直线的参数方程与圆锥曲线相交弦怎么求
直线的参数方程{x=a+mt,y=b+nt(t为参数)中,只有m^2+n^2=1时,t才是直线上点(x,y)到点(a,b)的距离,所以遇到不满足时,首先要化成满足m^2+n^2=1。比如{x=2-1/2*t,y=-1+1/2*t,要改写成{x=2-√2/2*s,y=。苏州马小云2023-08-13 09:27:371
圆锥曲线解题技巧
联立方程,直接求,关键是分析出来要加大计算量阿啵呲嘚2023-08-13 09:27:354
圆锥曲线标准方程在不知道焦点在哪条轴上时求法
圆锥曲线标准方程 编辑圆锥曲线标准方程是轨迹的方程,也是参数方程的一种;圆锥曲线标准方程的定义和性质是把握圆锥曲线标准方程的两把钥匙。中文名圆锥曲线标准方程含 义轨迹的方程重点知识圆锥曲线标准方程的定义和性质学 科数学目录1 圆锥曲线2 圆锥曲线的标准方程u25aa 圆u25aa 椭圆u25aa 双曲线u25aa 抛物线u25aa 第二定义u25aa 统一定义u25aa 性质圆锥曲线编辑圆椭圆双曲线抛物线圆锥曲线的标准方程编辑圆标准方程:(x-a)^2+(y-b)^2=r^2,圆心(a,b),半径=r>0[1] 离心率:e=0(注意:圆的方程的离心率为0,离心率等于0的轨迹不是圆,而是一个点(c,0)一般方程:x^2+y^2+Dx+Ey+F=0,圆心(-D/2,-E/2),半径r=(1/2)√(D^2+E^2-4F)椭圆标准方程:x^2/a^2+y^2/b^2=1(焦点在x轴上,a>b>0,在y轴上,b>a>0)[2] 焦点:F1(-c,0),F2(c,0)(c^2=a^2-b^2)离心率:e=c/a,0<e<1准线方程:x=±a^2/c焦半径|MF1|=a+ex0,|MF2|=a-ex0两条焦半径与焦距所围三角形的面积:S=b^2*tan(α/2)(α为两焦半径夹角)双曲线标准方程:x^2/a^2-y^2/b^2=1(焦点在x轴上) -x^2/a^2+y^2/b^2=1(焦点在y轴上)[3] 焦点:F1(-c,0),F2(c,0)(a,b>0,b^2=c^2-a^2)离心率:e=c/a,e>1准线方程:x=±a^2/c焦半径|MF1|=a+ex0,|MF2|=a-ex0渐近线:x^2/a^2-y^2/b^2=0(焦点在x轴上) -x^2/a^2+y^2/b^2=0(焦点在y轴上)或焦点在x轴:y=±(b/a)x.焦点在y轴:y=±(a/b)x.两条焦半径与焦距所围成的三角形面积:S=b^2cot(α/2)(α为两焦半径夹角)抛物线标准方程:y^2=2px ,x^2=2py;[4] 焦点:F(p/2,0)离心率:e=1准线方程:x=-p/2圆锥曲线二次方程Ax^2+Bxy+Cy^2+Dx+Ey+F=0定义圆锥曲线的第二定义1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距); 2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。 这两个定义是等价的准线和焦点的作用和意义是一样的,都是用来确定椭圆、双曲线、抛物线的形状以及位置的.统一定义是动点到焦点的距离和动点到准线的距离之比 椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值。离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。圆的离心率=0椭圆的离心率:e=∈c/a(0,1)(c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )抛物线的离心率:e=1双曲线的离心率:e=∈c/a(1,+∞) (c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )性质一条直线x=a方/c圆 参数方程:x=X+rcosθ y=Y+rsinθ 圆心坐标(X,Y)椭圆 参数方程:x=acosθ y=bsinθ a>b时焦点在x轴上,反之在 y轴上双曲线 参数方程:x=asecθ y=btanθ 焦点在平行x轴的直线上(就是x2∕a2-y2∕b2=1)焦点在平行y轴的直线上(即y2∕a2-x2∕b2=1),把正切和正割交换望采纳,谢谢Ntou1232023-08-13 09:27:351
(高考)高考中允许使用高中没有学习的定理定律么 如特征方程 定积分 圆锥曲线的参数方程等
是允许的!但最好少用!用学过的做!左迁2023-08-13 09:27:344
圆锥曲线为什么这么神奇?
圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的光学性质: 1)椭圆:点光源在一个焦点上,光线通过另一个焦点。 2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。 3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。九万里风9 2023-08-13 09:27:331
怎么用参数方程表示圆锥(不是圆锥曲线)。。谢谢
x=rcosαy=rsinαz=hChen2023-08-13 09:27:331
高考文科数学会考圆锥曲线的极坐标方程和双曲线的参数方程吗?
你选4-4就可能靠,但是一般双曲线的参数方程考到的少一点北有云溪2023-08-13 09:27:332
高中数学圆锥曲线解题技巧
解答数学圆锥曲线试题,需要较强的代数运算能力和图形认识能力,要能准确地进行数与形的语言转换和运算,推理转换,并在运算过程中注意思维的严密性,以保证结果的完整。下面我给你分享高中数学圆锥曲线解题技巧,欢迎阅读。 高中数学圆锥曲线解题技巧 1.充分利用几何图形的策略 解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,并结合平面几何知识,往往能减少计算量。 例:设直线3x+4y+m=0与圆x+y+x-2y=0相交于P、Q两点,O为坐标原点,若OPu22a5OQ,求m的值。 2.充分利用韦达定理的策略 我们经常设出弦的端点坐标但不求它,而是结合韦达定理求解,这种方法在有关斜率、中点等问题中常常用到。 例:已知中心在原点O,焦点在y轴上的椭圆与直线y=x+1相交于P、Q两点,且OPu22a5OQ,|PQ|=,求此椭圆方程。 3.充分利用曲线方程的策略 例:求经过两已知圆C:x+y-4x+2y=0和C:x+y-2y-4=0的交点,且圆心在直线l:2x+4y-1=0上的圆的方程。 4.充分利用椭圆的参数方程的策略 椭圆的参数方程涉及正、余弦,利用正、余弦的有界性,可以解决相关的求最值的问题。这也就是我们常说的三角代换法。 例:P为椭圆+=1上一动点,A为长轴的右端点,B为短轴的上端点,求四边形OAPB面积的最大值及此时点P的坐标。 5.线段长的几种简便计算策略 (1)充分利用现成结果,减少运算过程。 求直线与圆锥曲线相交的弦AB长:把直线方程y=kx+b代入圆锥曲线方程中,得到型如ax+bx+c=0的方程,方程的两根设为x,x,判别式为△,则|AB|=u2022|x-x|=u2022,若直接用结论,能减少配方、开方等运算过程。 例:求直线x-y+1=0被椭圆x+4y=16所截得的线段AB的长。 (2)结合图形的特殊位置关系,减少运算。 在求过圆锥曲线焦点的弦长时,由于圆锥曲线的定义都涉及焦点,结合图形运用圆锥曲线的定义,可回避复杂运算。 例:F、F是椭圆+=1的两个焦点,AB是经过F的弦,若|AB|=8,求|FA|+|FB|的值。 (3)利用圆锥曲线的定义,把到焦点的距离转化为到准线的距离。 例:点A(3,2)为定点,点F是抛物线y=4x的焦点,点P在抛物线y=4x上移动,若|PA|+|PF|取得最小值,求点P的坐标。 高中数学圆锥曲线题型 1.中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(x,y),(x,y),代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 例:给定双曲线x-=1,过A(2,1)的直线与双曲线交于两点P和P,求线段PP的中点P的轨迹方程。 2.焦点三角形问题 椭圆或双曲线上一点P,与两个焦点F、F构成的三角形问题,常用正、余弦定理。 例:设P(x,y)为椭圆+=1上任一点,F(-c,0),F(c,0)为焦点,u2220PFF=u03b1,u2220PFF=u03b2。 (1)求证:离心率e=; (2)求|PF|+|PF|的最值。 3.直线与圆锥曲线位置关系问题 直线与圆锥曲线的位置关系的基本方法是解方程组,进而转化为一元二次方程后利用判别式,应特别注意数形结合的办法。 例:抛物线方程y=p(x+1)(p>0),直线x+y=t与x轴的交点在抛物线准线的右边。 (1)求证:直线与抛物线总有两个不同交点。 (2)设直线与抛物线的交点为A、B,且OAu22a5OB,求p关于t的函数f(t)的表达式。 4.圆锥曲线的有关最值问题 圆锥曲线中的有关最值问题,常用代数法和几何法解决。若命题的条件和结论具有明显的几何意义,一般可用图像性质来解决。若命题的条件和结论体现明确的函数关系式,则可建立目标函数(通常利用二次函数,三角函数,均值不等式)求最值。下题中的(1),可先设法得到关于a的不等式,通过解不等式求出a的范围,即:“求范围,找不等式”。或者将a表示为另一个变量的函数,利用求函数的值域求出a的范围。对于(2),首先要把△NAB的面积表示为一个变量的函数,然后再求它的最大值,即“最值问题,函数思想”。 例:已知抛物线y=2px(p>0),过M(a,0)且斜率为1的直线L与抛物线交于不同的两点A、B,|AB|u22642p,(1)求a的取值范围;(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值。 5.求曲线的方程问题 (1)曲线的形状已知,这类问题一般可用待定系数法解决。 例:已知直线L过原点,抛物线C的顶点在原点,焦点在x轴正半轴上。若点A(-1,0)和点B(0,8)关于L的对称点都在C上,求直线L和抛物线C的方程。 (2)曲线的形状未知,求轨迹方程。 例:已知直角坐标平面上点Q(2,0)和圆C:x+y=1,动点M到圆C的切线长与|MQ|的比等于常数u03bb(u03bb>0),求动点M的轨迹方程,并说明它是什么曲线。 6.存在两点关于直线对称问题 在曲线上两点关于某直线对称问题,可按如下方法解题:求两点所在的直线,求这两直线的交点,使这交点在圆锥曲线形内。当然也可利用韦达定理并结合判别式来解决。 例:已知椭圆C的方程+=1,试确定m的取值范围,使得对于直线y=4x+m,椭圆C上有不同两点关于直线对称。 7.两线段垂直问题 圆锥曲线两焦半径互相垂直问题,常用ku2022k==-1来处理或用向量的坐标运算来处理。tt白2023-08-13 09:27:331
选修4-4:坐标系与参数方程已知在直角坐标系xOy中,圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数
(1)由圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数),消去参数θ化为x2+y2=16.由直线l经过定点P(2,3),倾斜角为π3.可得x=2+12ty=3+32t(t为参数)②(2)把②代入①得,t2+(2+33)t?3=0③设t1,t2是方程③的两个实根,则t1t2=-3∴|PA|?|PB|=|t1||t2|=|t1t2|=3bikbok2023-08-13 09:27:322
圆锥曲线焦点弦的性质有那些?
圆锥曲线 开放分类: 数学、几何、椭圆、双曲线、抛物线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。Chen2023-08-13 09:27:321
一道圆锥曲线题,椭圆,要求用参数方程解!!!
