数学名著

中国古代数学名著《九章算术》中出现的数学问题有哪些

  《九章算术》收有246个数学问题,分为九章。它们的主要内容分别是:第一章“方田”,研究田亩面积计算;第二章“粟米”,研究谷物粮食的按比例折换;第三章“衰分”,研究比例分配问题;第四章“少广”,已知面积、体积、求其一边长和径长等;第五章“商功”,研究土石工程、体积计算;第六章“均输”,研究合理摊派赋税;第七章“盈不足”,即双设法问题;第八章“方程”,研究一次方程组问题;第九章“勾股”,利用勾股定理求解。
人类地板流精华2023-07-18 14:10:141

数学名著有哪些 有什么数学名著(包括作者名称)希望大家可以提供

国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就.可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位.中国古代的许多数学家曾经写下了不少著名的数学著作.许多具有世界意义的成就正是因为有了这些古算书而得以流传下来.这些中国古代数学名著是了解古代数学成就的丰富宝库. 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了.能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就. 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的.直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现.现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物. 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意.在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产. 《算经十书》 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书.十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》. 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪).《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作.就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算.当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载. 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部.它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的.在中国,它在一千几百年间被直接用作数学教育的教科书.它还影响到国外,朝鲜和日本也都曾拿它当作教科书. 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补.《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作.1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系.可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了.正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章. 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法.书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题.《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法.还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的.这要比欧洲同类算法早出一千五百多年.在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则. 《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外.在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲.再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”.现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版. 《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作.这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题.这些测量数学,正是中国古代非常先进的地图学的数学基础.此外,刘徽对《九章算术》所作的注释工作也是很有名的.一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明.刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题. 《算经十书》的其余几部书也记载有一些具有世界意义的成就.例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名.而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的. 《缀术》是南北朝时期著名数学家祖冲之的著作.很可惜,这部书在唐宋之际公元十世纪前后失传了.宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数.祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书?律历志》中(参见本书第101页). 《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了. 宋元算书 中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系.在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展.宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页. 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家.所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年). 《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页).书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多.《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学.杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法.这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件.朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容.《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页). 宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年. 宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的. 宋元以后,明清时期也有很多算书.例如明代就有著名的算书《算法统宗》.这是一部风行一时的讲珠算盘的书.入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了.特别是在明末清初以后的许多算书中,有不少是介绍西方数学的.这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程. 中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了.我们深信,经过努力,中国数学一定能迎头赶上世界先进水平. 注释: ① 贝佐也译作裴蜀或比左.
凡尘2023-05-21 08:45:281

中国古代的数学名著有哪些??

摘要:当前英语教学普遍存在的问题是“费时较多,收效较低”,很多教师的教学方法仍然是“满堂灌”,整个教学过程未尊重学生的个性,未兼顾学生的个体差异。我们学校平均每班五十人左右,在这种大班教学条件下只有兼顾学生差异才能提高英语教学的效果。  关键词:兼顾;差异、分层教学  面对一个班级的四、五十人,教师如果以同样的教学目标、教学方法、教学要求以及教学模式去培养学生,会严重忽视学生的个体差异,导致课堂上合作交流少,信息反馈不够,影响教学过程的优化。而且,这种以教师讲解为中心的教学方式,学生大多时候是处于被动学习状态?
wpBeta2023-05-21 08:45:082

《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五

豆豆staR2023-05-21 08:45:062

我国古代数学名著《孙子算经》的作者跟孙膑的关系

应该没有关系,因为他们不是同一时代的著作,只是姓氏相同吧
再也不做站长了2023-05-20 22:10:085

我国古代数学名著《孙子算经》上有这样一道题;今有鸡兔同笼,上有35头,下有94足,问鸡兔个几头?【用方程】

鸡有23,兔有12
瑞瑞爱吃桃2023-05-20 22:10:082

我国古代数学名著《孙子算经》的作者跟孙膑的关系

应该没有关系,因为他们不是同一时代的著作,只是姓氏相同吧
wpBeta2023-05-20 22:10:065

秦汗时期的两部数学名著

《开开心心学数学?
善士六合2023-05-20 22:09:517

数学名著《周髀算经》内容 急急急急急急急急急!!!

