几何学之父——欧几里得
欧几里得是活跃于托勒密一世(公元前367-公元前282年)时代的伟大科学家,其生卒年月和出生地不详,据说大约公元前330年出生于雅典某个城市 ,早年求学于雅典的柏拉图学园,深受柏拉图的影响。欧几里得在柏拉图学园学习时,曾拜亚里士多德为师。亚里士多德是希腊历史上最伟大的思想家、哲学家和科学家。亚里士多德非常喜欢和欣赏欧几里得,倾自己所学去教导他。欧几里得也因此受到了良好的教育。 大约公元前300年,欧几里得收到托勒密王的邀请,来到埃及都城亚历山大的缪塞昂学院进行研究并讲学。在那里,他曾用最简单的方法,将人们认为似乎不可能做到的事变成现实。 当时,古希腊的科学文化已经比较发达,由于当时人们的生活和生产条件的发展所需要,再加上柏拉图学园的良好学习氛围,几何学已经逐渐发展起来,但是这些内容大多比较零散,彼此不相联系,所以在实践中很难发挥作用。后来,欧几里得逐渐认识到了这一点,便决定将这些既有的几何知识组织在一个完整的演义体系中。他首先确定了最基本的几条不证自明的命题作为演绎系统的出发点,然后再从这些最基本的命题出发,用逻辑推理的方法论证以后的命题。这就是亚里士多德的逻辑推理思维。 在研究过程中,欧几里得创造了确定公设和公理的方法,这是他对几何学的一个伟大贡献,其中最著名的是平行公设。把公设和公理选定以后,接下来便是剩下的几何命题作为定理从公理和公设中推断出来。欧几里得非常成功地做到了这一点。他将几何独立的知识形成了一个有机整体,用定义和公理成功地研究图形的性质。 经过几年的努力研究,欧几里得写成了一部鸿篇巨著《几何原本》。它的问世在西欧引起了极大的轰动,为几何学带来了划时代的发展。这部著作分13卷,共有467条定理。它把当时的自然科学推到了当代的巅峰,为后人提供了一个严密的逻辑理论体系。因此,该书从问世起,对所有伟大的思想家都有一股强大的魔力。 1607年,我国明代杰出的科学家徐光启和意大利传教士利马窦合作翻译了《几何原本》,至此,“几何”才传入到中国。 由于欧几里得对几何学的杰出贡献,以至于他的名字都成了“几何”的代名词,他当之无愧地被人们称为“几何学之父”。 ◆知识拓展 ◎《几何原本》把人们公认的一些事实列成定义和 公理 ,以 形式逻辑 的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成了一个严密的逻辑体系——几何学。这部书因此成了 欧式几何 的奠基之作,成为用公理化方法建立起来的数学演绎体系的最早典范,被广泛的认为是历史上最成功的教科书。 ◎关于欧几里得,科学界流传着这样一个故事:当时人们建造了高大的金字塔,可是谁也不知道金字塔究竟有多高。有人这么说:“要想测量金字塔的高度,比登天还难!”这话传到欧几里得耳朵里。他笑着告诉别人:“这有什么难的呢?当你的影子跟你的身体一样长的时候,你去量一下金字塔的影子有多长,那长度便等于金字塔的高度!”★知识链接★ 柏拉图学园是雅典的哲学家柏拉图开办的。柏拉图学识渊博,特别是在哲学方面有着很高的建树。柏拉图认为要学好哲学,必须先学好数学,因为数学是通向理念世界的准备工具。正因为此,数学研究在他的学园里得到了空前的发展,培养出亚里士多德等许多著名的学者。水元素sl2023-05-18 13:55:541
欧几里得是哪里的数学家
