九章算术

《九章算术注》的作者( )。

【答案】:A刘徽是中国古典数学理论的奠基者之一,他注有《九章算术注》和《海岛算经》。
西柚不是西游2023-07-16 13:12:301

九章算术的作者

祖冲之
黑桃花2023-07-16 13:12:292

九章算术的作者

《九章算术》 是流传到现在 中国 古代最早的一部 数学 著作,是《算经十书》中最重要的一种。其作者已不可考。一般认为它是经多人增补修订而成。 根据研究, 西汉 的张苍、耿寿昌曾经做过增补。最后成书最迟在 东汉 前期,但是其基本内容在 东汉 后期已经基本定型。九章算术将书中的所有数学问题分为九大类,就是“九章”。 1984年 ,在 湖北 出土了《算数书》书简。据考证,它比《九章算术》要早一个半世纪以上,书中有些内容和《九章算术》非常相似,一些内容的文句也基本相同。有人推测两书具有某些继承关系,但也有不同的看法认为《九章算术》没有直接受到《算数书》影响。 《九章算术》共收有246个数学问题,分为九大类,在一个或几个问题之后,列出这个问题的解法。 方田:主要是田亩面积的计算和分数的计算,是世界上最早对分数进行系统叙述的著作。 粟米:组好事粮食交易的计算方法,其中涉及许多比例问题。 衰(读作“翠”)分:主要内容为分配比例的算法。 少广:主要讲开平方和开立方的方法。 商功:主要是土石方和用工量等工程数学问题,以体积的计算为主。 均输:计算税收等更加复杂的比例问题。 盈不足:双设法的问题。 方程:主要是联立一次方程组的解法和正负数的加减法,在世界数学史上是第一次出现。 勾股: 勾股定理 的应用。 《九章算术》总结了自 周朝 以来的中国古代数学,它既包含了以前已经解决了的数学问题,又有 汉朝 时新发现的数学成就。一般认为,它在数学史 上,标志着中国古代数学体系的形成,是中国古代数学体系的初期代表作。 在九章算术中有许多数学问题都是世界上记载最早的。例如,关于比例算法的问题,它和后来在 16世纪 西欧 出现的三分律的算法一样。关于双设法的问题,在阿拉伯曾称为契丹算法, 13世纪 以后的 欧洲 数学著作中也有如此称呼的,这也是中国古代数学知识向西方传播的一个证据。 《九章算术》对中国古代的数学发展有很大影响,这种影响一直持续到了 清朝 中叶。《九章算术》的叙述方式以归纳为主,先给出若干例题,在给出解法,不同于西方以演绎为主的叙述方式,中国后来的数学著作也都是采用叙述方式为主。历代数学家有不少人曾经注释过这本书,其中以刘徽和李淳风的注释最有名。 《九章算术》还流传到了 日本 和 朝鲜 ,对他们古代的数学发展也产生了很大的影响。
kikcik2023-07-16 13:12:291

九章算术的作者是谁?

序是刘徽写的,其作者已不可考。一般认为它是经多人增补修订而成。 根据研究, 西汉 的张苍、耿寿昌曾经做过增补。最后成书最迟在 东汉 前期,但是其基本内容在 东汉 后期已经基本定型。九章算术将书中的所有数学问题分为九大类,就是“九章”。
无尘剑 2023-07-16 13:12:291

《九章算术》的作者是谁?

具体作者不清楚关于对《九章算术》所做的注住要有:三国时曹魏刘徽注,唐朝李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。
苏州马小云2023-07-16 13:12:291

《九章算术》的作者是祖冲之吗?

《九章算术》的作者不是祖冲之,其作者已不可考。它经过许多人的努力,经过长期修改增删,至迟到公元1世纪东汉时期逐渐形成定本。《九章算术》由246个算术命题和解法汇编而成,分为方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股等9章。其中命题包括田亩计算、土地测量、粟米交换、比例分配、仓库体积、土方计算、赋税摊派等。问题解答用了分数计算法、比例计算法、开平方、开立方、二次方程等,提出了负数的概念和正负数的加减等。学术价值书中载有当时世界上最先进的分数四则运算和比例算法、解决各种面积和体积的算法,以及利用勾股定理进行测量的各种问题。其突出成就是在代数方面记载了开平方和开立方的方法、求解一般一元二次方程的数值解法, 及联立一次方程解法。以上均比欧洲同类算法早1500多年。书中关于负数概念和正负数的加减法运算法则的论述, 亦属世界数学史上的首次记载。
豆豆staR2023-07-16 13:12:281

九章算术的作者是谁

祖冲之
wpBeta2023-07-16 13:12:285

《九章算术》的作者是谁?是什么朝代的?

《九章算术》是中国古代数学专著,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.魏晋时刘徽为《九章算术》作注时说:“周公制礼而有九数,九数之流则《九章》是矣”,又说“汉北平侯张苍、大司农中丞耿寿昌皆以善算命世.苍等因旧文之遗残,各称删补,故校其目则与古或异,而所论多近语也”. 根据研究,西汉的张苍、耿寿昌曾经做过增补.最后成书最迟在东汉前期,但是其基本内容在东汉后期已经基本定型.《汉书艺文志》(班固根据刘歆《七略》写成者)中着录的数学书仅有《许商算术》、《杜忠算术》两种,并无《九章算术》,可见《九章算术》的出现要晚于《七略》.《后汉书马援传》载其侄孙马续“博览群书,善《九章算术》”,马续是公元1世纪最后二、三十年时人.再根据《九章算术》中可供判定年代的官名、地名等来推断,现传本《九章算术》的成书年代大约是在公元1世纪的下半叶.九章算术将书中的所有数学问题分为九大类,就是“九章
黑桃花2023-07-16 13:12:281