这题是有个结论很好用1/|OM|^2+1/|ON|^2=1/a^2+1/b^2设M(|OM|cost,|OM|sint) N(|ON|cos(t+π/2),|ON|sin(t+π/2))=(-|ON|sint,|ON|cost)代入方程得到:|OM|^2cos^2t/9+|OM|^2sin^2t/4=1得到:cos^2t/9+sin^2t/4=1/|OM|^2同样可以得到 sin^2t/9+cos^t/4=1/|ON|^2相加所以有:1/9+1/4=1/|OM|^2+1/|ON|^2>=2/|OM|*|ON|所以|OM|*|ON|>=72/13最大值取得就是|OM|=|ON|严格说来这并不是椭圆方程的标准参数方程,但是却有奇效望采纳~~~善士六合2023-08-13 09:27:321
高中数学 《圆锥曲线》解题技巧归纳
1、数列问题(1)熟练掌握等差、等比数列的性质、通项公式和求和公式;(2)深刻理解课本上等差和等比数列求和公式是怎么推导出来的,其中蕴含的如“倒序相加”等解题思想是解题中经常用到的;(3)熟练掌握将分母代数式连乘的分数转化成单项分式差,实现“消去中间,剩下两头”的题型;(4)熟练掌握从现有数列(如{An})中抽取满足某个条件的若干项,组成一个新数列(如{Ank}),然后求新数列的通项和前多少项和的题型;(5)熟练掌握通过化简或待定系数法,将不规则数列“凑”成等差或等比数列来解题的题型;(6)熟练掌握数学归纳法的原理并应用它解决个别“先猜测再证明”的探究类题型。(7)熟练掌握数列求极限的题型,尤其是通过化简让分母的指数比分子的指数高,以便n无穷大的时候分式等于02、圆锥曲线问题(1)熟练掌握圆锥曲线的几何定义和准线定义,深刻理解“数形结合”的思想,这是解析几何的灵魂和精髓:用代数思想研究几何问题,实现定量求解;(2)熟练运用圆锥曲线(椭圆、双曲线和抛物线)的普通方程求解线段、点到线的距离和两条线的夹角等问题;(3)熟练运用圆锥曲线的参数方程辅助解题,尤其是椭圆和双曲线的参数方程跟三角函数结合非常紧密,而且三角函数的有界性又跟不等式求最大最小值关系密切。(4)由于平面解析几何解决的是平面内的问题,如果在求解立体几何中的问题中,我们能确证点到面的距离或二面角可以在某个平面内解决,但从纯几何角度不容易记计算,这时候我们可以在立体图的某个面建立坐标系,把立体几何中的问题转化成平面解析几何的问题(点到线的距离,线的夹角)来求解,有时候这样效果很好。顺便说一下,下面几个“数学思想”在平时考试和高考中尤为重要:(1)方程的思想:从形式上变未知为已知,然后找出关系,求出这个形式上的已知得解;(2)不等式的思想:利用不等式进行放大和缩小来判断变量或表达式的极限,求解最大、最小值;(3)函数的思想:把现实问题抽象成代数问题,根据变量的范围动态考察函数规律的变化规律;(4)数形结合的思想:充分利用图像的直观、形象性辅助分析和计算;(5)分类讨论的思想:体现理性思维的严密性,具体情况具体分析。(6)反证法的思想:逆向思维,从相反的角度看问题;(7)数学归纳思想:根据有限的数据试图探寻总体的规律,然后用归纳法验证猜测的正确性。铁血嘟嘟2023-08-13 09:27:322
圆锥曲线和直线的参数方程问题,请帮忙解答,过程与答案都挺重要的,与自己的比较因为我没答案,也不确定
收苏州马小云2023-08-13 09:27:322
数学三角函数和圆锥曲线
圆锥曲线都有以角度为参数的参数方程;所以圆锥曲线问题常转化为三角问题来解决;联系的纽带就是圆锥曲线的参数方程;通常有一个动点在曲线上运动的问题常设点的坐标为三角形式,例如:P(x,y)是椭圆x^2/16+y^2/4=1 上的任意一点,求2x+y的最大值;另外图形的面积问题;求轨迹问题也很常用铁血嘟嘟2023-08-13 09:27:301
有关圆锥曲线的所有关系式
圆锥曲线通用的离心率公式e=c/a学习圆锥曲线,首先要记熟基本概念,定义式,很多填空,选择题其实可以用定义很快的解决,如果用解析法去算很花时间至于圆锥曲线的大题,高考必有一道,运算量一般都会是相当大的,因此要提高自己运算的速度和正确度。熟悉常考的几种题型:如直线与圆锥曲线相切的问题,中点弦,轨迹方程……以及常用的方法:判别式,韦达定理,点差法,也可用导数求切线方程……初学圆锥曲线,一般学生可能会感到比较困难,这是正常的,实际上高考要求达到的水平不是很高,只要你按照老师要求的去做,自己注意总结,归纳,最好能把考试中的错题收集起来,(圆锥曲线的题不要做很多,高中的只有那些题型)你就能够提高这方面的能力。kikcik2023-08-13 09:27:302
圆锥曲线难题
圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)椭圆 参数方程:X=acosθ Y=bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 2)双曲线 参数方程:x=asecθ y=btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 3)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2 即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2+y0y/b^2=1;抛物线:y0y=p(x0+x) 圆锥曲线中求点的轨迹方程 在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。 圆锥曲线漫谈 圆锥曲线包括椭圆、抛物线、双曲线和圆,通过直角坐标系,它们又与二次方程对应,所以,圆锥曲线又叫做二次曲线。圆锥曲线一直是几何学研究的重要课题之一,在我们的实际生活中也存在着许许多多的圆锥曲线。 我们生活的地球每时每刻都在环绕太阳的椭圆轨迹上运行,太阳系其他行星也如此,太阳则位于椭圆的一个焦点上。如果这些行星运行速度增大到某种程度,它们就会沿抛物线或双曲线运行。人类发射人造地球卫星或人造行星就要遵照这个原理。相对于一个物体,按万有引力定律受它吸引的另一物体的运动,不可能有任何其他的轨道了。因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式。 由抛物线绕其轴旋转,可得到一个叫做旋转物面的曲面。它也有一条轴,即抛物线的轴。在这个轴上有一个具有奇妙性质的焦点,任何一条过焦点的直线由抛物面反射出来以后,都成为平行于轴的直线。这就是我们为什么要把探照灯反光镜做成旋转抛物面的道理。 由双曲线绕其虚轴旋转,可以得到单叶双曲面,它又是一种直纹曲面,由两组母直线族组成,各组内母直线互不相交,而与另一组母直线却相交。人们在设计高大的立塔时,就采取单叶双曲面的体形,既轻巧又坚固。 由此可见,对于圆锥曲线的价值,无论如何也不会估计过高。 对于圆锥曲线的最早发现,众说纷法。有人说,古希腊数学家在求解“立方倍积”问题时,发现了圆锥曲线:设x、y为a和2a的比例中项,即。a:x=x:y=y:2a,则x=ay, y=2ax,xy=2a,从而求得x=2a。又有人说,古希腊数学家在研究平面与圆锥面相截时发现了与“立方倍积”问题中一致的结果。还有认为,古代天文学家在制作日晷时发现了圆锥曲线。日晷是一个倾斜放置的圆盘,中央垂直于圆盘面立一杆。当太阳光照在日晷上,杆影的移动可以计时。而在不同纬度的地方,杆顶尖绘成不同的圆锥曲线。然而,日晷的发明在古代就已失传。 早期对圆锥曲线进行系统研究成就最突出的可以说是古希腊数学家阿波罗尼(Apollonius,前262~前190)。他与欧几里得是同时代人,其巨著《圆锥曲线》与欧几里得的《几何原本》同被誉为古代希腊几何的登峰造极之作。 在《圆锥曲线》中,阿波罗总结了前人的工作,尤其是欧几里得的工作,并对前人的成果进行去粗存精、归纳提炼并使之系统化的工作,在此基础上,又提出许多自己的创见。全书8篇,共487个命题,将圆锥曲线的性质网罗殆尽,以致后代学者几乎没有插足的余地达千余年。 现在,我们都知道,用一个平面去截一个双圆锥面,会得到圆、椭圆、抛物线、双曲线以及它们的退化形式:两相交直线,一条直线和一个点,如图1,所示。 在此,我们仅介绍阿波罗尼关于圆锥曲线的定义。如图2,给定圆BC及其所在平面外一点A,则过A且沿圆周移动的一条直线生成一个双锥面。 这个圆叫圆锥的底,A到圆心的直线叫圆锥的轴(未画出),轴未必垂直于底。 设锥的一个截面与底交于直线DE,取底圆的垂直于DE的一条直径BC,于是含圆锥轴的△ABC叫轴三角形.轴三角形与圆锥曲线交于P、P",PP"未必是圆锥曲线的轴,PP"M是由轴三角形与截面相交而定的直线,PM也未必垂直于DE。设QQ"是圆锥曲线平行于DE的弦,同样QQ"被PP"平分,即VQ=QQ"。 现作AF∥PM,交BM于F,再在截面上作PL⊥PM。如图3,PL⊥PP" 对于椭圆、双曲线,取L满足,而抛物线,则满足,对于椭圆、双曲线有QV=PV·VR,对于抛物线有QV=PV·PL,这是可以证明的两个结论。 在这两个结论中,把QV称为圆锥曲线的一个纵坐标线,那么其结论表明,纵坐标线的平方等于PL上作一个矩形的面积。对于椭圆来讲,矩形PSRV尚未填满矩形PLJV;而双曲线的情形是VR>PL,矩形PSRV超出矩形PLJV;而抛物线,短形PLJV恰好填满。故而,椭圆、双曲线、抛物线的原名分别叫“亏曲线”、“超曲线”和“齐曲线”。这就是阿波罗尼引入的圆锥曲线的定义。 阿波罗尼所给出的两个结论,也很容易用现代数学符号来表示: 趋向无穷大时,LS=0,即抛物线,亦即椭圆或双曲线的极限形式。 在阿波罗尼的《圆锥曲线》问世后的13个世纪里,整个数学界对圆锥曲线的研究一直没有什么新进展。11世纪,阿拉伯数学家曾利用圆锥曲线来解三次代数方程,12世纪起,圆锥曲线经阿拉伯传入欧洲,但当时对圆锥曲线的研究仍然没有突破。直到16世纪,有两年事促使了人们对圆锥曲线作进一步研究。一是德国天文学家开普勒(Kepler,1571~1630)继承了哥白尼的日心说,揭示出行星按椭圆轨道环绕太阳运行的事实;二是意大利物理学家伽利略(Galileo,1564~1642)得出物体斜抛运动的轨道是抛物线。人们发现圆锥曲线不仅是依附在圆锥面上的静态曲线,而且是自然界物体运动的普遍形式。于是,对圆锥曲线的处理方法开始有了一些小变动。譬如,1579年蒙蒂(Guidobaldo del Monte,1545~1607)椭圆定义为:到两个焦点距离之和为定长的动点的轨迹。从而改变了过去对圆锥曲线的定义。不过,这对圆锥曲线性质的研究推进并不大,也没有提出更多新的定理或新的证明方法。 17世纪初,在当时关于一个数学对象能从一个形状连续地变到另一形状的新思想的影响下,开普勒对圆锥曲线的性质作了新的阐述。他发现了圆锥曲线的焦点和离心率,并指出抛物线还有一个在无穷远处的焦点,直线是圆心在无穷远处的圆。从而他第一个掌握了这样的事实:椭圆、抛物线、双曲线、圆以及由两条直线组成的退化圆锥曲线,都可以从其中一个连续地变为另一个,只须考虑焦点的各种移动方式。譬如,椭圆有两个焦点F1、F2,如图4,若左焦点F1固定,考虑F2的移动,当F2向左移动,椭圆逐渐趋向于圆,F1与F2重合时即为圆;当F2向右移动,椭圆逐渐趋向于抛物线,F2到无穷远处时即为抛物线;当F2从无穷远处由左边回到圆锥曲线的轴上来,即为双曲线;当F2继续向右移动,F2又与F1重合时即为两相交直线,亦即退化的圆锥曲线。这为圆锥曲线现代的统一定义提供了一个合乎逻辑的直观基础。 随着射影几何的创始,原本为画家提供帮助的投射、截影的方法,可能由于它与锥面有着天然的联系,也被用于圆锥曲线的研究。在这方面法国的三位数学家笛沙格(Desargue1591- 1661)、帕斯卡(Pascal,1623- 1662)和拉伊尔(Phailippe de La Hire,1640~1718)得出了一些关于圆锥曲线的特殊的定理,可谓别开生面。而当法国另外两位数学家笛卡儿和费马创立了解析几何,人们对圆锥曲线的认识进入了一个新阶段,对圆锥曲线的研究方法既不同于阿波罗尼,又不同于投射和截影法,而是朝着解析法的方向发展,即通过建立坐标系,得到圆锥曲线的方程,进而利用方程来研究圆锥曲线,以期摆脱几何直观而达到抽象化的目标,也可求得对圆锥曲线研究高度的概括和统一。 到18世纪,人们广泛地探讨了解析几何,除直角坐标系之外又建立极坐标系,并能把这两种坐标系相互转换。在这种情况下表示圆锥曲线的二次方程也被化为几种标准形式,或者引进曲线的参数方程。1745年欧拉发表了《分析引论》,这是解析几何发展史上的一部重要著作,也是圆锥曲线研究的经典之作。在这部著作中,欧拉给出了现代形式下圆锥曲线的系统阐述,从一般二次方程。出发,圆锥曲线的各种情形,经过适当的坐标变换,总可以化以下标准形式之一: 继欧拉之后,三维解析几何也蓬勃地发展起来,由圆锥曲线导出了许多重要的曲面,诸如往面、椭球面、单叶和双叶双曲面、以及各种抛物面等。 总而言之,圆锥曲线无论在数学以及其他科学技术领域,还是在我们的实际生活中都占有重要的地位,人们对它的研究也不断深化,其研究成果又广泛地得到应用。这正好反映了人们认识事物的目的和规律。 圆锥曲线的光学性质 椭圆的光学性质:从椭圆一个焦点发出的光,经过椭圆反射后,反射光线都汇聚到椭圆的另一个焦点上 双曲线的光学性质:从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上 抛物线的光学性质:从抛物线的焦点发出的光,经过抛物线反射后,反射光线都平行于抛物线的对称轴无尘剑 2023-08-13 09:27:301