周髀算经《周髀算经》是中国流传至今的最早的一部数学著作,同时也是一部天文学著作。 中国古代按所提出的宇宙模式的不同,在天文学上曾有三种学说。“盖天说”是其中之一,而《周髀算经》是“盖天说”的代表。这派学说主张:天象盖笠,地法覆盆(天空如斗笠,大地像翻扣的盆)。 据考证,现传本《周髀算经》大约成书于西汉时期(公元前一世纪)。南宋时的传刻本(1213)是目前传世的最早刻本。历代许多数学家都曾为此书作注,其中最著名的是唐李淳风等人所作的注。《周髀算经》还曾传入朝鲜和日本,在那里也有不少翻刻注释本行世。 从所包含的数学内容来看,书中主要讲述了学习数学的方法、用勾股定理来计算高深远近和比较复杂的分数计算等。周髀算经正文周髀算经卷上之一昔者周公问于商高曰。窃闻乎大夫善数也。 请问古者包牺立周天历度。 夫天不可阶而升。地不可得尺寸而度。 请问数安从出。 商高曰。数之法。出于圆方。 圆出于方。方出于矩。 矩出于九九八十一。 故折矩。 以为句。广三。 股修四。 径隅五。 既方其外。半之一矩。 环而共盘。得成三四五。 两矩共长二十有五。是谓积矩。 故禹之所以治天下者。此数之所生也。 周公曰。大哉言数。 请问用矩之道。 商高曰。平矩以正绳。 偃矩以望高。覆矩以测深。卧矩以知远。 环矩以为圆。合矩以为方。 方属地。圆属天。天圆地方。 方数为典。以方出圆。 笠以写天。 天青黑。地黄赤。天数之为笠也。青黑为表。丹黄为里。以象天地之位。 是故。知地者智。知天者圣。 智出于句。 句出于矩。 夫矩之于数。其裁制万物。惟所为耳。 周公曰。善哉。 周髀算经卷上之二昔者。荣方问于陈子。 曰。今者窃闻夫子之道。 知日之高大。 光之所照。一日所行。远近之数。 人所望见。 四极之穷。 列星之宿。 天地之广袤。 夫子之道。皆能知之。其信有之乎。 陈子曰。然。 荣方曰。方虽不省。愿夫子幸而说之。 今若方者。可教此道耶。 陈子曰。然。 此皆算术之所及。 子之于算。足以知此矣。若诚累思之。 于是荣方归而思之。数日不能得。 复见陈子曰。方、思之不能得。敢请问之。陈子曰。思之未熟。 此亦望远起高之术。而子?能得。则子之于数。未能通类。 是智有所不及。而神有所穷。 夫道术、言约而用博者。智类之明。 问一类而以万事达者。谓之知道。 今子所学。 算数之术。是用智矣。而尚有所难。是子之智类单。 夫道术所以难通者。既学矣。患其不博。 既博矣。患其不习。 既习矣。患其不能知。 故同术相学。 同事相观。此列士之愚智。 贤不肖之所分。 是故能类以合类。此贤者业精习智之质也。 夫学同业而不能入神者。此不肖无智。而业不能精习。 是故算不能精习。吾岂以道隐子哉。固复熟思之。 荣方复归思之。数日不能得。复见陈子曰。方思之以精熟矣。智有所不及。而神有所穷。知不能得。愿终请说之。 陈子曰。复坐。吾语汝。于是荣方复坐而请陈子之说。曰夏至南万六千里。冬至南十三万五千里。 日中立竿测影。 此一者。天道之数。 周髀长八尺。夏至之日晷一尺六寸。 髀者。股也。正晷者。句也。 正南千里。句一尺五寸。正北千里。句一尺七寸。 日益表。南晷日益长。候句六尺。 即取竹空径一寸。长八尺。捕影而视之。空正掩日。 而日应空之孔。 由此观之。率八十寸。而得径一寸。 故以句为首。以髀为股。 从髀至日下六万里。而髀无影。从此以上至日。则八万里。 以率率之。八十里得径一里。十万里得径千二百五十里。 故曰。日晷径。千二百五十里。 若求邪至日者。以日下为句。日高为股。句股各自乘。并而开方除之。得邪至日。从髀所旁至日所。十万里。 法曰。周髀长八尺。句之损益。寸千里。 故曰。极者天广袤也。 今立表高八尺以望极。其句一丈三寸。由此观之。则从周北十万三千里而至极下。 荣方曰。周髀者何。陈子曰。古时天子治周。 此数望之从周。故曰周髀。 髀者。表也。 日夏至南万六千里。日冬至南十三万五十里。日中无影。以此观之。从南至夏至之日中十一万九千里。 北至其夜半亦然。 凡径。二十三万八千里。 此夏至日道之径也。其周。七十一万四千里。 从夏至之日中。至冬至之日中。十一万九千里。 北至极下亦然。则从极南至冬至之日中。二十三万八千里。从极北至其夜半亦然。凡径四十七万六千里。此冬至日道径也。其周百四十二万八千里。从春秋分之日中北至极下。十七万八千五百里。 从极下北至其夜半亦然。凡径三十五万七千里。周一百七万一千里。故曰月之道常缘宿。日道亦与宿正。 南至夏至之日中。北至冬至之夜半。南至冬至之日中。北至夏至之夜半。亦径三十五万七千里。周一百七万一千里。 春分之日夜分。以至秋分之日夜分。极下常有日光。 秋分之日夜分。以至春分之日夜分。极下常无日光。 故春秋分之日夜分之时。日光所照。适至极。阴阳之分等也。冬至夏至者。日道发敛之所生也。至昼夜长短之所极。 春秋分者。阴阳之修。昼夜之象。 昼者阳。夜者阴。 春分以至秋分。昼之象。 秋分至春分。夜之象。故春秋分之日中。光之所照北极下。夜半日光之所照亦南至极。此日夜分之时也。故曰日照四旁。各十六万七千里。 人所望见远近。宜如日光所照。 从周所望见。北过极六万四千里。 南过冬至之日三万二千里。 夏至之日中光。南过冬至之日中光四万八千里。 南过人所望见万六千里。 北过周十五万一千里。北过极四万八千里。 冬至之夜半日光。南不至人目所见七千里。 不至极下七万一千里。 夏至之日中与夜半日光九万六千里。过极相接。 冬至之日中与夜半日光。不相及十四万二千里。不至极下七万一千里。 夏至之日。正东西望。直周东西日下至周五万九千五百九十八里半。冬至之日。正东西方不见日。 以算求之。日下至周二十一万四千五百五十七里半。 凡此数者。日道之发敛。 冬至夏至。观律之数。听钟之音。 冬至昼。夏至夜。 差数及日光所还观之。 四极径八十一万里。周二百四十三万里。 从周南至日照处三十万二千里。 周北至日照处五十万八千里。 东西各三十九万一千六百八十三里半。 周在天中南十万三千里。故东西短中径二万六千六百三十二里有奇。 周北五十万八千里。冬至日十三万五千里。冬至日道径四十七万六千里。周百四十二万八千里。日光四极。当周东西各三十九万一千六百八十三里有奇。 此方圆之法。 周髀算经卷上之三凡为此图。以丈为尺。以尺为寸。以寸为分。分、一千里。凡用缯方八尺一寸。今用缯方四尺五分。分、为二千里。 吕氏曰。凡四海之内。东西二万八千里。南北二万六千里。 凡为日月运行之圆周。七衡周而六闲。以当六月。 节六月为百八十二日八分日之五。 