欧几里得是古希腊著名数学家。欧几里德(Ευκλειδης,Euclid,约前330年-约前275年),出生于雅典,古希腊著名数学家,欧氏几何学开创者。年少时,进入柏拉图学院学习,在柏拉图思想影响下对几何产生兴趣。公元前300年,写出传世之作《几何原本》,开创了欧氏几何学,实现了几何学的系统化、条理化。欧几里德的身世我们知道得很少,他的《几何原本》大概是亚历山大大学的一个课本。亚历山大大学是希腊文化最后集中的地方,因为亚历山大自己到过亚历山大,因此就建立了当时北非的大城,靠在地中海。但是他远征到亚洲之后,我们知道他很快就死了。之后,他的大将托勒密管理当时的埃及区域。欧几里得(Euclid)是古希腊著名数学家、欧氏几何学开创者。欧几里得出生于雅典,当时雅典就是古希腊文明的中心。浓郁的文化气氛深深地感染了欧几里得,当他还是个十几岁的少年时,就迫不及待地想进入柏拉图学园学习。康康map2023-05-18 13:55:541
什么叫欧几里得
不知道你问的是欧几里得这个人还是欧几里得空间?欧几里得(英文:Euclid;希腊文:Ευκλειδης ,约公元前330年—公元前275年),古希腊人,数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。ardim2023-05-18 13:55:542
欧几里得是谁
欧几里得,古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。欧几里得在《几何原本》中还对完全数做了探究,他通过2^(n-1)·(2^n-1)的表达式发现头四个完全数的。当n=2:2^1(2^2-1)=6当n=3:2^2(2^3-1)=28当n=5:2^4(2^5-1)=496当n=7:2^6(2^7-1)=8128一个偶数是完全数。当且仅当它具有如下形式:2^(n-1).(2^n-1),此事实的充分性由欧几里得证明,而必要性则由欧拉所证明。其中2^(n)-1是素数,上面的6和28对应着n=2和3的情况。我们只要找到了一个形如2^(n)-1的素数(即梅森素数),也就知道了一个偶完全数。在手算时代梅森素数可使人们更方便的计算完全数,在计算机时代更是得到了广泛深入的应用,计算机的CPU可以更方便的计算各种数。尽管没有发现奇完全数,但是当代数学家奥斯丁·欧尔证明,若有奇完全数,则其形式必然是12p+1或36p+9的形式,其中p是素数。在10^300以下的自然数中奇完全数是不存在的。小白2023-05-18 13:55:541
欧几里得是什么人
古希腊最享有盛名的数学家。水元素sl2023-05-18 13:55:543
欧几里得是历史上有名的数学家,但在近代却有人说他是骗子,是真的吗?
我觉得不是,欧几里得的成就我们都无话可说,他写的《几何原本》对后世的我们来说,都是受益匪浅的一本书,创造几何学本身就很了不起了。tt白2023-05-18 13:55:5414
欧几里得的五个定理
欧几里得的五个定理是:任意两个点可以通过一条直线连接;任意线段能无限延长成一条直线;给定任意线段,可以以其一个端点作为圆心,该线段作为半径作一个圆;所有直角都全等;若两条直线都与第三条直线相交,并且在同一边的内角之和小于两个直角和,则这两条直线在这一边必定相交。欧几里得几何定理是指按照古希腊数学家欧几里得的《几何原本》构造的几何学。欧几里得几何有时单指平面上的几何,即平面几何。三维空间的欧几里得几何通常叫做立体几何。在欧几里德以前,古希腊人已经积累了大量的几何知识,并开始用逻辑推理的方法去证明一些几何命题的结论。欧几里德将早期许多没有联系和未予严谨证明的定理加以整理,写下《几何原本》一书,标志着欧氏几何学的建立。拌三丝2023-05-18 13:55:541
欧几里得算法是什么?
欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。辗转相除法的算法步骤为,两个数中用较大数除以较小数,再用出现的余数除除数。再用出现的余数(第二余数)去除第一余数,如此反复,直到最后余数是0为止。辗转相除法是利用以下性质来确定两个正整数a和b的最大公因子的:1、若r是a ÷ b的余数,且r不为0,则gcd(a,b) = gcd(b,r)。⒉、a和其倍数之最大公因子为a。另一种写法是:⒈、令r为a/b所得余数(0≤r),若r= 0,算法结束;b即为答案。⒉、互换:置a←b,b←r,并返回第一步。凡尘2023-05-18 13:55:541
著名古希腊科学家欧几里得资料
欧几里得(希腊文:Ευκλειδης ,公元前330年—公元前275年),古希腊数学家。他活跃于托勒密一世(公元前364年-公元前283年)时期的亚历山大里亚,被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公式,欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。他是亚历山大大学的一个教授,他的《几何原本》大概是当时的一个课本。亚历山大大学是希腊文化最后集中的地方,因为亚历山大自己到过亚历山大,因此就建立了当时北非的大城,靠在地中海。但是他远在到亚洲之后,我们知道他很快就死了。之后,他的大将托勒密管理当时的埃及区域。托勒密很重视学问,就成立了一个大学。这个大学就在他的王宫旁边,是当时全世界最优秀的大学,设备非常好,有许多书。很可惜由于宗教的原因以及众多的原因,现在这个学校已经被完全毁掉了。当时的基督教就不喜欢这个学校,已经被毁了,回教人占领北非之后就打规模地破坏、并焚烧图书馆的书。所以现在这个学校完全不存在了。欧几里得是古希腊最负盛名、最有影响的数学家之一。欧几里得的《几何原本》对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》是古希腊数学发展的顶峰。欧几里得将公元前七世纪以来希腊几何积累起来的丰富成果,整理在严密的逻辑系统运算之中,使几何学成为一门独立的、演绎的科学。再也不做站长了2023-05-18 13:55:541
说说你对欧几里得的《几何原本》的历史意义的理解,同时解释《几何原本》中的第五公设(也称为平行原理)
这本著作是现代数学的基础,在西方是仅次于《圣经》而流传最广的书籍。在几何学上的影响和意义在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。 欧几里得将几种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了是欧几里德最先发现的勾股定理,从而说明了欧洲是最早发现勾股定理的大洲。论证方法上的影响关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。作为教材的影响从欧几里得发表《几何原本》到如今,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。第五公设最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。值得注意的是,第五公设既不能说是正确也不能说是错误,它所概括的是一种情况。非欧几何则在推翻第五公设的前提下进行了另外情况的讨论。tt白2023-05-18 13:55:421
欧几里得《几何原本》对数学以及整个科学的发展有什么重要意义?其最重要的成就有哪些?
《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。阿啵呲嘚2023-05-18 13:55:412
欧几里得讲的全是几何问题? 和我们平时学的高等数学,线性代数,概率论有关系吗?
他几何中提到的穷竭法对微积分影响很大。其他我也不知道有什么关系了。北营2023-05-18 13:55:414
欧几里得 几何原本 对数学及整个科学发展有什么重要意义,其最主要成就有哪些
“百科”上很全亚历山大里亚的欧几里得(希腊文:Ευκλειδης ,约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人《几何原本》的主要内容 欧几里得的《几何原本》共有十三卷。 目录 第一卷 几何基础 第二卷 几何与代数 第三卷 圆与角 第四卷 圆与正多边形 第五卷 比例 第六卷 相似 第七卷 数论(一) 第八卷 数论(二) 第九卷 数论(三) 第十卷 无理量 第十一卷 立体几何 第十二卷 立体的测量 第十三卷 建正多面体 各卷简介 第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是 毕达哥拉斯定理的正逆定理; 第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。 第三卷:本卷阐述圆,弦,切线,割线,圆心角,圆周角的一些定理。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论,被认为是"最重要的数学杰作之一" 第六卷:讲相似多边形理论,并以此阐述了比例的性质。 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容. 从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。编辑本段《几何原本》的意义和影响 在几何学上的影响和意义 在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这 欧几里得种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾作到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了是欧几里德最先发现的勾股定理,从而说明了欧洲是最早发现勾股定理的大洲。 论证方法上的影响 关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。 作为教材的影响 从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。 (牛顿的例子) 少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》,开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读。后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大。于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。 《原本》的缺憾 但是,在人类认识的长河中,无论怎样高明的前辈和名家,都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。豆豆staR2023-05-18 13:55:411
欧几里得的几何原本,有的证明看不懂,我是高一生,你觉得看不懂正常吗?
应该是大多数证明看不懂才正常。认为现代随随便便一个中学生的智慧就可比拟古希腊的哲学家,这种膨胀的自信只是一种无知而已。拌三丝2023-05-18 13:55:402
为什么说欧几里得的《几何原本》是一本不朽的巨著
《几何原本》是欧几里德继承和整理了前人的成果,加入了自己的研究心得,将这些知识系统化和条理化的成果。不仅包括了当时古希腊的几何学,还集中了希腊古典时期的算术、数论及代数知识。欧几里德特别注重命题之间严密的逻辑结构,他创造性采用前人未曾用过的陈述方式,先提出少数定义、公理、公设,然后由简到繁地证明一系列定理。让大家一翻书,就知道书中每个概念是什么意思。例如,什么叫点?书中说:“点是没有部分的。”什么叫线?书中说:“线有长度但没有宽度。”这样做的后果,就是使阅读的人不会对书中提出的概念再做出别样的解释。小菜G的建站之路2023-05-18 13:55:403
谁能告诉我欧几里得的《几何原本》里的23个定义,5条公设,5条公理?