高中数学圆锥曲线公式定理
1.离心率0-1是椭圆,1是抛物线,大于1是双曲线。离心率是标准方程中的c/a,也是图像上某点到焦点的距离比该点到准线的距离。(有些灵活的小题需要这样转化)2.标准方程中的字母关系(这个不用多说了吧)3.圆锥曲线与直线方程联立的综合运用主要就是消去一个字母,再用韦达定理(这里要灵活应用,多做题多总结)。这里还可以引伸出“弦长公式”(不过就是由两点间的距离公式+直线斜率共同推导的)。值得注意的是垂直问题转化为向量方便计算,转化为圆有时候会比较简捷(这种不常用)。这些还都是要学好知识后,做题总结(或者说找到感觉)。无非就是两种方向,一是死算,一是技巧。死算就没啥可说的了,学好课本就行了。技巧也可分为两个方向,一是运用概念来转化问题,一是把代数问题转化为几何问题或解析几何。以上都是本人的观点,仅供参考。ardim2023-08-13 09:27:302
题:圆锥曲线的参数方程,急啊,求求各位了,要过程哇
圆锥曲线的参数方程:1)直线参数方程:x=x+tcosθy=y+tsinθ(t为参数)2)圆的参数方程:x=x+rcosθy=y+rsinθ(θ为参数)3)椭圆参数方程:x=x+acosθy=y+bsinθ(θ为参数)4)双曲线参数方程:x=x+asecθy=y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)真颛2023-08-13 09:27:302
圆锥曲线标准方程的圆锥曲线的标准方程
标准方程:(x-a)^2+(y-b)^2=r^2,圆心(a,b),半径=r>0 离心率:e=0(注意:圆的方程的离心率为0,离心率等于0的轨迹不是圆,而是一个点(c,0)一般方程:x^2+y^2+Dx+Ey+F=0,圆心(-D/2,-E/2),半径r=(1/2)√(D^2+E^2-4F) 标准方程:x^2/a^2+y^2/b^2=1(焦点在x轴上,a>b>0,在y轴上,b>a>0) 焦点:F1(-c,0),F2(c,0)(c^2=a^2-b^2)离心率:e=c/a,0<e<1准线方程:x=±a^2/c焦半径|MF1|=a+ex0,|MF2|=a-ex0两条焦半径与焦距所围三角形的面积:S=b^2*tan(α/2)(α为两焦半径夹角) 标准方程:x^2/a^2-y^2/b^2=1(焦点在x轴上) -x^2/a^2+y^2/b^2=1(焦点在y轴上) 焦点:F1(-c,0),F2(c,0)(a,b>0,b^2=c^2-a^2)离心率:e=c/a,e>1准线方程:x=±a^2/c焦半径|MF1|=a+ex0,|MF2|=a-ex0渐近线:x^2/a^2-y^2/b^2=0(焦点在x轴上) -x^2/a^2+y^2/b^2=0(焦点在y轴上)或焦点在x轴:y=±(b/a)x.焦点在y轴:y=±(a/b)x.两条焦半径与焦距所围成的三角形面积:S=b^2cot(α/2)(α为两焦半径夹角) 标准方程:y^2=2px ,x^2=2py; 焦点:F(p/2,0)离心率:e=1准线方程:x=-p/2圆锥曲线二次方程Ax^2+Bxy+Cy^2+Dx+Ey+F=0定义圆锥曲线的 一条直线x=a方/c圆 参数方程:x=X+rcosθ y=Y+rsinθ 圆心坐标(X,Y)椭圆 参数方程:x=acosθ y=bsinθ a>b时焦点在x轴上,反之在 y轴上双曲线 参数方程:x=asecθ y=btanθ 焦点在平行x轴的直线上(就是x2∕a2-y2∕b2=1)焦点在平行y轴的直线上(即y2∕a2-x2∕b2=1),把正切和正割交换Ntou1232023-08-13 09:27:301
圆锥曲线的参数方程公式
圆 x-a=rcosA x-b=rsinA 其中(a,b)为圆心 r为半径椭圆 x=acosA y=bsinA 其中a为长半轴 b为短半轴小白2023-08-13 09:27:302
圆锥曲线与方程
圆锥曲线方程一般指圆锥曲线标准方程。圆锥曲线标准方程是轨迹的方程,也是参数方程的一种;圆锥曲线标准方程的定义和性质是把握圆锥曲线标准方程的两把钥匙。圆锥曲线类型圆、椭圆、双曲线、抛物线。 圆 标准方程:(x-a)^2+(y-b)^2=r^2,圆心(a,b),半径=r:0[1] 离心率:e=0(注意:圆的方程的离心率为0,但离心率等于0的轨迹不一定是圆,还可能是一个点(c,0))一般方程:x^2+y^2+Dx+Ey+F=0,圆心(-D/2,-E/2),半径r=(1/2)radic;(D^2+E^2-4F) 椭圆 标准方程:x^2/a^2+y^2/b^2=1(焦点在x轴上,a:b:0,在y轴上,b:a:0) 焦点:F1(-c,0),F2(c,0)(c^2=a^2-b^2) 离心率:e=c/a,0 准线方程:x=plusmn;a^2/c 焦半径|MF1|=a+ex0,|MF2|=a-ex0 两条焦半径与焦距所围三角形的面积:S=b^2*tan(alpha;/2)(alpha;为两焦半径夹角) 双曲线 标准方程:x^2/a^2-y^2/b^2=1(焦点在x轴上)-x^2/b^2+y^2/a^2=1(焦点在y轴上) 焦点:F1(-c,0),F2(c,0)(a,b:0,b^2=c^2-a^2) 离心率:e=c/a,e:1 准线方程:x=plusmn;a^2/c 焦半径|MF1|=a+ex0,|MF2|=a-ex0 渐近线:y=xb/a或y=-xb/a 两条焦半径与焦距所围成的三角形面积:S=b^2cot(alpha;/2)(alpha;为两焦半径夹角) 抛物线 标准方程:y^2=2px,x^2=2py; 焦点:F(p/2,0) 离心率:e=1 准线方程:x=-p/2 圆锥曲线二次方程 Ax^2+Bxy+Cy^2+Dx+Ey+F=0小白2023-08-13 09:27:301
圆锥曲线的参数方程公式 圆、椭圆等
圆的参数方程 x=a+rcosθ y=b+rsinθ 椭圆的参数方程 x=acosθ y=bsinθ小白2023-08-13 09:27:301
高中数学圆锥曲线的所有有用公式
圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。 ·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e·cosθ) 其中e表示离心率,p为焦点到准线的距离。 双曲线 数学上指一动点移动于一个平面上,与平面上两个定点的距离的差始终为一定值时所成的轨迹叫做双曲线(Hyperbola)。两个定点叫做双曲线的焦点(focus)。 ● 双曲线的第二定义: 到定点的距离与到定直线的距离之比=e , e∈(1,+∞) ·双曲线的一般方程为(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2,动点与两个定点之差为定值2a ·双曲线的参数方程为: x=X+a·secθ y=Y+b·tanθ (θ为参数) ·几何性质: 1、取值区域:x≥a,x≤-a 2、对称性:关于坐标轴和原点对称。 3、顶点:A(-a,0) A"(a,0) AA"叫做双曲线的实轴,长2a; B(0,-b) B"(0,b) BB"叫做双曲线的虚轴,长2b。 4、渐近线: y=±(b/a)x 5、离心率: e=c/a 取值范围:(1,+∞] 6 双曲线上的一点到定点的距离和到定直线的距离的比等于双曲线的离心率 椭圆 目录·定义 ·标准方程 ·公式 ·相关性质 ·历史 定义 椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义: 1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距); 2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的 标准方程 高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程为:x^2/a^2+y^2/b^2=1 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们分别叫椭圆的长半轴和短半轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,准线方程是x=a^2/c和x=-a^2/c 椭圆的面积是πab。椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ , y=bsinθ 公式 椭圆的面积公式: S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长). 椭圆的周长公式: C=2Bπ(圆周率)/A×根号下(2A的平方-2B的平方)(其中A,B分别是椭圆的长半轴和短半轴) 相关性质 由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。 例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义): 将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。 设两点为F1、F2 对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2 则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2 由定义1知:截面是一个椭圆,且以F1、F2为焦点 用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆 椭圆有一些光学性质:椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其外表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处;椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜、放大镜和远视眼镜都是这种镜片(这些光学性质可以通过反证法证明) 历史 关于圆锥截线的某些历史:圆锥截线的发现和研究起始于古希腊。 Euclid, Archimedes, Apollonius, Pappus 等几何学大师都热衷于圆锥截线的研究,而且都有专著论述其几何性质,其中以 Apollonius 所著的八册《圆锥截线论》集其大成,可以说是古希腊几何学一个登峰造极的精擘之作。当时对于这种既简朴又完美的曲线的研究,乃是纯粹从几何学的观点,研讨和圆密切相关的这种曲线;它们的几何乃是圆的几何的自然推广,在当年这是一种纯理念的探索,并不寄望也无从预期它们会真的在大自然的基本结构中扮演著重要的角色。此事一直到十六、十七世纪之交,Kepler 行星运行三定律的发现才知道行星绕太阳运行的轨道,乃是一种以太阳为其一焦点的椭圆。Kepler 三定律乃是近代科学开天劈地的重大突破,它不但开创了天文学的新纪元,而且也是牛顿万有引力定律的根源所在。由此可见,圆锥截线不单单是几何学家所爱好的精简事物,它们也是大自然的基本规律中所自然选用的精要之一。 抛物线 1.什么是抛物线? 平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线. 另外,F称为"抛物线的焦点",l称为"抛物线的准线". 定义焦点到抛物线的距离为"焦准距",用p表示.p>0. 以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面 直至与其一边平行,就可以做一条抛物线。 2.抛物线的标准方程 右开口抛物线:y^2=2px 左开口抛物线:y^2=-2px 上开口抛物线:y=x^2/2p 下开口抛物线:y=-x^2/2p 3.抛物线相关参数(对于向右开口的抛物线) 离心率:e=1 焦点:(p/2,0) 准线方程l:x=-p/2 顶点:(0,0) 4.它的解析式求法:三点代入法 5.抛物线的光学性质:经过焦点的光线经抛物线反射后的光线平行抛物线的对称轴. 抛物线:y = ax* + bx + c 就是y等于ax 的平方加上 bx再加上 c a > 0时开口向上 a < 0时开口向下 c = 0时抛物线经过原点 b = 0时抛物线对称轴为y轴 还有顶点式y = a(x-h)* + k 就是y等于a乘以(x-h)的平方+k h是顶点坐标的x k是顶点坐标的y 一般用于求最大值与最小值 抛物线标准方程:y^2=2px 它表示抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线方程为x=-p/2 由于抛物线的焦点可在任意半轴,故共有标准方程y^2=2px y^2=-2px x^2=2py x^2=-2pyFinCloud2023-08-13 09:27:302
过圆锥曲线上任意一点的切线方程是什么?