故日夏至在东井极内衡。日冬至在牵牛极外衡也。 衡复更。终冬至。 故曰一岁三百六十五日四分日之一。岁一内极一外极。 三十日十六分日之七。月一外极一内极。 是故。一衡之闲。万九千八百三十三里三分里之一。即为百步。 欲知次衡径。倍而增内衡之径。 二之。以增内衡径。 次衡放此。 内一衡径二十三万八千里。周七十一万四千里。分为三百六十五度四分度之一。度得一千九百五十四里二百四十七步千四百六十一分步之九百三十三。 次二衡径二十七万七千六百六十六里二百步。周八十三万三千里。分里为度。度得二千二百八十里百八十八步千四百六十一分步之千三百三十二。 次三衡径三十一万七千三百三十三里一百步。周九十五万二千里。分为度。度得二千六百六里百三十步千四百六十一分步之二百七十。 次四衡径三十五万七千里。周一百七万一千里。分为度。度得二千九百三十二里七十一步四千百六十一分步之六百六十九。 次五衡径三十九万六千六百六十六里二百步。周百一十九万里。分为度。度得三千二百五十八里十二步千四百六十一分步之千六十八。 次六衡径四十三万六千三百三十三里一百步。周百三十万九千里。分为度。度得三千五百八十三里二百五十四步千四百六十一分步之六。 次七衡径四十七万六千里周百四十二万八千里。分为度。度得三千九百九里一百九十五步千四百六十一分步之四百五。 其次曰。冬至所北照过北衡十六万七千里。 为径八十一万里。 周二百四十三万里。 分为三百六十五度四分度之一。度得六千六百五十二里二百九十三步千四百六十一分步之三百二十七。过北而往者。未之或知。 或知者。或疑其可知。或疑其难知。此言上圣不学而知之。 故冬至日晷丈三尺五寸。夏至日晷尺六寸。冬至日晷长。夏至日晷短。日晷损益寸。差千里。故冬至夏至之日。南北游十一万九千里。四极径八十一万里。周二百四十三万里。分为度。度得六千六百五十二里二百九十三步千四百六十一分步之三百二十七。此度之相去也。 其南北游日六百五十一里一百八十二步一千四百六十一分步之七百九十八。 术曰。置十一万九千里为实。以半岁一百八十二日八分日之五为法。 而通之。 得九十五万二千为实。 所得一千四百六十一为法。除之。 实如法得一里。不满法者。三之。如法得百。步。 不满法者十之。如法得十。步。 不满法者十之。如法得一。步。 不满法者。以法命之。 周髀算经卷下之一凡日月运行。四极之道。 极下者。其地高人所居六万里。滂沱四颓而下。 天之中央。亦高四旁六万里。 故日光外所照。经八十一万里。周二百四十三万里。 故日运行处极北。北方日中。南方夜半。日在极东。东方日中。西方夜半。日在极南。南方日中。北方夜半。日在极西。西方日中。东方夜半。凡此四方者。天地四极四和。 昼夜易处。 加四时相及。 然其阴阳所终。冬夏所极。皆若一也。 天象盖笠。地法覆盘。 天离地八万里。 冬至之日。虽在外衡。常出极下地上二万里。 故日兆月。 月光乃出。故成明月。 星辰乃得行列。 是故秋分以往到冬至。三光之精微。以成其道远。 此天地阴阳之性自然也。 欲知北极枢。旋周四极。 当以夏至夜半时。北极南游所极。 冬至夜半时。北游所极。 冬至日加酉之时。西游所极。 日加卯之时。东游所极。 此北极璇玑四游。 正北极枢。璇玑之中。正北。天之中。 正极之所游。冬至日加酉之时。立八尺表。以绳系表颠。希望北极中大星。引绳计地而识之。 又到旦明日加卯之时。复引绳希望之。首及绳致地。而识其端相去二尺三寸。 故东西极二万三千里。 其两端相去。正东西。 中折之。以指表。正南北。 加此时者。皆以漏揆度之。此东西南北之时。 其绳致地。所识去表丈三寸。故天之中去周十万三千里。 何以知其南北极之时。以冬至夜半北游所极也。北过天中万一千五百里。以夏至南游所极。不及天中万一千五百里。此皆以绳系表颠而希望之。北极至地所识丈一尺四寸半。故去周十一万四千五百里。 过天中万一千五百里。其南极至地所识九尺一寸半。故去周九万一千五百里。其南不及天中万一千五百里。此璇玑四极南北过不及之法。东西南北之正句。 周去极十万三千里。日去人十六万七千里。夏至去周万六千里。夏至日道径二十三万八千里。周七十一万四千里。春秋分日道径三十五万七千里。周百七万一千里。冬至日道径四十三万六千里。周百四十二万八千里。日光四极八十一万里。周二百四十三万里。从周南三十万二千里。 璇玑径二万三千里。周六万九千里。此阳绝阴彰。故不生万物。 其术曰。立正句定之。 以日始出。立表而识其晷。日入复识其晷。晷之两端相直者。正东西也。中折之。指表者。正南北也。极下不生万物。何以知之。 冬至之日。去夏至十一万九千里。万物尽死。夏至之日。去北极十一万九千里。是以知极下不生万物。北极左右。夏有不释之冰。 春分秋分。日在中衡。春分以往。日益北五万九千五百里而夏至。秋分以往。日益南五万九千五百里而冬至。 中衡去周七万五千五百里。 中衡左右。冬有不死之草。夏长之类。 此阳彰阴微。故万物不死。五谷一岁再熟。 凡北极之左右。物有朝生暮获。 立二十八宿。以周天历度之法。 术曰。倍正南方。 以正句定之。即平地径二十一步。周六十三步。令其平矩以水正。 则位径一百二十一尺七寸五分。因而三之。为三百六十五尺四分尺之一。 以应周天三百六十五度四分度之一。审定分之。无令有纤微。 分度以定。则正督经纬。而四分之一。合各九十一度十六分度之五。 于是圆定而正。 则立表正南北之中央。以绳系颠。希望牵牛中央星之中。 则复候须女之星先至者。 如复以表绳。希望须女先至定中。 即以一游仪。希望牵牛中央星。出中正表西几何度。 各如游仪所至之尺。为度数。 游在于八尺之上。故知牵牛八度。 其次星。放此。以尽二十八宿度。则定矣。 立周度者。 各以其所先至游仪度上。 车辐引绳就中央之正以为毂。则正矣。 日所以入。亦以周定之。 欲知日之出入。 以东井夜半中。牵牛之初临子之中。 东井出中正表西三十度十六分度之七而临未之中。牵牛初亦当临丑之中。 于是天与地协。 乃以置周二十八宿。 置以定。乃复置周度之中央。立正表。 以冬至夏至之日。以望日始出也。立一游仪于度上。以望中央表之晷。 晷参正。则日所出之宿度。 日入放此。 周髀算经卷下之二牵牛。去北极百一十五度千六百九十五里二十一步千四百六十一分步之八百一十九。 术曰。置外衡去北极枢二十三万八千里。除璇玑万一千五百里。 其不除者。二十二万六千五百里。以为实。 以内衡一度数千九百五十四里二百四十七步千四百六十一分步之九百三十三以为法。 实如法得一。