧几里得总结了前人的几何知识和研究成果,并加以系统化。他把人们公认的一些事实列成定义和公理,使用逻辑推理方法,给定理以演绎证明。公理中最著名的有平行公理,而平面上一直线和两直线相交,当同旁两内角之和小于两直角时,则两直线在该侧充分延长后一定相交。用这些定义、公理和定理来研究图形性质而形成的欧几里得几何学,简称欧氏几何学。欧几里得最著名的著作是《几何原本》,共13卷。《几何原本》曾被译成世界上各种文字,它一直受到各个历史时期数学工作者的重视。长期以来,《几何原本》的几何学部分一直是一本广为采用的几何学教科书。除《几何原本》外,欧几里得还著有《数据》、《论图形分割》、《论数学的伪结论》、《平面轨迹》、《音乐原理》等。
kikcik2023-05-18 13:55:551
 1 2  下一页  尾页