写出圆锥曲线的方程,或者求导,或者用”蝶儿他“等于0求出斜率,再把那点坐标带进去就行了。苏萦2023-08-13 09:27:292
如图,求圆锥曲线方程?
用截面法来求解!∭dxdydz=∫(0,1)dz∬dxdy显然,∬dxdy为曲面上的截面面积x^2+y^2=z则截面为半径为√z的圆,则∬dxdy=πz则原式=∫(0,1) πzdz=π/2z^2|(0,1)=π/2肖振2023-08-13 09:27:292
直线,圆,圆锥曲线参数方程中参数的意义,举例说明
椭圆是x2/a+y2/b=1,c2=a2-b2不妨画一个椭圆,你可以画成像个水平放置的鸡蛋的形状,那么,a就表示长半轴长,b表示短半轴长,c表示焦点到原点的距离。抛物线是y2=2px,p没有什么确实的几何意义,不过,p的正负可以决定开口方向。双曲线是x2/a-y2/b=1,a2=b2+c2a表示实轴长,b表示虚轴长。a和b可以确定双曲线的渐近线。u投在线2023-08-13 09:27:291
这道圆锥曲线题能不能用参数方程解?
1╱(1-cosa)=2╱(1+cosa)~k=二倍根号二,hi投2023-08-13 09:27:292
圆锥曲线的极坐标方程
圆锥曲线的极坐标方程1、圆锥曲线是平面上的曲线。2、极坐标表示法:在直角坐标系中,用直线与平面的夹角作为极轴,把点到直线上各点的距离作为极距(即到定点O的距离),以点P为圆心、极点O为焦点的圆锥曲线称为圆锥曲线。3、设P(x)是过定点O的任意一点p(x0)的轨迹,那么P(x)就是该点在直角坐标系中所对应的极坐标位置X=a+b-c。4、当A0时,有X=a+b-c;B0时X=a+b;C0时 X= a+ b + c - d 。5、若已知抛物线y=2px/2,且p>0,则可知Y=2px*cos2α/2,其中α<0。(1) 椭圆参数方程1 椭圆标准方程2 标准椭圆的焦点在E上3 标准椭圆的准线通过原点4 准线长L=(1/2π*e^2/2)/2 (e^2/2) = 2 L/(2-1) = 1/4 L / 2/3 l / 4/3 l / 3/8 l * 5/8 L / 8/16 l ,其中l 为常数项。注意:如果E和L不同的话,应分别计算后再相减无尘剑 2023-08-13 09:27:291
圆锥曲线的方程或者参数方程是什么
圆锥曲线的极坐标方程p=ed/(1-ecost)表示离心率为e,焦点到相应准线距离为d的圆锥曲线方程.(1)当e=1时,极点在抛物线的焦点;(2)当e1时,极点在双曲线的右焦点,若p属于实数则表示双曲线,p属于正实数则表示双曲线右支;(3)当0<e<1,极点在椭圆的左焦点.(注:当极点与直角坐标原点重合,极轴与X轴正半轴重合时,圆锥曲线的方程只需利用互化公式转化可得到).真颛2023-08-13 09:27:281
圆锥曲线中一些常见证明题的结论?
[编辑本段]圆锥曲线的参数方程和直角坐标方程 1)椭圆 参数方程:X=acosθ Y=bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 2)双曲线 参数方程:x=asecθ y=btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 3)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的切线方程:圆锥曲线上一点P(x0,y0)的切线方程以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y^2 即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=p(x0+x) 圆锥曲线中求点的轨迹方程 在求曲线的轨迹方程时,如果能够将题设条件转化为具有某种动感的直观图形,通过观察图形的变化过程,发现其内在联系,找出哪些是变化的量(或关系)、哪些是始终保持不变的量(或关系),那么我们就可以从找出的不变量(或关系)出发,打开解题思路,确定解题方法。陶小凡2023-08-13 09:27:281
选修4-4:坐标系与参数方程已知在直角坐标系xOy中,圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数
(1)由圆锥曲线C的参数方程为x=4cosθy=4sinθ(θ为参数),消去参数θ化为x2+y2=16.由直线l经过定点P(2,3),倾斜角为π3.可得x=2+12ty=3+32t(t为参数)②(2)把②代入①得,t2+(2+33)t?3=0③设t1,t2是方程③的两个实根,则t1t2=-3∴|PA|?|PB|=|t1||t2|=|t1t2|=3u投在线2023-08-13 09:27:281
圆锥曲线焦点弦的性质有那些?
圆锥曲线开放分类:数学、几何、椭圆、双曲线、抛物线圆锥曲线包括椭圆,双曲线,抛物线1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P||PF1|+|PF2|=2a,(2a>|F1F2|)}。2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,(2a<|F1F2|)}。3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。4.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。·圆锥曲线的参数方程和直角坐标方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)直角坐标:y=ax+b2)圆参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)直角坐标:x^2+y^2=r^2(r为半径)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)直角坐标(中心为原点):x^2/a^2+y^2/b^2=14)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)直角坐标(中心为原点):x^2/a^2-y^2/b^2=1(开口方向为x轴)y^2/a^2-x^2/b^2=1(开口方向为y轴)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)直角坐标:y=ax^2+bx+c(开口方向为y轴,a<>0)x=ay^2+by+c(开口方向为x轴,a<>0)圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。苏萦2023-08-13 09:27:284
直线和圆锥曲线的参数方程
的参数方程西柚不是西游2023-08-13 09:27:282
圆锥曲线参数方程的几何意义
没意义余辉2023-08-13 09:27:286
圆锥曲线的所有定理 高中以上
圆锥曲线 圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。·圆锥曲线的参数方程和直角坐标方程:1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)直角坐标:y=ax+b 2)圆参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )直角坐标:x^2+y^2=r^2 (r 为半径)3)椭圆参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 14)双曲线参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)5)抛物线参数方程:x=2pt^2 y=2pt (t为参数)直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。CarieVinne 2023-08-13 09:27:281
圆锥曲线的特征?
·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e×cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 。圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 圆锥曲线的光学性质: 1)椭圆:点光源在一个焦点上,光线通过另一个焦点。 2)双曲线:点光源在一个焦点上,反射光线与另一焦点到反射点的连线在同一条直线上。 3)抛物线:点光源在焦点上,反射光线相互平行且垂直于准线。具体应用:探照灯。真颛2023-08-13 09:27:281
高中直线与圆锥曲线的参数方程应用问题
直线参数方程中,如果参数t在x,y中的系数的平方和为1,则参数t具有几何意义,即直线所通过的定点到参数t所对应点的有向线段长度为tt为正,表示有向线段方向与正方向相同,t为负,表示有向线段方向与正方向相反。线段的长度为有向线段长度的绝对值,即t的绝对值将参数方程代入圆方程,得t^2+2(1+√3)t-8=0该方程的两个根t1、t2即为有向线段PA,PB的长度。由韦达定理,t1*t2=-8,其相反数(绝对值)即为所求。CarieVinne 2023-08-13 09:27:281
高中数学圆锥曲线公式定理
圆锥曲线包括椭圆,双曲线,抛物线1.椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P||PF1|+|PF2|=2a,(2a>|F1F2|)}。2.双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a,(2a<|F1F2|)}。3.抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。4.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。·圆锥曲线的参数方程和直角坐标方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)直角坐标:y=ax+b2)圆参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)直角坐标:x^2+y^2=r^2(r为半径)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)直角坐标(中心为原点):x^2/a^2+y^2/b^2=14)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)直角坐标(中心为原点):x^2/a^2-y^2/b^2=1(开口方向为x轴)y^2/a^2-x^2/b^2=1(开口方向为y轴)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)直角坐标:y=ax^2+bx+c(开口方向为y轴,a>0)x=ay^2+by+c(开口方向为x轴,a>0)圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e·cosθ)其中e表示离心率,p为焦点到准线的距离。Chen2023-08-13 09:27:271
圆锥参数方程 圆锥曲线参数方程题目
圆锥曲线的参数方程 1、椭圆的参数方程 x =a cos u03d5x 2y 2 由例42+2=1(a >b >0) 的一个参数方程为{(u03d5为参数) y =b sin u03d5a b 这是中心在原点O ,焦点在x 轴上的椭圆的参数方程。 思考: 类比圆的参数方程中参数的意义,椭圆的参数方程中参数u03d5的意义是什么? (1)如下图,以原点为圆心,分别以a ,b (a >b >0)为半径作两个圆,点B 是大圆 半径OA 与小圆的交点,过点A 作AN ⊥ox ,垂足为N ,过点B 作BM ⊥AN ,垂足为M ,求当半径OA 绕点O 旋转时点M 的轨迹参数方程 . 设以ox 为始边,OA 为终边的角u03d5,点M 的坐标是(x , y ) ,那么点A 的横坐标为x , 点B 的纵坐标为y ,由点A , B 均在角u03d5的终边上,由三角函数的定义有 x =cos u03d5=a cos u03d5y =OB sin u03d5=b sin u03d5 当半径OA 绕点O 旋转一周时,就得到了点M 的轨迹,它的参数方程是{ x =a cos u03d5 (u03d5为参数) y =b sin u03d5 这是中心在原点O ,焦点在x 轴上的椭圆。 在椭圆的参数方程中,通常规定参数u03d5的范围是u03d5∈[0, 2π) u23a7x =b cos u03d5, u23a7x =a cos u03d5, 焦点在Y 轴u23a8焦点在X 轴u23a8 u23a9y =a sin u03d5. u23a9y =b sin u03d5. 练习1:把下列普通方程化为参数方程. 极坐标与参数方程 一、极坐标方程与直角坐标方程的互化 例1. 在直角坐标系xoy 中,以O 为极点,x 正半轴为极轴建立极坐标系,⊙O 1和⊙O 2的极坐标方程分别为ρ=4cos θ,ρ=-4sin θ.曲线C 的极坐标方程为ρcos(θ-M,N 分别为曲线C 与x 轴,y 轴的交点。 (1)写出曲线C 的直角坐标方程,并求M,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程; (3)把⊙O 1和⊙O 2的极坐标方程化为直角坐标方程; (4)求经过⊙O 1,⊙O 2交点的直线的直角坐标方程; 二、参数方程的问题 例2. 