http://forum.heftyedu.com/viewthread.php?tid=730这是个论坛不过可以不用注册就能下载,除了几何原本还有别的数学图书kikcik2023-05-18 13:55:402
欧几里得的《几何原本》共有十三卷。 目录 第一卷 几何基础
第一卷 几何基础 第二卷 几何与代数 第三卷 圆与角 第四卷 圆与正多边形 第五卷 比例 第六卷 相似 第七卷 数论(一) 第八卷 数论(二) 第九卷 数论(三) 第十卷 无理量 第十一卷 立体几何 第十二卷 立体的测量 第十三卷 建正多面体 各卷简介 第一卷:几何基础。重点内容有三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形等积(面积相等)的条件,第一卷最后两个命题是 毕达哥拉斯定理的正逆定理; 第二卷:几何与代数。讲如何把三角形变成等积的正方形;其中12、13命题相当于余弦定理。 第三卷:讨论了圆与角。 第四卷:讨论圆内接和外切多边形的做法和性质; 第五卷:讨论比例理论,多数是继承自欧多克斯的比例理论 第六卷:讲相似多边形理论; 第五、第七、第八、第九、第十卷:讲述比例和算术的理论;第十卷是篇幅最大的一卷,主要讨论无理量(与给定的量不可通约的量),其中第一命题是极限思想的雏形。 第十一卷、十二、十三卷:最后讲述立体几何的内容。 从这些内容可以看出,目前属于中学课程里的初等几何的主要内容已经完全包含在《几何原本》里了。因此长期以来,人们都认为《几何原本》是两千多年来传播几何知识的标准教科书。属于《几何原本》内容的几何学,人们把它叫做欧几里得几何学,或简称为欧氏几何。meira2023-05-18 13:55:391
想买本欧几里得所著的几何原本。。。。。请问大家哪个版本比较好
1、几何原本:一位天才科学家的反科学理性杰作,13卷视图全本 ,(古希腊)欧几里得 原 燕晓东 编译 ,陕西科学技术出版社。2、欧几里得几何原本 ,(古希腊)欧几里得译者:兰纪正/朱恩宽 ,人民日报出版社。人民日报出版社的可以将就着看,虽然翻译有一些错误,但不影响阅读.各大书城都有卖,一本,如果要买,它的确比现行的几何教科书好。当然,严格地说,不如从前的几何教科书,这个版本的《原本》稍微有点罗嗦。但是这种罗嗦也是一种必不可少的严谨,而且插图有些错误。两个版本侧重有点不同,根据自己需要选择对应的版本比较好。扩展资料:意义影响在几何学上的影响和意义在几何学发展的历史中,欧几里得的《几何原本》起了重大的历史作用。这种作用归结到一点,就是提出了几何学的“根据”和它的逻辑结构的问题。在他写的《几何原本》中,就是用逻辑的链子由此及彼的展开全部几何学,这项工作,前人未曾做到。《几何原本》的诞生,标志着几何学已成为一个有着比较严密的理论系统和科学方法的学科。并且《几何原本》中的命题1.47,证明了在西方是欧几里得最先发现的勾股定理,从而说明了欧洲是西方最早发现勾股定理的大洲。论证方法上的影响关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。参考资料来源:百度百科-几何原本kikcik2023-05-18 13:55:391
《欧几里得·几何原本》pdf下载在线阅读全文,求百度网盘云资源
《欧几里得·几何原本》(欧几里得)电子书网盘下载免费在线阅读链接: https://pan.baidu.com/s/1TezjALbr4IuiVwazE8lR6A 提取码: 43cs书名:欧几里得·几何原本作者:欧几里得译者:兰纪正豆瓣评分:9.0出版社:陕西科学技术出版社出版年份:2003-6页数:673内容简介:欧几里得几何原本,ISBN:9787536903579,作者:(古希腊)欧几里得(Euclid)著;兰纪正,朱恩宽译tt白2023-05-18 13:55:391
欧几里得《原本》对数学以及整个科学的发展有什么意义
《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响。自它问世之日起,在长达二千多年的时间里一直盛行不衰。它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本。 欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明。他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》。北境漫步2023-05-18 13:55:392