度。 不满法。求里步。 约之。合三百得一。以为实。 以千四百六十一分为法。得一。里。 不满法者。三之。如法得百。步。 不满法者。又上十之。如法得一。步。 不满法者。以法命之。 次、放此。 娄与角。去北极九十一度六百一十里二百六十四步千四百六十一分步之千二百九十六。 术曰。置中衡去北极枢十七万八千五百里。以为实。 以内衡一度数为法。实如法得一。度。不满法者。求里步。不满法者。以法命之。 东井去北极六十六度千四百八十一里百五十五步千四百六十一分步之千二百四十五。 术曰、置内衡去北极枢十一万九千里。加璇玑万一千五百里。 得十三万五百里。以为实。 以内衡一度数为法。实如法得一。度。不满法者。求里步。不满法者。以法命之。 凡八节二十四气。气损益九寸九分六分分之一。冬至晷长一丈三尺五寸。夏至晷长一尺六寸。问次节损益寸数长短各几何。 冬至晷长丈三尺五寸。 小寒丈二尺五寸。小分五。 大寒丈一尺五寸一分。小分四。 立春丈五寸二分。小分三。 雨水九尺五寸三分。小分二。 启蛰八尺五寸四分。小分一。 春分七尺五寸五分。 清明六尺五寸五分。小分五。 谷雨五尺五寸六分。小分四。 立夏四尺五寸七分。小分三。 小满三尺五寸八分。小分二。 芒种二尺五寸九分。小分一。 夏至一尺六寸。 小暑二尺五寸九分。小分。 大暑三尺五寸八分。小分二。 立秋四尺五寸七分。小分三。 处暑五尺五寸六分。小分四。 白露六尺五寸五分。小分五。 秋分七尺五寸五分。小分一。 寒露八尺五寸四分。小分一。 霜降九尺五寸三分。小分二。 立冬丈五寸二分。小分三。小雪丈一尺五寸一分。小分四。 大雪丈二尺五寸。小分五。 凡为八节二十四气。气损益九寸九分六分分之一。 冬至夏至。为损益之始。 术曰。置冬至晷。以夏至晷减之。余为实。以十二为法。 实如法得一。寸。不满法者。十之。以法除之。得一。分。 不满法者。以法命之。 月后天十三度十九分度之七。 术曰。置章月二百三十五。以章岁十九除之。加日行一度。得十三度十九分度之七。此月一日行之数。即后天之度及分。 小岁。月不及故舍三百五十四度万七千八百六十分度之六千六百一十二。 术曰。置小岁三百五十四日九百四十分日之三百四十八。 以月后天十三度十九分度之七乘之。为实。 又以度分母乘日分母。为法。实如法。得积后天四千七百三十七度万七千八百六十分度之六千六百一十二。 以周天三百六十五度万七千八百六十分度之四千四百六十五除之。 其不足除者。 三百五十四度万七千八百六十分度之六千六百一十二。 此月不及故舍之分度数。他皆放此。 大岁。月不及故舍十八度万七千八百六十分度之万一千六百二十八。 术曰。置大岁三百八十三日九百四十分日之八百四十七。 以月后天十三度十九分度之七乘之。为实。又以度分母乘日分母。为法。实如法。得积后天五千一百三十二度万七千八百六十分度之二千六百九十八。 以周天除之。 其不足除者。 此月不及故舍之分度数。 经岁。月不及故舍百三十四度万七千八百六十分度之万一百五。 术曰。置经岁三百六十五日九百四十分日之二百三十五。 以月后天十三度十九分度之七乘之。为实。又以度分母乘日分母。为法。实如法。得积后天四千八百八十二度万七千八百六十分度之万四千五百七十。 以周天除之。 其不足除者。 此月不及故舍之分度数。 小月。不及故舍二十二度万七千八百六十分度之七千七百五十五。 术曰。置小月二十九日。 以月后天十三度十九分度之七乘之。为实。又以度分母乘日分母。为法。实如法。得积后天三百八十七度万七千八百六十分度之万二千二百二十。 以周天分除之。 其不足除者。此月不及故舍之分度数。 大月。不及故舍三十五度万七千八百六十分度之万四千三百三十五。 术曰。置大月三十日。 以月后天十三度十九分度之七乘之。为实。又以度分母乘日分母。为法。实如法。得积后天四百一度万七千八百六十分度之九百四十。 以周天除之。 其不足除者。 此月不及故舍之分度数。 经月。不及故舍二十九度万七千八百六十分度之九千四百八十一。 术曰。置经月二十九日九百四十分日之四百九十九。 以月后天十三度十九分度之七乘之为实。又以度分母乘日分母。为法。实如法。得积后天三百九十四度万七千八百六十分度之万三千九百四十六。 以周天除之。 其不足除者。 此月不及故舍之分度数。 六百五十二万三千三百六十五除之。得一周。余分五十二万七千四百二十一。即不及故舍之分。以一万七千八百六十除之。得经月不及故舍二十九度。不尽九千四百八十一。即以命分。 周髀算经卷下之三冬至昼极短。日出辰而入申。 阳照三。不覆九。 东西相当。正南方。 夏至昼极长。日出寅而入戌。阳照九。不覆三。 东西相当。正北方。 日出左而入右。南北行。 故冬至从坎阳在子。日出巽而入坤。见日光少。故曰寒。 夏至从离阴在午。日出艮而入干。见日光多。故曰暑。日月失度。而寒暑相奸。 往者诎。来者信也。故诎信相感。 故冬至之后。日右行。夏至之后。日左行。左者往。右者来。 故月与日合。为一月。 日复日。为一日。 日复星。为一岁。 外衡冬至。 内衡夏至。 六气复返。皆谓中气。 阴阳之数。日月之法。十九岁为一章。 四章为一蔀。七十六岁。 二十蔀为一遂。遂千五百二十岁。 三遂为一首。首四千五百六十岁。 七首为一极。极三万一千九百二十岁。生数皆终。万物复始。 天以更元作纪历。 何以知天三百六十五度四分度之一。而日行一度。而月后天十三度十九分度之七。二十九日九百四十分日之四百九十九。为一月。十二月十九分月之七。为一岁。 周天除之。 其不足除者。如合朔。古者包牺神农。制作为历。度元之始。见三光未如其则。 日月列星。未有分度。 日主昼。月主夜。昼夜为一日。日月俱起建星。 月度疾。日度迟。 日月相逐于二十九日三十日闲。 而日行天二十九度余。 未有定分。 于是三百六十五日南极影长。明日反短。以岁终日影反长。故知之三百六十五日者三。三百六十六日者一。 故知一岁三百六十五日四分日之一。岁终也。月积后天十三周。又与百三十四度余。 无虑后天十三度十九分度之七。未有定。 于是日行天七十六周。月行天千一十六周。及合于建星。 置月行后天之数。以日后天之数除之。得十三度十九分度之七。则月一日行天之度。 复置七十六岁之积月。 以七十六岁除之。得十二月十九分月之七。则一岁之月。 置周天度数。以十二月十九分月之七除之。得二十九日九百四十分日之四百九十九。则一月日之数。我怎么记得我刚刚回答过一次你的问题呀,记得还选我哈
大鱼炖火锅2023-05-20 22:09:481