在直角坐标系xoy 中,曲线C 1的参数方程为u23a8 π 3 ) =1, u23a7x =3cos αu23a9y =sin α (α为参数) ,以原点O 为极 点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin(θ+ π 4 ) =42. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程; (2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标. (3)若点Q (x , y ) 为曲线C 1上的动点,求x +y 的最大值和最小值. 跟踪训练2:已知直线l 的参数方程为:u23a8 u23a7x =-2+t cos α (t 为参数) ,以坐标原点为极点, u23a9y =t sin α x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ-2cos θ. (Ⅰ)求曲线C 的参数方程;(Ⅱ)当α= 巩固练习:1. 在平面直角坐标系xoy 中,若 π 4 时,求直线l 与曲线C 交点的极坐标. u23a7x =t , u23a7x =3cos u03d5, l :u23a8(t为参数) 过椭圆C :u23a8u23a9y =t -a u23a9y =2sin u03d5(u03d5为参数) 的右顶点,则常数 a 的值为u23a7x =cos α xoy C 2. 在直角坐标系中,曲线1的参数方程为u23a8,(α为参数). 在极坐标系 y =1+sin αu23a9 (与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ (cos θ-sin θ)+1=0,则C 1与C 2的交点个数为 圆锥曲线极坐标及参数方程练习题 一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中, 只有一项是符合题目要求的. 1.曲线u23a8 u23a7x =-2+5t . (t 为参数) 与坐标轴的交点是( ) y =1-2t u23a9 25 12 15 12 59 (,0) B .(0,) (,0) C .(0,-4) 、(8,0) (8,0) D .(0,) 、A .(0,) 2.把方程xy =1化为以t 参数的参数方程是( ). 1 u23a7u23a7x =sin t u23a7x =cos t u23a7x =tan t u23aax =t 2u23aau23aau23aaA .u23a8 B . C . D .111 u23a8u23a8u23a81 -y =y =y =u23aay =t 2u23aau23aau23aasin t cos t tan t u23a9u23a9u23a9u23a9 3.若直线的参数方程为u23a8 A . u23a7x =1+2t . (t 为参数) ,则直线的斜率为( ) u23a9y =2-3t 2233 B .- C . D .- 3322 4.点(1,2)在圆u23a8 u23a7x =-1+8cos θ 的( ). u23a9y =8sin θ B .外部 C .圆上 D .与θ的值有关 A .内部 1u23a7 u23aax =t + 5.参数方程为u23a8. t (t 为参数) 表示的曲线是( ) u23aau23a9y =2 A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆u23a8 u23a7x =-3+2cos θu23a7x =3cos θ 与u23a8的位置关系是( ). u23a9y =4+2sin θu23a9y =3sin θ C .相离 D .内含 A .内切 B .外切 7 .与参数方程为u23a8 u23a7u23aax =u23aau23a9y =t 为参数) 等价的普通方程为( ). y 2y 22 =1 B .x +=1(0≤x ≤1) A .x +44 2 y 2y 22=1(0≤y ≤2) D .x +=1(0≤x ≤1,0≤y ≤2) C .x +44 2 8.曲线u23a8 u23a7x =5cos θπ . (≤θ≤π) 的长度是( ) u23a9y =5sin θ3 A .5π B .10π C .5π10π D . 33 9.点P (x , y ) 是椭圆2x 2+3y 2=12上的一个动点,则x +2y 的最大值为( ). A . B . C D 1u23a7x =1+t u23aa2u23aa10 .直线u23a8(t 为参数) 和圆x 2+y 2=16交于A , B 两点, u23aay =-u23aau23a92 则AB 的中点坐标为( ). A .(3,-3) B .( C .-3) D .(3, u23a7x =4t 2 11.若点P (3,m ) 在以点F 为焦点的抛物线u23a8. (t 为参数) 上,则|PF |等于( ) u23a9y =4t A .2 B .3 C .4 D .5 u23a7x =-2+t 12.直线u23a8. (t 为参数) 被圆(x -3) 2+(y +1) 2=25所截得的弦长为( )y =1-t u23a9 A B .401 C D 4 二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上. t -t u23a7u23aax =e +e (t 为参数) 的普通方程为__________________. 13.参数方程u23a8t -t u23aau23a9y =2(e -e ) u23a7u23aax =-2(t 为参数) 上与点A (- 2,3) _______. 14 .直线u23a8u23aau23a9y =315.直线u23a8u23a7x =t cos θu23a7x =4+2cos α与圆u23a8相切,则θ=_______________. y =t sin θy =2sin αu23a9u23a9 2216.设y =tx (t 为参数) ,则圆x +y -4y =0的参数方程为____________________. 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) u23a7u23aax =1+t (t 为参数 ) 和直线l 2:x -y -=0的交点P 的坐标,及点P 求直线l 1:u23a8u23aau23a9y =-5+与Q (1,-5) 的距离. 18.(本小题满分12分) 过点P 作倾斜角为α的直线与曲线x 2+12y 2=1交于点M , N , 2 求|PM |u22c5|PN |的值及相应的α的值. 19.(本小题满分12分) 已知u2206ABC 中,A (-2,0), B (0,2),C (cosθ, -1+sin θ) (θ为变数) , 求u2206ABC 面积的最大值. 20.(本小题满分12分)已知直线l 经过点P (1,1), 倾斜角α= (1)写出直线l 的参数方程. (2)设l 与圆x +y =4相交与两点A , B ,求点P 到A , B 两点的距离之积. 22π6, 21.(本小题满分12分) 1t u23a7-t x =(e +e ) cos θu23aau23aa2分别在下列两种情况下,把参数方程u23a8化为普通方程: 1u23aay =(e t -e -t )sin θu23aau23a92 (1)θ为参数,t 为常数;(2)t 为参数,θ为常数. 22.(本小题满分12分) 已知直线l 过定点P (-3, -) 与圆C :u23a83 2u23a7x =5cos θ(θ为参数) 相交于A 、B 两点. u23a9y =5sin θ 求:(1)若|AB |=8,求直线l 的方程; (2)若点P (-3, -) 为弦AB 的中点,求弦AB 的方程. 32陶小凡2023-08-13 09:27:271
圆锥曲线 参数方程
原式化为:(x-3)^2+y^2=9令x-3=3cosθ y=3sinθ 所以这个方程的参数方程为:x=3+3cosθ y=3sinθmlhxueli 2023-08-13 09:27:271
请问圆锥曲线怎么化成参数方程? 曲线上点到直线的距离的最值怎么列式?
设圆锥曲线方程为x^2/a^2+y^2/b^2=1,这里a,b都是正数,不限制谁大,谁小。也就是说焦点在哪个轴上不知道。因为(cosφ)^2+(sinφ)^2=1,为了把x^2/a^2=(cosφ)^2 y^2/b^2=(sinφ)^2一定是x与cosφ对着,y与sinφ对着两边开方得x=acosφ y=bsina(φ为参数)这就是参数方程的来历。肖振2023-08-13 09:27:271
高中数学 圆锥曲线的参数方程
1、椭圆斜率为3的弦中点的运动轨迹一定是在椭圆内啊,2、如果这个轨迹你求出来的是直线方程l,那么应该是该直线l在椭圆内的一段,即线段ab3、把该直线l与椭圆c联立,就是求这个线段ab的两个端点,实际上只要求出a<x<b,就可以由l确定ab了kikcik2023-08-13 09:27:272
高中圆锥曲线怎么用参数方程解?能举例说明什么情况下能用吗?最好有题目
椭圆x^2/a^2+y^2/b^2=1,a>b>0参数方程为x=acosψ y=bsinψ ψ为参数大鱼炖火锅2023-08-13 09:27:271
圆锥曲线的参数方程
圆锥曲线的参数方程:1)直线参数方程:x=x+tcosθy=y+tsinθ(t为参数)2)圆的参数方程:x=x+rcosθy=y+rsinθ(θ为参数)3)椭圆参数方程:x=x+acosθy=y+bsinθ(θ为参数)4)双曲线参数方程:x=x+asecθy=y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)Jm-R2023-08-13 09:27:262
圆锥曲线参数方程
圆锥曲线的参数方程:1)直线参数方程:x=X+tcosθy=Y+tsinθ(t为参数)2)圆的参数方程:x=X+rcosθy=Y+rsinθ(θ为参数)3)椭圆参数方程:x=X+acosθy=Y+bsinθ(θ为参数)4)双曲线参数方程:x=X+asecθy=Y+btanθ(θ为参数)5)抛物线参数方程:x=2pt^2y=2pt(t为参数)瑞瑞爱吃桃2023-08-13 09:27:262
圆锥曲线(圆, 椭圆, 双曲线, 抛物线)的由来和参数方程
在数学中,圆锥曲线是由平面切割圆锥体形成的平面曲线。根据平面与圆锥体轴线夹角的差异,可以得到圆、椭圆、双曲线和抛物线。 图片参考:upload.wikimedia/ *** /en/thumb/4/48/Conic_sections_2/450px-Conic_sections_2 圆锥曲线(圆 椭圆 双曲线 抛物线)标准方程 standard forms: Circle: 图片参考:upload.wikimedia/math/c/e/f/cefa874e20bf27698230d7d1c783e8c9 Ellipse: 图片参考:upload.wikimedia/math/f/c/7/fc76b0026c90752ecb4ed7e3c21c7429 Parabola: 图片参考:upload.wikimedia/math/4/7/b/47bff2d8bfe4b12d6a4cd286bc99f11e Hyperbola: 图片参考:upload.wikimedia/math/a/7/f/a7f0542788c774ee469185d9a9598fff 圆锥曲线(圆 椭圆 双曲线 抛物线)参数方程 parametric equations Circle: 图片参考:upload.wikimedia/math/e/e/e/eeede9a481de00cce952b8c0ad6ae0bd Ellipse: 图片参考:upload.wikimedia/math/b/c/0/bc07fc376306a342e4beae53608b1b9a Parabola: 图片参考:upload.wikimedia/math/7/3/d/73dba255cd969031e8efd4aadf2695e6 Hyperbola: 图片参考:upload.wikimedia/math/a/c/0/ac0c0d32ef6446dafc1a27ead9a02f14 .豆豆staR2023-08-03 10:38:341
圆锥曲线焦距公式
圆锥曲线焦距公式主要有:1、椭圆∶焦半径∶a+ex(左焦点),a-ex(右焦点),x=a_/c。2、双曲线∶焦半径∶|a+ex|(左焦点)|a-ex|(右焦点),准线x=a_/c。3、抛物线(y_=2px)∶焦半径∶x+p/2准线∶x=-p/2。弦长=√k_+1*√(x1+x2)_-4x1x2以上是焦点在x轴的,y轴只需将x换成y即可。二.双曲线1、通径长 = 2b_/a。2、焦半径公式(有8个,很难打符号的,不过可以根据极坐标方程来直接解答,比焦半径公式还快一些)。3、焦点三角形面积公式,S_PF1F2 =b_cot(θ/2)。三.抛物线y_=2px (p>0)过焦点的直线交它于A(X1,Y1),B(X2,Y2)两点,1、│AB│=X1 + X2 + p =2p/sin_θ (θ为直线AB的倾斜角)。2、 Y1*Y2 = -p_ , X1*X2 = p_/4。3、1/│FA│ + 1/│FB│ = 2/p。4、结论:以AB 为直径的圆与抛物线的准线线切。5、焦半径公式: │FA│= X1 + p/2 = p/(1-cosθ)。真颛2023-07-17 08:35:071
高中数学提圆锥曲线,不知道这个公式什么意思,怎么来的啊?这是个什么公式?
就是应用三角形面积公式求的,详细过程是,设△PF1F2的内切圆半径为r、圆心为Q。∴S△PF1F2=S△QF1F2+S△QPF1+S△QPF2=(1/2)[丨F1F2丨*r+丨PF1丨*r+丨PF2丨*r]。∴S△PF1F2=(1/2)[丨F1F2丨+丨PF1丨+丨PF2丨]r。而,丨F1F2丨=2c,丨PF1丨+丨PF2丨=2a。代入即可。hi投2023-07-15 09:27:463
高中数学圆锥曲线椭圆的第二定义的应用和练习
u3002u3002u3002u3002北有云溪2023-07-04 07:09:453
圆锥曲线的准线有多大用?
圆锥曲线第二定义是:点到准线比到焦距的距离=离心率。做小题很方便的省去思考和计算,节省时间。 求解圆锥曲线的轨迹方程、离心率、与圆锥曲线有关的最值等非常简单,它能使问题化繁为简,提高准确率,很好用的。苏萦2023-07-04 07:09:442
山东13高考数学题22圆锥曲线第二问能用第二定义解吗
当然可以了,只要是书本上学到的 ,都可以用!陶小凡2023-07-04 07:09:441
圆锥曲线齐次化原理是什么?
圆锥曲线齐次化原理是:过程中为了式子整齐好记,所以将它齐次化。齐次化是常见的代数处理技巧,圆锥曲线中用齐次化的方法解决和斜率相关的定值定点。齐次化法简化计算适用范围:圆锥曲线中处理斜率之和与斜率之积类型问题。2017年全国I卷再次考到该类问题,构造齐次处理此类问题已经流行很久,所谓的通性通法不是指自己不熟练的或者是没有研究过的就不是通法,当然下面几个例子都可以由的直线与曲线方程联立消元然后韦达定理的“通法”做出来。对于二元齐次方程,我们可以通过一些变换把它变成关于y/x的方程。当我们需要讨论y/x的关系时就可以构造齐次式来求解。由于我们研究的是圆锥曲线所以我们往往会得到一个二次方程。所以使用它的条件就是已知信息要能用关于y/x的韦达定理表示。大致思路就是:利用OQ1与OQ2垂直,设点和直线y=kx+m得到k,m,b的关系。根据OD与Q1Q2垂直,设点,我们还能得到k,m和D点的关系。双斜率情况的第二种方法——构造同构式,点差法及其拓展结论,定比点差法,定比分点公式与韦达定理,和差公式,硬解定理,等效判别式,圆锥曲线的第二定义,抛物线的平均性质,椭圆、双曲线的第三定义。圆锥曲线的极坐标方程、参数方程。康康map2023-07-04 07:09:431
椭圆的第二、三定义在高考全国卷圆锥曲线大题可以直接用吗
yes拌三丝2023-07-04 07:09:432
什么叫圆锥曲线的第二定义
就是一个点到点(焦点)比上这个点到直线的距离(C/a)为一个定值e(e>O)。e>1是双曲线,0<e<1椭圆,e=1抛物线,阿啵呲嘚2023-07-04 07:09:392
圆锥曲线第二定义
第二定义就是平面内到一个定点的距离和到一条定直线的距离的比值是一个定值的点的集合,这个定值大于一,就是双曲线,小于一,就是椭圆,等于一,就是抛物线,这么说你能明白么呵呵…应用第二定义解题的本质就是利用离心率,就是上面说的比值,把焦点弦长度与点到准线距离相互转化,大致就是这样吧,楼主找点题做就能看到了北营2023-07-04 07:09:392
圆锥曲线的第二定义公式
解答:圆锥的曲线的第二定义不是公式定义如下:平面内,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。豆豆staR2023-07-04 07:09:391
圆锥曲线定义,第二定义,第一定义都要(椭圆,圆,双曲线)
圆锥曲线包括椭圆,双曲线,抛物线椭圆的第一定义: 平面内与两定点F1、F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆。椭圆的第二定义 平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的离心率,e=c/a)的点的集合(定点F不在定直线上,e为小于1的正数)双曲线定义1: 平面内,到两定点的距离之差的绝对值为常数的点的轨迹称为双曲线。 双曲线定义2: 平面内,到给定一点F及一直线l的距离之比是常数e的点的轨迹称为双曲线。e=c/a , e大于1 定点是焦点,定直线是双曲线的准线。e 是离心率。抛物线只有一个定义: 平面内,到一个定点F和不过F的一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外 , F 称为"抛物线的焦点", l 称为"抛物线的准线"。 圆的第二定义;到两定点距离之比是不等于1的定值的点的集合gitcloud2023-07-04 07:09:394
圆锥曲线都是二次曲线,但二次曲线不一定都是圆锥曲线,如x^2+y^2=0等是二次曲线,但不是圆锥曲线,对吗?
对的。。圆不是圆锥曲线。。。小菜G的建站之路2023-07-04 07:09:364
圆锥曲线有没有统一的方程?
有统一方程。圆锥曲线的统一方程根据圆锥曲线第二定义,到定点到定直线距离成比例 设定直线为 ax+by+c=0,定点为(m,n)。圆锥曲线,是由一平面截二次锥面得到的曲线。圆锥曲线包括椭圆(圆为椭圆的特例)、抛物线、双曲线。起源于2000多年前的古希腊数学家最先开始研究圆锥曲线。圆锥曲线(二次曲线)的(不完整)统一定义:到平面内一定点的距离r与到定直线的距离d之比是常数e=r/d的点的轨迹叫做圆锥曲线。其中当e>1时为双曲线,当e=1时为抛物线,当0<e<1时为椭圆。定点叫做该圆锥曲线的焦点,定直线叫做(该焦点相应的)准线,e叫做离心率。余辉2023-07-04 07:09:361
高考用圆锥曲线第二定义解题给分么
给分。在解题中,只要用到的定义、定理是正确的,不管高中课本中有没有,都给分。北有云溪2023-07-04 07:09:341
圆锥曲线的解题技巧有哪些?
我现在也很苦恼,我问老师,老师说熟记公式,多做一些基础或中等题,不要做难题。阿啵呲嘚2023-07-04 07:09:3312
什么叫圆锥曲线的第二定义
椭圆是一种圆锥曲线(也有人叫圆锥截线的),现在高中教材上有两种定义:1、平面上到两点距离之和为定值的点的集合(该定值大于两点间距离)(这两个定点也称为椭圆的焦点,焦点之间的距离叫做焦距);2、平面上到定点距离与到定直线间距离之比为常数的点的集合(定点不在定直线上,该常数为小于1的正数)(该定点为椭圆的焦点,该直线称为椭圆的准线)。这两个定义是等价的准线和焦点的作用和意义是一样的,都是用来确定椭圆、双曲线、抛物线的形状以及位置的.x=a方/c 离心率统一定义是动点到焦点的距离和动点到准线的距离之比 椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值。离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。圆的离心率=0椭圆的离心率:e=∈c/a(0,1)(c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )抛物线的离心率:e=1双曲线的离心率:e=∈c/a(1,+∞) (c,半焦距;a,长半轴(椭圆)/实半轴(双曲线) )你的串号我已经记下,采纳后我会帮你制作hi投2023-07-04 07:09:311
圆锥曲线定义,第二定义,第一定义都要(椭圆,圆,双曲线)
圆不是圆锥曲线,圆锥曲线包括椭圆,双曲线,抛物线 椭圆的第一定义: 平面内与两定点F、F"的距离的和等于常数2a(2a>|FF"|)的动点P的轨迹叫做椭圆. 椭圆的第二定义 平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数 双曲线定义1: 平面内,到两给定点的距离之差的绝对值为常数的点的轨迹称为双曲线. 双曲线定义2: 平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线. 抛物线只有一个定义: 平面内,到一个定点F和不过F的一条定直线l距离相等的点的轨迹(或集合)称之为抛物线.另外 ,F 称为"抛物线的焦点",l 称为"抛物线的准线".gitcloud2023-07-04 07:09:311
如何证明圆锥曲线的第一定义与第二定义的等价性
设左焦点为C(-c,0),左准线为x=-a^2/c曲线上的点为P(x,y),到准线距离为d则则根据第二定义有PC/d=e即√[(x+c)^2+y^2]/(x+a^2/c)=e=c/a然后化简就可以了注意这里有一个问题,就是抛物线的方程的顶点不是设在了原点,并且抛物线的焦点和准线在轴两侧。瑞瑞爱吃桃2023-07-04 07:09:311
圆锥曲线第二定义的证明,√[(x-c)^2+y^2]/(a^2/c-x)=e=c/a怎么化简
√[(x-c)^2+y^2]/(a^2/c-x)=e=c/a根号((x-c)^2+y^2)=c/a*(a^2/c-x)=a-cx/a二边平方得:x^2-2cx+c^2+y^2=a^2-2cx+c^2x^2/a^2a^2x^2-c^2x^2+a^2y^2=(a^2-c^2)a^2(a^2-c^2)x^2+a^2y^2=a^2b^2b^2x^2+a^2y^2=a^2b^2即是方程:x^2/a^2+y^2/b^2=1bikbok2023-07-04 07:09:311
高中数学里面的圆锥曲线和导数哪个更难?为什么?
我觉得高中数学里还是圆锥曲线比较难吧,那个我就没搞懂过,对这种几何类型的数学完全摸不着头脑,导数就感觉好学一些。北有云溪2023-06-03 14:31:109
高中导数大题难还是圆锥曲线大题难
导数靠运气,但可以通过积累(如常用不等式的放缩)把一部分运气转化为实力。圆锥曲线一般只要时间充足都可以解出来,但是操作技巧和条件翻译水平决定了计算量的多少,而且很靠积累(二级结论很多需要背记可以大幅提高解小题速率,大题二级结论用得多的是硬解公式(提高解题速度)和第三定义(转换条件降低计算量)可自己推导加深记忆再背下来,各类模型也需要多积累)。导数要求的思维层次较高,但特别有趣。圆锥曲线做多基本都会做,困难的只是刚接触时前期很折磨人会被计算量吓到,而且做多会做腻。总体导数更难一些。tt白2023-06-03 14:31:071
请问高考数学怎么考到130啊,为什么我觉得最后两道大题圆锥曲线和导数这么难,还有选择和填空最后一个
踩金质奖巧浩全年们senior16康康map2023-06-03 14:30:593
谁能告诉我一张在小猿里面冲刺数学140系列的一个圆锥曲线和导数方法和考点的思维导图呀?
你好,目前应该是需要找找资源才可以北营2023-06-03 14:30:161
谁能告诉我有关圆锥曲线和导数方法和考点的思维导图呀?
小题:选择题和填空题10分大题最后三道决定你数学命运的压轴大题,有两道(圆锥曲线和导数)28-30分(具体分数各省有别),还有一道数列,一共40分。(这两道题没有一定水平不易拿啊............)再也不做站长了2023-06-03 14:30:151
谁能告诉我一张在小猿里面冲刺数学140系列的一张圆锥曲线和导数方法和考点的思维导图呀?