数学名著《周髀算经》内容 急急急急急!!!

周髀算经《周髀算经》是中国流传至今的最早的一部数学著作,同时也是一部天文学著作。 中国古代按所提出的宇宙模式的不同,在天文学上曾有三种学说。“盖天说”是其中之一,而《周髀算经》是“盖天说”的代表。这派学说主张:天象盖笠,地法覆盆(天空如斗笠,大地像翻扣的盆)。 据考证,现传本《周髀算经》大约成书于西汉时期(公元前一世纪)。南宋时的传刻本(1213)是目前传世的最早刻本。历代许多数学家都曾为此书作注,其中最著名的是唐李淳风等人所作的注。《周髀算经》还曾传入朝鲜和日本,在那里也有不少翻刻注释本行世。 从所包含的数学内容来看,书中主要讲述了学习数学的方法、用勾股定理来计算高深远近和比较复杂的分数计算等。周髀算经正文周髀算经卷上之一昔者周公问于商高曰。窃闻乎大夫善数也。 请问古者包牺立周天历度。 夫天不可阶而升。地不可得尺寸而度。 请问数安从出。 商高曰。数之法。出于圆方。 圆出于方。方出于矩。 矩出于九九八十一。 故折矩。 以为句。广三。 股修四。 径隅五。 既方其外。半之一矩。 环而共盘。得成三四五。 两矩共长二十有五。是谓积矩。 故禹之所以治天下者。此数之所生也。 周公曰。大哉言数。 请问用矩之道。 商高曰。平矩以正绳。 偃矩以望高。覆矩以测深。卧矩以知远。 环矩以为圆。合矩以为方。 方属地。圆属天。天圆地方。 方数为典。以方出圆。 笠以写天。 天青黑。地黄赤。天数之为笠也。青黑为表。丹黄为里。以象天地之位。 是故。知地者智。知天者圣。 智出于句。 句出于矩。 夫矩之于数。其裁制万物。惟所为耳。 周公曰。善哉。 周髀算经卷上之二昔者。荣方问于陈子。 曰。今者窃闻夫子之道。 知日之高大。 光之所照。一日所行。远近之数。 人所望见。 四极之穷。 列星之宿。 天地之广袤。 夫子之道。皆能知之。其信有之乎。 陈子曰。然。 荣方曰。方虽不省。愿夫子幸而说之。 今若方者。可教此道耶。 陈子曰。然。 此皆算术之所及。 子之于算。足以知此矣。若诚累思之。 于是荣方归而思之。数日不能得。 复见陈子曰。方、思之不能得。敢请问之。陈子曰。思之未熟。 此亦望远起高之术。而子?能得。则子之于数。未能通类。 是智有所不及。而神有所穷。 夫道术、言约而用博者。智类之明。 问一类而以万事达者。谓之知道。 今子所学。 算数之术。是用智矣。而尚有所难。是子之智类单。 夫道术所以难通者。既学矣。患其不博。 既博矣。患其不习。 既习矣。患其不能知。 故同术相学。 同事相观。此列士之愚智。 贤不肖之所分。 是故能类以合类。此贤者业精习智之质也。 夫学同业而不能入神者。此不肖无智。而业不能精习。 是故算不能精习。吾岂以道隐子哉。固复熟思之。 荣方复归思之。数日不能得。复见陈子曰。方思之以精熟矣。智有所不及。而神有所穷。知不能得。愿终请说之。 陈子曰。复坐。吾语汝。于是荣方复坐而请陈子之说。曰夏至南万六千里。冬至南十三万五千里。 日中立竿测影。 此一者。天道之数。 周髀长八尺。夏至之日晷一尺六寸。 髀者。股也。正晷者。句也。 正南千里。句一尺五寸。正北千里。句一尺七寸。 日益表。南晷日益长。候句六尺。 即取竹空径一寸。长八尺。捕影而视之。空正掩日。 而日应空之孔。 由此观之。率八十寸。而得径一寸。 故以句为首。以髀为股。 从髀至日下六万里。而髀无影。从此以上至日。则八万里。 以率率之。八十里得径一里。十万里得径千二百五十里。 故曰。日晷径。千二百五十里。 若求邪至日者。以日下为句。日高为股。句股各自乘。并而开方除之。得邪至日。从髀所旁至日所。十万里。 法曰。周髀长八尺。句之损益。寸千里。 故曰。极者天广袤也。 今立表高八尺以望极。其句一丈三寸。由此观之。则从周北十万三千里而至极下。 荣方曰。周髀者何。陈子曰。古时天子治周。 此数望之从周。故曰周髀。 髀者。表也。 日夏至南万六千里。日冬至南十三万五十里。日中无影。以此观之。从南至夏至之日中十一万九千里。 北至其夜半亦然。 凡径。二十三万八千里。 此夏至日道之径也。其周。七十一万四千里。 从夏至之日中。至冬至之日中。十一万九千里。 北至极下亦然。则从极南至冬至之日中。二十三万八千里。从极北至其夜半亦然。凡径四十七万六千里。此冬至日道径也。其周百四十二万八千里。从春秋分之日中北至极下。十七万八千五百里。 从极下北至其夜半亦然。凡径三十五万七千里。周一百七万一千里。故曰月之道常缘宿。日道亦与宿正。 南至夏至之日中。北至冬至之夜半。南至冬至之日中。北至夏至之夜半。亦径三十五万七千里。周一百七万一千里。 春分之日夜分。以至秋分之日夜分。极下常有日光。 秋分之日夜分。以至春分之日夜分。极下常无日光。 故春秋分之日夜分之时。日光所照。适至极。阴阳之分等也。冬至夏至者。日道发敛之所生也。至昼夜长短之所极。 春秋分者。阴阳之修。昼夜之象。 昼者阳。夜者阴。 春分以至秋分。昼之象。 秋分至春分。夜之象。故春秋分之日中。光之所照北极下。夜半日光之所照亦南至极。此日夜分之时也。故曰日照四旁。各十六万七千里。 人所望见远近。宜如日光所照。 从周所望见。北过极六万四千里。 南过冬至之日三万二千里。 夏至之日中光。南过冬至之日中光四万八千里。 南过人所望见万六千里。 北过周十五万一千里。北过极四万八千里。 冬至之夜半日光。南不至人目所见七千里。 不至极下七万一千里。 夏至之日中与夜半日光九万六千里。过极相接。 冬至之日中与夜半日光。不相及十四万二千里。不至极下七万一千里。 夏至之日。正东西望。直周东西日下至周五万九千五百九十八里半。冬至之日。正东西方不见日。 以算求之。日下至周二十一万四千五百五十七里半。 凡此数者。日道之发敛。 冬至夏至。观律之数。听钟之音。 冬至昼。夏至夜。 差数及日光所还观之。 四极径八十一万里。周二百四十三万里。 从周南至日照处三十万二千里。 周北至日照处五十万八千里。 东西各三十九万一千六百八十三里半。 周在天中南十万三千里。故东西短中径二万六千六百三十二里有奇。 周北五十万八千里。冬至日十三万五千里。冬至日道径四十七万六千里。周百四十二万八千里。日光四极。当周东西各三十九万一千六百八十三里有奇。 此方圆之法。 周髀算经卷上之三凡为此图。以丈为尺。以尺为寸。以寸为分。分、一千里。凡用缯方八尺一寸。今用缯方四尺五分。分、为二千里。 吕氏曰。凡四海之内。东西二万八千里。南北二万六千里。 凡为日月运行之圆周。