不太同意楼上的观点,导数与函数、不等式、数列的结合问题有很多,我觉得导数的问题灵活性比圆锥曲线一般要多些。这两类问题在高考中,如果是小题形式存在,一般比较讲究技巧,不会有大量运算的情况出现,所以如果你算了半天,一定是有问题的。所以,掌握技巧是解决小题的关键。圆锥曲线的极坐标表示式有时候求斜率很好用(如果你们不学极坐标,也可以搜搜),参数方程用来求直线和圆锥曲线的关系、最大值问题也很好用。圆锥曲线要求记忆的方法和公式很多。导数小题一般简单,公式要记忆,有时候考抽象函数与导数的结合,可以换换思路,从导数定义入手。反正灵活一些。如果是大题的话,这两种题目都是可以做压轴题目的,综合性要求高,你说别的问题不大,就是圆锥曲线和导数不行,这是解释不通的。前面已经说了,大题中的综合性很高,一定是其他也有没有掌握好的地方。解决大题只有做题,做难题(怪题就算了)。做多了就有套路了。导数的话,大题有时候求求二阶导数,灵活移项,这些很关键。如果你是高二,现在也快要总复习了,有些小技巧真是做题做出来的,要是高三,也快高考了,心态很关键,好运吧韦斯特兰2023-06-03 14:30:151
圆锥曲线
解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。1、三种圆锥曲线的研究(1)统一定义,三种圆锥曲线均可看成是这样的点集:,其中F为定点,d为P到定直线的l距离,Fl,如图。因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。当01时,点P轨迹是双曲线;当e=1时,点P轨迹是抛物线。(2)椭圆及双曲线几何定义:椭圆:{P||PF1|+|PF2|=2a,2a>|F1F2|>0,F1、F2为定点},双曲线{P|||PF1|-|PF2||=2a,|F1F2|>2a>0,F1,F2为定点}。(3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。①定性:焦点在与准线垂直的对称轴上椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。②定量:椭圆双曲线抛物线焦距2c长轴长2a——实轴长——2a短轴长2b焦点到对应准线距离P=2p通径长2·2p离心率1基本量关系a2=b2+c2C2=a2+b2?????(4)圆锥曲线的标准方程及解析量(随坐标改变而变)举焦点在x轴上的方程如下:椭圆双曲线抛物线标准方程(a>b>0)(a>0,b>0)y2=2px(p>0)顶点(±a,0)(0,±b)(±a,0)(0,0)焦点(±c,0)(,0)准线X=±x=中心(0,0)有界性|x|≤a|y|≤b|x|≥ax≥0焦半径P(x0,y0)为圆锥曲线上一点,F1、F2分别为左、右焦点|PF1|=a+ex0|PF2|=a-ex0P在右支时:|PF1|=a+ex0|PF2|=-a+ex0P在左支时:|PF1|=-a-ex0|PF2|=a-ex0|PF|=x0+总之研究圆锥曲线,一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质,以简化运算。2、直线和圆锥曲线位置关系(1)位置关系判断:△法(△适用对象是二次方程,二次项系数不为0)。其中直线和曲线只有一个公共点,包括直线和双曲线相切及直线与双曲线渐近线平行两种情形;后一种情形下,消元后关于x或y方程的二次项系数为0。直线和抛物线只有一个公共点包括直线和抛物线相切及直线与抛物线对称轴平行等两种情况;后一种情形下,消元后关于x或y方程的二次项系数为0。(2)直线和圆锥曲线相交时,交点坐标就是方程组的解。当涉及到弦的中点时,通常有两种处理方法:一是韦达定理;二是点差法。4、圆锥曲线中参数取值范围问题通常从两个途径思考,一是建立函数,用求值域的方法求范围;二是建立不等式,通过解不等式求范围。陶小凡2023-05-24 12:08:511
圆锥曲线解题技巧
在《圆锥曲线》中,阿波罗尼总结了前人(柏拉图学派 的梅内赫莫斯为解决倍立方体问题而发现了圆锥曲线)的工作,尤其是欧几里得的工作,并对前人的成果进行去粗存精、归纳提炼并使之系统化的工作,在此基础上,又提出许多自己的创见。全书8篇,共487个命题,将圆锥曲线的性质网罗殆尽,以致后代学者几乎没有插足的余地达千余年。 圆锥曲线解题技巧 一、化为二次函数,求二次函数的最值 依据条件求出用一个参数表示的二次函数解析式,而自变量都有一定的变化范围,然后用配方法求出限制条件下函数的最值,就可得到问题的解。 例1:曲边梯形由曲线及直线,x=1,x=2所围成,试问通过曲线,上的哪一点作切线,能使此切线从曲边梯形上切出一个最大面积的普通梯形。 分析:先求出适合条件的一条切线方程,再求出这条切线与直线x=1,x=2的交点坐标,根据梯形面积公式列出函数关系式,再求最值。 大面积的普通梯形。 说明:如果函数解析式中含有参数,一般要根据定义域和参数的"特点分类讨论。 二、利用圆锥曲线性质求最值 有些问题先利用圆锥曲线的定义或性质给出关系式,再利用几何或代数方法求最值,可使题目中的数量关系更直观,解题方法更简洁。 例2:已知双曲线的右焦点为F,点A(9,2)。试在双曲线上求一点M,使的值最小,并求这个最小值。 分析:由条件得,与互为倒数,设d为点M到对应准线的距离,可得,把问题转化为求的最小值,点M为过A点垂直于准线的直线与双曲线的交点。 说明:利用圆锥曲线的性质求最值是一种特殊方法,在利用时技巧性较强,但是可以避繁就简,化难为易,使思路清晰,过程简捷。 三、化为一元二次方程,利用判别式求最值 如果能把圆锥曲线的最值问题转化为含有一个未知量的一元二次方程,利用,解得要求未知量的范围,然后确定其最值。 例3:直线,椭圆C:。求以椭圆C的焦点F1、F2为焦点,且与直线l有公共点M的椭圆中长轴最短的。 分析:因为直线l与所求椭圆有公共点,可以由方程组得到一个一元二次方程,再利用判别式确定所求椭圆长轴的最小值。 解:椭圆C的焦点。 说明:直线l与椭圆有公共点,可得方程组,消去一个未知数,得到一个一元二次方程,由一元二次方程有实根的条件得,构造参变量的不等式,确定的最小值,这种解法思路清晰、自然。 四、利用不等式求最值 列出最值满足的关系式,利用平均值不等式中等号成立的条件求最值。 例4:定长为3的线段AB的两个端点在抛物线上移动,M是线段AB的中点,求M到 y轴的最短距离。 说明:用不等式求最值有时要用“配凑法”,这种方法是一种技巧,要在训练过程中逐渐掌握。在使用平均值不等式求最值时要满足三个条件:①每一项都要取正值;②不等式的一边为常数;③等号能够成立。 五、利用函数的性质求最值 有些圆锥曲线的最值问题,可以先转化成函数问题,然后利用函数的单调性、有界性等性质求最值。 说明:本题把求圆锥曲线最值问题转化为求三角函数的最值问题,然后利用的有界性得出结果。 六、利用平面几何的有关知识求最值 有些圆锥曲线求最值问题可以转化为平面几何问题,借助一些平面几何知识求最值。 例6:已知椭圆,点A(4,0)是它的右焦点,B(2,2)是椭圆内一点,M是椭圆上一动点,求的最大值和最小值。 说明:有些圆锥曲线求最值问题,如果用代数方法求解比较复杂,可以考虑用几何知识求解,其中“三角形两边之和大于第三边”是求最值常用的定理。 圆锥曲线最值问题从方程与曲线着手,反映了数学问题中的数与形的密切关系,这类问题涉及的数学知识较多,解题方法灵活。因此,求圆锥曲线最值问题能促进数学知识的融会贯通,也能使数学能力得到全面训练。可桃可挑2023-05-24 12:08:511
什么是圆锥曲线?与“圆锥”有什么关系
圆锥曲线是指椭圆,双曲线,抛物线。字面上没啥意思,但定义上有关系,估计你是没学呢,学了就明白了左迁2023-05-24 12:08:512
圆锥曲线的几何性质
问题一:圆锥曲线到大学才知道的几何性质有那些? 列上一些 带证明更谢谢了 现在高中出题基本上都是大学 高考源于教材,必须略高于教材。 本人结合历年高考编著一本《高考常考的大一数学》有关圆锥曲线的有四线一方程。 1、 若P(x0,y0)在椭圆x2/a2+y2/b2=1上,得到切线方程为 x0x/a2+y0y/b2=1; 若P(x0,y0)在椭圆x2/a2+y2/b2=1外,得到切点弦方程为 x0x/a2+y0y/b2=1; 这两个方程形式一样,含义不一样。PPPPPP2 2、 若P(x0,y0)在双曲线x2/a2-y2/b2=1上,得到切线方程为 x0x/a2-y0y/b2=1; 若P(x0,y0)在椭圆x2/a2-y2/b2=1外,得到切点弦方程为 x0x/a2-y0y/b2=1; 3、 若P(x0,y0)在抛物线y2=2px上,得到切线方程为 y0y=p(x0+x); 若P(x0,y0)在抛物线y2=2px外,得到切点弦方程为 y0y=p(x0+x); 与庆杰高歌同行数学加强班为你提供!《高考常考的大一数学》一本15元,若要,短信联系13608614549 问题二:圆锥曲线的解题技巧? 1.圆锥曲线的两个定义: (1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常数 ,且此常数 一定要大于 ,当常数等于 时,轨迹是线段F F ,当常数小于 时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数 ,且此常数 一定要小于|F F |,定义中的“绝对值”与 <|F F |不可忽视。若 =|F F |,则轨迹是以F ,F 为端点的两条射线,若 |F F |,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。 如方程 表示的曲线是_____(答:双曲线的左支) (2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率 。圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。 如已知点 及抛物线 上一动点P(x,y),则y+|PQ|的最小值是_____(答2) 2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程): (1)椭圆:焦点在 轴上时 ( ),焦点在 轴上时 =1( )。方程 表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。 如(1)已知方程 表示椭圆,则 的取值范围为____(答: ); (2)若 ,且 ,则 的最大值是____, 的最小值是___(答: ) (2)双曲线:焦点在 轴上: =1,焦点在 轴上: =1( )。方程 表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。 如设中心在坐标原点 ,焦点 、 在坐标轴上,离心率 的双曲线C过点 ,则C的方程为_______(答: ) (3)抛物线:开口向右时 ,开口向左时 ,开口向上时 ,开口向下时 。 如定长为3的线段AB的两个端点在y=x2上移动,AB中点为M,求点M到x轴的最短距离。 3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断): (1)椭圆:由 , 分母的大小决定,焦点在分母大的坐标轴上。 如已知方程 表示焦点在y轴上的椭圆,则m的取值范围是__(答: ) (2)双曲线:由 , 项系数的正负决定,焦点在系数为正的坐标轴上; (3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。 特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F ,F 的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数 ,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中, 最大, ,在双曲线中, 最大, 。 4.圆锥曲线的几何性质: (1)椭圆(以 ( )为例):①范围: ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),四个顶点 ,其中长轴长为2 ,短轴长为2 ;④准线:两条准线 ; ⑤离心率: ,椭圆 , 越小,椭圆越圆; 越大,椭圆越扁。 如(1)若椭圆 的离心率 ,则 的值是__(答:3或 ); (2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答: ) (2)双曲线(以 ( )为例):①范围: 或 ;②焦点:两个焦点 ;③对称性:两条对称轴 ,一个对称中心(0,0),两个顶点 ,其中实轴长为2 ,虚轴长为2 ,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为 ;④准线:两条准线 ; ⑤离心率: ,双曲线 ,等轴双曲线 , 越......>> 问题三:圆锥曲线六大名圆分别是什么,有什么性质? 圆锥曲线统一定义:(第二定义) 平面上到定点(焦点)的距离与到定直线(准线)的距离为定值(离心率e)的点的 *** .而根据e的大小分为椭圆,抛物线,双曲线.圆可看作e为0的曲线. 1.0x^2/a^2+y^2/b^2=1(0y^2/a^2+y^2/b^2=1(0a^2=b^2+c^2 椭圆上任意一点到两焦点距离之和为2a(定值),且大于焦距2c,这是第一定义 问题四:谁能告诉我现在什么游戏正在公测? 去17173拌三丝2023-05-24 12:08:511
什么是圆锥曲线?与“圆锥”有什么关系
定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当01时为双曲线。圆锥曲线包括椭圆,双曲线,抛物线。与圆锥的关系:用一个平面去截一个圆锥面,得到的交线就称为圆锥曲线。1)当平面与圆锥面的母线平行,且不过圆锥顶点,结果为抛物线。2)当平面与圆锥面的母线平行,且过圆锥顶点,结果退化为一条直线。3)当平面只与圆锥面一侧相交,且不过圆锥顶点,结果为椭圆。4)当平面只与圆锥面一侧相交,且不过圆锥顶点,并与圆锥面的对称轴垂直,结果为圆。5)当平面只与圆锥面一侧相交,且过圆锥顶点,结果退化为一个点。6)当平面与圆锥面两侧都相交,且不过圆锥顶点,结果为双曲线。7)当平面与圆锥面两侧都相交,且过圆锥顶点,结果为两条相交直线。善士六合2023-05-24 12:08:511
圆锥曲线的定义是什么?