七衡周而六闲。以当六月。 节六月为百八十二日八分日之五。 故日夏至在东井极内衡。日冬至在牵牛极外衡也。 衡复更。终冬至。 故曰一岁三百六十五日四分日之一。岁一内极一外极。 三十日十六分日之七。月一外极一内极。 是故。一衡之闲。万九千八百三十三里三分里之一。即为百步。 欲知次衡径。倍而增内衡之径。 二之。以增内衡径。 次衡放此。 内一衡径二十三万八千里。周七十一万四千里。分为三百六十五度四分度之一。度得一千九百五十四里二百四十七步千四百六十一分步之九百三十三。 次二衡径二十七万七千六百六十六里二百步。周八十三万三千里。分里为度。度得二千二百八十里百八十八步千四百六十一分步之千三百三十二。 次三衡径三十一万七千三百三十三里一百步。周九十五万二千里。分为度。度得二千六百六里百三十步千四百六十一分步之二百七十。 次四衡径三十五万七千里。周一百七万一千里。分为度。度得二千九百三十二里七十一步四千百六十一分步之六百六十九。 次五衡径三十九万六千六百六十六里二百步。周百一十九万里。分为度。度得三千二百五十八里十二步千四百六十一分步之千六十八。 次六衡径四十三万六千三百三十三里一百步。周百三十万九千里。分为度。度得三千五百八十三里二百五十四步千四百六十一分步之六。 次七衡径四十七万六千里周百四十二万八千里。分为度。度得三千九百九里一百九十五步千四百六十一分步之四百五。 其次曰。冬至所北照过北衡十六万七千里。 为径八十一万里。 周二百四十三万里。 分为三百六十五度四分度之一。度得六千六百五十二里二百九十三步千四百六十一分步之三百二十七。过北而往者。未之或知。 或知者。或疑其可知。或疑其难知。此言上圣不学而知之。 故冬至日晷丈三尺五寸。夏至日晷尺六寸。冬至日晷长。夏至日晷短。日晷损益寸。差千里。故冬至夏至之日。南北游十一万九千里。四极径八十一万里。周二百四十三万里。分为度。度得六千六百五十二里二百九十三步千四百六十一分步之三百二十七。此度之相去也。 其南北游日六百五十一里一百八十二步一千四百六十一分步之七百九十八。 术曰。置十一万九千里为实。以半岁一百八十二日八分日之五为法。 而通之。 得九十五万二千为实。 所得一千四百六十一为法。除之。 实如法得一里。不满法者。三之。如法得百。步。 不满法者十之。如法得十。步。 不满法者十之。如法得一。步。 不满法者。以法命之。 周髀算经卷下之一凡日月运行。四极之道。 极下者。其地高人所居六万里。滂沱四颓而下。 天之中央。亦高四旁六万里。 故日光外所照。经八十一万里。周二百四十三万里。 故日运行处极北。北方日中。南方夜半。日在极东。东方日中。西方夜半。日在极南。南方日中。北方夜半。日在极西。西方日中。东方夜半。凡此四方者。天地四极四和。 昼夜易处。 加四时相及。 然其阴阳所终。冬夏所极。皆若一也。 天象盖笠。地法覆盘。 天离地八万里。 冬至之日。虽在外衡。常出极下地上二万里。 故日兆月。 月光乃出。故成明月。 星辰乃得行列。 是故秋分以往到冬至。三光之精微。以成其道远。 此天地阴阳之性自然也。 欲知北极枢。旋周四极。 当以夏至夜半时。北极南游所极。 冬至夜半时。北游所极。 冬至日加酉之时。西游所极。 日加卯之时。东游所极。 此北极璇玑四游。 正北极枢。璇玑之中。正北。天之中。 正极之所游。冬至日加酉之时。立八尺表。以绳系表颠。希望北极中大星。引绳计地而识之。 又到旦明日加卯之时。复引绳希望之。首及绳致地。而识其端相去二尺三寸。 故东西极二万三千里。 其两端相去。正东西。 中折之。以指表。正南北。 加此时者。皆以漏揆度之。此东西南北之时。 其绳致地。所识去表丈三寸。故天之中去周十万三千里。 何以知其南北极之时。以冬至夜半北游所极也。北过天中万一千五百里。以夏至南游所极。不及天中万一千五百里。此皆以绳系表颠而希望之。北极至地所识丈一尺四寸半。故去周十一万四千五百里。 过天中万一千五百里。其南极至地所识九尺一寸半。故去周九万一千五百里。其南不及天中万一千五百里。此璇玑四极南北过不及之法。东西南北之正句。 周去极十万三千里。日去人十六万七千里。夏至去周万六千里。夏至日道径二十三万八千里。周七十一万四千里。春秋分日道径三十五万七千里。周百七万一千里。冬至日道径四十三万六千里。周百四十二万八千里。日光四极八十一万里。周二百四十三万里。从周南三十万二千里。 璇玑径二万三千里。周六万九千里。此阳绝阴彰。故不生万物。 其术曰。立正句定之。 以日始出。立表而识其晷。日入复识其晷。晷之两端相直者。正东西也。中折之。指表者。正南北也。极下不生万物。何以知之。 冬至之日。去夏至十一万九千里。万物尽死。夏至之日。去北极十一万九千里。是以知极下不生万物。北极左右。夏有不释之冰。 春分秋分。日在中衡。春分以往。日益北五万九千五百里而夏至。秋分以往。日益南五万九千五百里而冬至。 中衡去周七万五千五百里。 中衡左右。冬有不死之草。夏长之类。 此阳彰阴微。故万物不死。五谷一岁再熟。 凡北极之左右。物有朝生暮获。 立二十八宿。以周天历度之法。 术曰。倍正南方。 以正句定之。即平地径二十一步。周六十三步。令其平矩以水正。 则位径一百二十一尺七寸五分。因而三之。为三百六十五尺四分尺之一。 以应周天三百六十五度四分度之一。审定分之。无令有纤微。 分度以定。则正督经纬。而四分之一。合各九十一度十六分度之五。 于是圆定而正。 则立表正南北之中央。以绳系颠。希望牵牛中央星之中。 则复候须女之星先至者。 如复以表绳。希望须女先至定中。 即以一游仪。希望牵牛中央星。出中正表西几何度。 各如游仪所至之尺。为度数。 游在于八尺之上。故知牵牛八度。 其次星。放此。以尽二十八宿度。则定矣。 立周度者。 各以其所先至游仪度上。 车辐引绳就中央之正以为毂。则正矣。 日所以入。亦以周定之。 欲知日之出入。 以东井夜半中。牵牛之初临子之中。 东井出中正表西三十度十六分度之七而临未之中。牵牛初亦当临丑之中。 于是天与地协。 乃以置周二十八宿。 置以定。乃复置周度之中央。立正表。 以冬至夏至之日。以望日始出也。立一游仪于度上。以望中央表之晷。 晷参正。则日所出之宿度。 日入放此。 周髀算经卷下之二牵牛。去北极百一十五度千六百九十五里二十一步千四百六十一分步之八百一十九。 术曰。置外衡去北极枢二十三万八千里。除璇玑万一千五百里。 其不除者。二十二万六千五百里。以为实。 以内衡一度数千九百五十四里二百四十七步千四百六十一分步之九百三十三以为法。 