1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P|||PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。采纳吧!g( ⊙o⊙?)( ^_^ )mlhxueli 2023-05-24 12:08:511
数学 圆锥曲线
设AB所在直线为Y=KX+P则X=(Y-P)/KX方=(Y-P)方/K方=2PYY方+P方-2PY=2PK方YY方-(2P+2PK方)Y+P方=0Y1+Y2=2P+2PK方,Y1*Y2=P方MA=Y1+P/2,MB=Y2+P/2由以上可得:1/MA+1/MB为定值,1/MA*1/MB也为定值则1/MA方+1/MB方=(1/MA+1/MB)方-2*1/MA*1/MB,也为定值。无尘剑 2023-05-24 12:08:511
圆锥曲线是怎样被发现的?又如何证明
【发现历史】对圆锥曲线的研究大致经历了如下几个阶段。一.最初发现早在公元前5世纪 ~ 公元前4世纪,古希腊巧辩学派的数学家提出了“化圆为方”、“立方倍积”和“三等分任意角”三大不可能问题。当初,他们并不知道这是不可能问题,所以努力想解决这些它们。虽然他们没有能解决这三大问题,但是却获得了不少意外的成果。据说,圆锥曲线的被发现,就是从这里开始的。古希腊数学家希波克拉底( Hippocrates of Chios 公元前460),在解决“立方倍积”问题时,发现圆锥曲线:a x = x y = y 2a → x 2 =ay, y 2 =2ax, xy=2 a 2 → x 3 =2 a 3 另外一位古希腊数学家梅内克缪斯(Menaechmus 公元前375 ~ 公元前325),用平面截不同的圆锥,发现圆锥曲线。如图5-26关于圆锥曲线的被发现还有一说,根据数学史家诺伊格鲍尔(Neugebauer,Otto 1898~ ?)的意见,圆锥曲线可能是在制作日晷时被发现的。可惜,关于日晷的发明和制作在古代就已失传,所以不可详考。二.奠基工作在古希腊,有许多数学家都研究过圆锥曲线。譬如,老阿里斯泰库斯(The Elder Aristacus 约公元前4世纪)、欧几里得、阿基米德、厄拉多塞(Eratosthenes 公元前274~公元前194)和阿波罗尼(Apollonius 公元前260 ~ 公元前190)等。其中,阿波罗尼的《圆锥曲线》是最杰出的,它与欧几里得的《几何原本》同被誉为古希腊几何登峰造极之作。《圆锥曲线》8篇,共487个命题。第 1 篇,圆锥曲线的定义、性质;第 2 篇,双曲线渐近线的作法、性质,由此引入共轭双曲线,圆锥曲线切线的作法;第 3 篇,圆锥曲线与其切线、直径所成图形的面积,极点极线的调和性,焦点的性质;第 4 篇,极点极线的其它性质,各种位置的圆锥曲线可能有的交点数;第 5 篇,从特定点到圆锥曲线所能作的最长线和最短线;第 6 篇,全等圆锥曲线、相似圆锥曲线及圆锥曲线弓形;第 7 篇,有心圆锥曲线两共轭直径;第 8 篇,失传,也许是关于如何定出有心圆锥曲线的共轭直径,使其长度的某些函数具有给定的值。《圆锥曲线》现在的版本中,前4卷是从12~13世纪的希腊手稿本复制的,其后的3卷是从1290年阿拉伯译本转译的,第8卷已失传,现为17世纪的哈雷根据帕普斯书中的启示而搞出来的一个代替稿。阿波罗尼总结了前人的成就,提出了自己的创见,在《圆锥曲线》中,将圆锥曲线的性质收集殆尽,以至以致后代学者在千余年间对圆锥曲线的性质几乎没有插足的余地。以下,我们仅介绍阿波罗尼关于圆锥曲线的基础性的工作。关于圆锥曲线的定义及性质的讨论,如图5-27。在古希腊,阿波罗尼之后,帕普斯(Pappus 约 4 世纪)对圆锥曲线也作了重要的工作,即在《数学汇编》证明:与定点及定直线的距离成定比例的点的轨迹是圆锥曲线。这是阿波罗尼的《圆锥曲线》中所没有的。总而言之,在古希腊对圆锥曲线的研究就有一个十分清楚的轮廓,只是由于没有坐标系统,所以在表达形式上存在着不容忽视的缺陷。三.长期停滞在阿波罗尼的《圆锥曲线》问世后的 13 个世纪里,整个数学界对圆锥曲线的研究没有什么进展。公元 11 世纪,中亚数学家海雅姆(Khaym,Omar 1048 ~ 1131)利用圆锥曲线来解三次方程,而对圆锥曲线本身并没有深入的研究。详见4.2.2 例8。四.有所突破16世纪,有两件事促使人们对圆锥曲线做进一步的研究。一是德国数学家开普勒继承了哥白尼的日心说,揭示出行星按椭圆轨道绕太阳运行,是圆锥曲线摆脱圆锥而成为自然界中物体运动的普遍形式。一是意大利物理学家伽利略得出斜抛运动的轨道是抛物线,突破了静态圆锥曲线的观念。人们开始感到古希腊人的证明方法太缺乏一般性,几乎每个定理都是要想出一个特殊的证明方法。于是,对圆锥曲线的处理方法开始有了变化。1579年,蒙蒂(Monte ,Guidobaldo del 1545 ~1607)采用焦点、定长的方式,定义了椭圆,改变以往平面截圆锥的定义方式;开普勒关于几何图形连续变换的思想,为圆锥曲线的统一定义奠定了基础。五.别开生面17世纪,随着射影几何的肇始,本来为画家提供帮助的投射和截影的方法,与圆锥曲线有着天然的联系,也被用来研究圆锥曲线,并得出了一些关于圆锥曲线的特殊的定理。在这方面,法国的三位数学家笛沙格、帕斯卡和德?拉?希尔的工作成果,开辟了研究圆锥曲线的别开生面的方向。六.分析描述解析几何的创立,使人们对圆锥曲线的认识进入了一个现阶段。这时,对圆锥曲线的研究方法既不同于阿波罗尼,又不同于笛沙格,而是朝着解析方法的方向发展。即建立坐标系,得出圆锥曲线的方程,再利用方程研究圆锥曲线的性质,以期摆脱几何直观而达到抽象化的目标,也可以求得对圆锥曲线研究的高度的概括与统一。在这方面,笛卡儿、费马和沃利斯(Wallis,John 1616 ~ 1703)分别做出了非常重要的贡献。七.系统总结18世纪,牛顿、伯努力和赫尔曼等先后提出不同的坐标系,尤其影响深刻的是极坐标系,这些工作促进了坐标系的系统化进程。随着坐标系的系统化,关于圆锥曲线性质研究的结论也逐渐可以系统化起来。在这方面,著名瑞士数学家欧拉(Euler,Leonhard 1707 ~ 1783)作出了重要贡献。欧拉1745年发表的《分析引论》,被誉为解析几何发展史上的重要著作。系统地研究了圆锥曲线的各种情形,并证明通过坐标变换,一定可以把任何圆锥曲线化为某种标准形式。详见5.1.3 。欧拉之后,三维解析几何的研究蓬勃开展,由圆锥曲线导出了圆锥曲面。至此,关于圆锥曲线的理论并被广泛应用,也就是我们现在所能看到的情景。【《圆锥曲线论》】《圆锥曲线论》是希腊数学家阿波罗尼奥斯的重要著作.作者除了综合前人的成就之外,还包含有独到的创见材料,而且写得巧妙、灵活,组织得非常出色.在几何发展史上是一个巍然屹立的丰碑,是古希腊几何的登峰造极之作.有人认为它可与欧几里得的《几何原本》在欧氏几何中的地位相媲美.阿波罗尼奥斯也因此被列入亚历山大前期三大数学家之一(另外两位是欧几里得和阿基米德).《圆锥曲线论》共8卷.其中最具创造性的是证明了抛物线、双曲线和椭圆这三种圆锥曲线都可以由同一种圆锥体截得,用现代术语来说,即将三种曲线的方程归到一个坐标系中,为圆锥曲线的现代研究开创了新的局面.《圆锥曲线论》所涉及到的范围几乎囊括了圆锥曲线性质的所有方面,并且其中以见坐标制思想的端倪,作者以圆锥底面直径为横坐标,过顶点的垂线作为纵坐标,给后世以很大的启发.直到十七世纪之前,人们在这一领域几乎失去了再研究的余地.圆锥曲线主要的发展时期应该在於古希腊的亚历山大时期(300B.C.-641A.D.),当时正值希腊数学的黄金时期,而代表人物是名垂千古的三大几何学家----欧几里得(Euclid),阿基米德(Archimedes)及阿波罗尼奥斯(Appollon)其中阿波罗尼奥斯的主要成就是建立了完美的圆锥曲线论,总结了前人在这方面的工作,再加上自己的研究成果,撰成《圆锥曲线论》八大卷,将圆锥曲线的性质网罗殆尽,几乎使后人无插足的余地.《圆锥曲线论》是一部经典巨著,可以说是代表了希腊几何的最高水平.书中证明了三种圆锥曲线都可以由同一圆锥体截取而得,改变了过去要用三种不同的锥体截取的方法,继而给出抛物线,椭圆,双曲线,正交弦等名称,取代了过去的直角圆锥曲线,钝角圆锥曲线和锐角圆锥曲线的叫法.估计证明过程得去这本书里找了。CarieVinne 2023-05-24 12:08:511
圆锥曲线通径公式
圆锥曲线通径公式:x=a²/c2。曲线,是微分几何学研究的主要对象之一。直观上,曲线可看成空间质点运动的轨迹。微分几何就是利用微积分来研究几何的学科。为了能够应用微积分的知识,我们不能考虑一切曲线,甚至不能考虑连续曲线,因为连续不一定可微。这就要我们考虑可微曲线。立体几何定义:以直角三角形的直角边所在直线为旋转轴,其余两边旋转360度而成的曲面所围成的几何体叫做圆锥。旋转轴叫做圆锥的轴。垂直于轴的边旋转而成的曲面叫做圆锥的底面。不垂直于轴的边旋转而成的曲面叫做圆锥的侧面。无论旋转到什么位置,不垂直于轴的边都叫做圆锥的母线。康康map2023-05-24 12:08:501