实如法得一。度。 不满法。求里步。 约之。合三百得一。以为实。 以千四百六十一分为法。得一。里。 不满法者。三之。如法得百。步。 不满法者。又上十之。如法得一。步。 不满法者。以法命之。 次、放此。 娄与角。去北极九十一度六百一十里二百六十四步千四百六十一分步之千二百九十六。 术曰。置中衡去北极枢十七万八千五百里。以为实。 以内衡一度数为法。实如法得一。度。不满法者。求里步。不满法者。以法命之。 东井去北极六十六度千四百八十一里百五十五步千四百六十一分步之千二百四十五。 术曰、置内衡去北极枢十一万九千里。加璇玑万一千五百里。 得十三万五百里。以为实。 以内衡一度数为法。实如法得一。度。不满法者。求里步。不满法者。以法命之。 凡八节二十四气。气损益九寸九分六分分之一。冬至晷长一丈三尺五寸。夏至晷长一尺六寸。问次节损益寸数长短各几何。 冬至晷长丈三尺五寸。 小寒丈二尺五寸。小分五。 大寒丈一尺五寸一分。小分四。 立春丈五寸二分。小分三。 雨水九尺五寸三分。小分二。 启蛰八尺五寸四分。小分一。 春分七尺五寸五分。 清明六尺五寸五分。小分五。 谷雨五尺五寸六分。小分四。 立夏四尺五寸七分。小分三。 小满三尺五寸八分。小分二。 芒种二尺五寸九分。小分一。 夏至一尺六寸。 小暑二尺五寸九分。小分。 大暑三尺五寸八分。小分二。 立秋四尺五寸七分。小分三。 处暑五尺五寸六分。小分四。 白露六尺五寸五分。小分五。 秋分七尺五寸五分。小分一。 寒露八尺五寸四分。小分一。 霜降九尺五寸三分。小分二。 立冬丈五寸二分。小分三。小雪丈一尺五寸一分。小分四。 大雪丈二尺五寸。小分五。 凡为八节二十四气。气损益九寸九分六分分之一。 冬至夏至。为损益之始。 术曰。置冬至晷。以夏至晷减之。余为实。以十二为法。 实如法得一。寸。不满法者。十之。以法除之。得一。分。 不满法者。以法命之。 月后天十三度十九分度之七。 术曰。置章月二百三十五。以章岁十九除之。加日行一度。得十三度十九分度之七。此月一日行之数。即后天之度及分。 小岁。月不及故舍三百五十四度万七千八百六十分度之六千六百一十二。 术曰。置小岁三百五十四日九百四十分日之三百四十八。 以月后天十三度十九分度之七乘之。为实。 又以度分母乘日分母。为法。实如法。得积后天四千七百三十七度万七千八百六十分度之六千六百一十二。 以周天三百六十五度万七千八百六十分度之四千四百六十五除之。 其不足除者。 三百五十四度万七千八百六十分度之六千六百一十二。 此月不及故舍之分度数。他皆放此。 大岁。月不及故舍十八度万七千八百六十分度之万一千六百二十八。 术曰。置大岁三百八十三日九百四十分日之八百四十七。 以月后天十三度十九分度之七乘之。为实。又以度分母乘日分母。为法。实如法。得积后天五千一百三十二度万七千八百六十分度之二千六百九十八。 以周天除之。 其不足除者。 此月不及故舍之分度数。 经岁。月不及故舍百三十四度万七千八百六十分度之万一百五。 术曰。置经岁三百六十五日九百四十分日之二百三十五。 以月后天十三度十九分度之七乘之。为实。又以度分母乘日分母。为法。实如法。得积后天四千八百八十二度万七千八百六十分度之万四千五百七十。 以周天除之。 其不足除者。 此月不及故舍之分度数。 小月。不及故舍二十二度万七千八百六十分度之七千七百五十五。 术曰。置小月二十九日。 以月后天十三度十九分度之七乘之。为实。又以度分母乘日分母。为法。实如法。得积后天三百八十七度万七千八百六十分度之万二千二百二十。 以周天分除之。 其不足除者。此月不及故舍之分度数。 大月。不及故舍三十五度万七千八百六十分度之万四千三百三十五。 术曰。置大月三十日。 以月后天十三度十九分度之七乘之。为实。又以度分母乘日分母。为法。实如法。得积后天四百一度万七千八百六十分度之九百四十。 以周天除之。 其不足除者。 此月不及故舍之分度数。 经月。不及故舍二十九度万七千八百六十分度之九千四百八十一。 术曰。置经月二十九日九百四十分日之四百九十九。 以月后天十三度十九分度之七乘之为实。又以度分母乘日分母。为法。实如法。得积后天三百九十四度万七千八百六十分度之万三千九百四十六。 以周天除之。 其不足除者。 此月不及故舍之分度数。 六百五十二万三千三百六十五除之。得一周。余分五十二万七千四百二十一。即不及故舍之分。以一万七千八百六十除之。得经月不及故舍二十九度。不尽九千四百八十一。即以命分。 周髀算经卷下之三冬至昼极短。日出辰而入申。 阳照三。不覆九。 东西相当。正南方。 夏至昼极长。日出寅而入戌。阳照九。不覆三。 东西相当。正北方。 日出左而入右。南北行。 故冬至从坎阳在子。日出巽而入坤。见日光少。故曰寒。 夏至从离阴在午。日出艮而入干。见日光多。故曰暑。日月失度。而寒暑相奸。 往者诎。来者信也。故诎信相感。 故冬至之后。日右行。夏至之后。日左行。左者往。右者来。 故月与日合。为一月。 日复日。为一日。 日复星。为一岁。 外衡冬至。 内衡夏至。 六气复返。皆谓中气。 阴阳之数。日月之法。十九岁为一章。 四章为一蔀。七十六岁。 二十蔀为一遂。遂千五百二十岁。 三遂为一首。首四千五百六十岁。 七首为一极。极三万一千九百二十岁。生数皆终。万物复始。 天以更元作纪历。 何以知天三百六十五度四分度之一。而日行一度。而月后天十三度十九分度之七。二十九日九百四十分日之四百九十九。为一月。十二月十九分月之七。为一岁。 周天除之。 其不足除者。如合朔。古者包牺神农。制作为历。度元之始。见三光未如其则。 日月列星。未有分度。 日主昼。月主夜。昼夜为一日。日月俱起建星。 月度疾。日度迟。 日月相逐于二十九日三十日闲。 而日行天二十九度余。 未有定分。 于是三百六十五日南极影长。明日反短。以岁终日影反长。故知之三百六十五日者三。三百六十六日者一。 故知一岁三百六十五日四分日之一。岁终也。月积后天十三周。又与百三十四度余。 无虑后天十三度十九分度之七。未有定。 于是日行天七十六周。月行天千一十六周。及合于建星。 置月行后天之数。以日后天之数除之。得十三度十九分度之七。则月一日行天之度。 复置七十六岁之积月。 以七十六岁除之。得十二月十九分月之七。则一岁之月。 置周天度数。以十二月十九分月之七除之。得二十九日九百四十分日之四百九十九。则一月日之数。
u投在线2023-05-20 22:09:461

我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口

如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.因为积水深9寸,所以水面半径为 1 2 (14+6)=10 寸.则盆中水的体积为 1 3 π×9( 6 2 +1 0 2 +6×10)=588π (立方寸).所以则平地降雨量等于 588π π×1 4 2 =3 (寸).故答案为3.
左迁2023-05-20 22:09:261

数学名著《九章算术》内容 急急急急!!!

去书店买本呗
黑桃花2023-05-20 17:39:124

数学名著《九章算术》内容

全部内容在这里下载http://wenku.baidu.com/view/8a4d4d81e53a580216fcfe54.html不好意思,太多了,不能打出来
u投在线2023-05-20 17:39:104

世界三大数学名著是什么?

世界三大数学猜想即费马猜想、四色猜想和哥德巴赫猜想。费马猜想的证明于1994年由英国数学家安德鲁·怀尔斯(Andrew Wiles)完成,遂称费马大定理;四色猜想的证明于1976年由美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)借助计算机完成,遂称四色定理;哥德巴赫猜想尚未解决,最好的成果(陈氏定理)乃于1966年由中国数学家陈景润取得。这三个问题的共同点就是题面简单易懂,内涵深邃无比,影响了一代代的数学家。起源1621年,20岁的费马在阅读一套公元三世纪希腊著名数学家丢番图的《算术》拉丁文译本时,曾在第11卷第8命题旁关于不定方程x2+y2=z2的全部正整数解这一页上写了一段话,概括起来说就是:“形如xn+yn=zn的方程,当n>2时不可能有整数解。关于此,我确信已发现了一种美妙的证法 ,可惜这里空白的地方太小,写不下。”(拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi。 Hanc marginis exiguitas non caperet。")以上内容参考 百度百科-世界三大数学猜想
黑桃花2023-05-20 17:38:311

列出数学名著

1《从微分观点看拓扑》J.W.米尔诺2无穷小分析引论Introductiontoanalysisoftheinfinite[作者]:欧拉3《自然哲学之数学原理》作者:伊萨克.牛顿4几何原本(13卷视图全本)作者:(古希腊)欧几里得原著,燕晓东编译5《数论报告》希尔伯特6《算术研究》高斯7《代数几何原理》哈里斯(Harris)8.《微积分学教程》菲赫金哥尔兹9.《有限群表示》J.P.塞尔10.《曲线和曲面的微分几何》杜卡谟11.《曲面论》达布12.《数论导引》华罗庚13.《代数学基础》贾柯伯逊14.《交换代数》阿蒂亚
大鱼炖火锅2023-05-18 13:55:542

中国古代的数学名著有哪些?

中国古代数学,和天文学以及其他许多科学技术一样,也取得了极其辉煌的成就。可以毫不夸张地说,直到明代中叶以前,在数学的许多分支领域里,中国一直处于遥遥领先的地位。中国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。 例如现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。 开始,人们是用抄写的方法进行学习并且把数学知识传给下一代的。直到北宋,随着印刷术的发展,开始出现印刷本的数学书籍,这恐怕是世界上印刷本数学著作的最早出现。现在收藏于北京图书馆、上海图书馆、北京大学图书馆的传世南宋本《周髀算经》、《九章算术》等五种数学书籍,更是值得珍重的宝贵文物。 从汉唐时期到宋元时期,历代都有著名算书出现:或是用中国传统的方法给已有的算书作注解,在注解过程中提出自己新的算法;或是另写新书,创新说,立新意。在这些流传下来的古算书中凝聚着历代数学家的劳动成果,它们是历代数学家共同留下来的宝贵遗产。 《算经十书》是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。 对古代数学的各个方面全面完整地进行叙述的是《九章算术》,它是十部算书中最重要的一部。它对以后中国古代数学发展所产生的影响,正像古希腊欧几里得(约前330—前275)《几何原本》对西方数学所产生的影响一样,是非常深刻的。在中国,它在一千几百年间被直接用作数学教育的教科书。它还影响到国外,朝鲜和日本也都曾拿它当作教科书。 《九章算术》,也不知道确实的作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书·艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。 从数学成就上看,首先应该提到的是:书中记载了当时世界上最先进的分数四则运算和比例算法。书中还记载有解决各种面积和体积问题的算法以及利用勾股定理进行测量的各种问题。《九章算术》中最重要的成就是在代数方面,书中记载了开平方和开立方的方法,并且在这基础上有了求解一般一元二次方程(首项系数不是负)的数值解法。还有整整一章是讲述联立一次方程解法的,这种解法实质上和现在中学里所讲的方法是一致的。这要比欧洲同类算法早出一千五百多年。在同一章中,还在世界数学史上第一次记载了负数概念和正负数的加减法运算法则。 《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足”(也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。 《算经十书》中的第三部是《海岛算经》,它是三国时期刘徽(约225—约295)所作。这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法(参见本书第98页),他还首次把极限概念应用于解决数学问题。 《算经十书》的其余几部书也记载有一些具有世界意义的成就。例如《孙子算经》中的“物不知数”问题(一次同余式解法,参见本书第106页),《张丘建算经》中的“百鸡问题”(不定方程问题)等等都比较著名。而《缉古算经》中的三次方程解法,特别是其中所讲述的用几何方法列三次方程的方法,也是很具特色的。 《缀术》是南北朝时期著名数学家祖冲之的著作。很可惜,这部书在唐宋之际公元十世纪前后失传了。宋人刊刻《算经十书》的时候就用当时找到的另一部算书《数术记遗》来充数。祖冲之的著名工作——关于圆周率的计算(精确到第六位小数),记载在《隋书·律历志》中(参见本书第101页)。 《算经十书》中用过的数学名词,如分子、分母、开平方、开立方、正、负、方程等等,都一直沿用到今天,有的已有近两千年的历史了。 中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年), 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。 《数书九章》主要讲述了两项重要成就:高次方程数值解法和一次同余式解法(分别参见本书第119页和第110页)。书中有的问题要求解十次方程,有的问题答案竟有一百八十条之多。《测圆海镜》和《益古演段》讲述了宋元数学的另一项成就:天元术(用代数方法列方程,参见本书第121页);也还讲述了直角三角形和内接圆所造成的各线段间的关系,这是中国古代数学中别具一格的几何学。杨辉的著作讲述了宋元数学的另一个重要侧面:实用数学和各种简捷算法。这是应当时社会经济发展而兴起的一个新的方向,并且为珠算盘的产生创造了条件。朱世杰的《算学启蒙》不愧是当时的一部启蒙教科书,由浅入深,循序渐进,直到当时数学比较高深的内容。《四元玉鉴》记载了宋元数学的另两项成就:四元术(求解高次方程组问题,参见本书第123页)和高阶等差级数、高次招差法(参见本书第131页)。 宋元算书中的这些成就,和西方同类成果相比:高次方程数值解法比霍纳(1786—1837)方法早出五百多年,四元术要比贝佐(1730—1783)①早出四百多年,高次招差法比牛顿(1642—1727)等人早出近四百年。 宋元算书中所记载的辉煌成就再次证明:直到明代中叶之前,中国科学技术的许多方面,是处在遥遥领先地位的。 宋元以后,明清时期也有很多算书。例如明代就有著名的算书《算法统宗》。这是一部风行一时的讲珠算盘的书。入清之后,虽然也有不少算书,但是像《算经十书》、宋元算书所包含的那样重大的成就便不多见了。特别是在明末清初以后的许多算书中,有 不少是介绍西方数学的。这反映了在西方资本主义发展进入近代科学时期以后我国科学技术逐渐落后的情况,同时也反映了中国数学逐渐融合到世界数学发展总的潮流中去的一个过程。   中国数学发展的历史表明:中国数学曾经为世界数学的发展作出过卓越的贡献,只是在近代才逐渐落后了。我们深信,经过努力,中国数学一定能迎头赶上世界
康康map2023-05-18 13:55:501

有什么类似《几何原本》的数学名著?

1《从微分观点看拓扑》J.W.米尔诺2无穷小分析引论Introductiontoanalysisoftheinfinite[作者]:欧拉3《自然哲学之数学原理》作者:伊萨克.牛顿4几何原本(13卷视图全本)作者:(古希腊)欧几里得原著,燕晓东编译5《数论报告》希尔伯特6《算术研究》高斯7《代数几何原理》哈里斯(Harris)8.《微积分学教程》菲赫金哥尔兹9.《有限群表示》J.P.塞尔10.《曲线和曲面的微分几何》杜卡谟11.《曲面论》达布12.《数论导引》华罗庚13.《代数学基础》贾柯伯逊14.《交换代数》阿蒂亚
余辉2023-05-18 13:55:421