《九章算术》的作者是谁

《九章算术》是中国古代数学专著,承先秦数学发展的源流,进入汉朝后又经许多学者的删补才最后成书,这大约是公元一世纪的下半叶。它的出现,标志着中国古代数学体系的形成。后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。《九章算术》共收有 246个数学问题,分为九章。分别是:方田、栗米、衰分、少广、商功、均输、盈不足、方程、勾股。《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。
九万里风9 2023-07-16 13:12:281

《论衡》、《九章算术》的作者和朝代

《论衡》一书为东汉王充(27-97年)所作,大约作成于汉章帝元和三年(86年),现存文章有85篇。现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,作者不详
人类地板流精华2023-07-16 13:12:282

《九章算术》的作者是谁?

《九章算术》的作者是:张苍、耿寿昌。《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著,它的出现标志中国古代数学形成了完整的体系,是一部具有里程碑意义的历史著作。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。作注:三国时魏刘徽为《九章算术》作注。序言中有以下一段:“按周公制礼,而有九数,九数之流,则九章是矣。往者暴秦焚书,经术散坏,自时厥后,汉北平侯张苍(公元前250年—前152年,河南阳武县人。在秦为御史,汉高祖六年封为北平侯,汉文帝时为丞相历十五年,享年百余岁),大司农中丞耿寿昌(公元前73年—前49年),皆以善算命世。苍等因旧文之遗残,各称删补,故较其目,则与古或异,而所论者多近语也。” 由此可见,《九章算术》在西周初期已具雏形,以后有所修订补充。
可桃可挑2023-07-16 13:12:271

《九章算术》的作者是谁?

《九章算术》的作者是张苍、耿寿昌。张苍,西汉初期任丞相,历算学家, 精通律历。耿寿昌,汉宣帝时期任大司农中丞,天文学家、理财家,精通数学。《九章算术》是最重要的数学典籍之一,标志着中国古代数学已成完整体系,奠定了中国数学长期发展的基础。《九章算术》的意义《九章算术》的算法尽管抽象,但相互关系不明显,显得零乱。刘徽大大发展深化了中算中久已使用的率概念和齐同原理,把它们看作运算的纲纪。许多问题,只要找出其中的各种率关系,通过乘以散之,约以聚之,齐同以通之,都可以归结为今有术求解。
左迁2023-07-16 13:12:271

九章算术的作者是谁

1.刘徽:刘徽(约公元225年至295年),汉族,山东滨州邹平县人,魏晋期间伟大的数学家,中国古典数学理论的奠基人之一。 2.是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产。 3.刘徽思想敏捷,方法灵活,既提倡推理又主张直观。 4.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人。 5.刘徽的一生是为数学刻苦探求的一生。 6.他虽然地位低下,但人格高尚。 7.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
ardim2023-07-16 13:12:271

《九章算术》的作者有哪些

《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著。《九章算术》共收有246个数学问题,分为九章。它们的主要内容分别是:第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;第三章“衰分”:比例分配问题。第四章“少广”:已知面积、体积,反求其一边长和径长等;介绍了开平方、开立方的方法。第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。
西柚不是西游2023-07-16 13:12:271

有没有关于九章算术读后感100字

《九章算术》是中国古代数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本。 许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)........要注意的是《九章算术》没有作者,它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。 补充: 《九章算术》的主要内容:  《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音崔cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。  《九章算术》的九章的主要内容分别是:  第一章“方田”:田亩面积计算;  第二章“粟米”:谷物粮食的按比例折换;  第三章“衰分”:比例分配问题;  第四章“少广”:已知面积、体积、求其一边长和径长等;  第五章“商功”:土石工程、体积计算;  第六章“均输”:合理摊派赋税;  第七章“盈不足”:即双设法问题;  第八章“方程”:一次方程组问题;  第九章“勾股”:利用勾股定理求解的各种问题. 补充: 《九章算术》中的数学成就是多方面的:  (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.  (2)、在几何方面,主要是面积、体积计算。  (3)、在代数方面,主要有一次方程组解法、平方、立方、一般二次方程解法等。“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本。现在它已被译成日、俄、德、英、法等多种文字。
mlhxueli 2023-06-30 08:49:111

九章算术是哪位数学家写的

《九章算术》数学家是张苍、耿寿昌编写的。《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(cuī)分、少广、商功、均输、盈不足、方程及勾股。原作有插图,今传本已只剩下正文了。《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题。后世影响《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显着特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。
tt白2023-06-30 08:49:101

多元一次方程组的历史,比如发明人和九章算术的,还有九章算术的例题

《九章算术》是中国古代的数学专著,是“算经十书”(汉唐之间出现的十部古算书)中最重要的一种。魏晋时刘徽为《九章算术》作注时说:“周公制礼而有九数,九数之流则《九章》是矣”,又说“汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补,故校其目则与古或异,而所论多近语也”。根据研究,西汉的张苍、耿寿昌曾经做过增补。最后成书最迟在东汉前期,但是其基本内容在东汉后期已经基本定型。《汉书艺文志》(班固根据刘歆《七略》写成者)中着录的数学书仅有《许商算术》、《杜忠算术》两种,并无《九章算术》,可见《九章算术》的出现要晚于《七略》。《后汉书马援传》载其侄孙马续“博览群书,善《九章算术》”,马续是公元1世纪最后二、三十年时人。再根据《九章算术》中可供判定年代的官名、地名等来推断,现传本《九章算术》的成书年代大约是在公元1世纪的下半叶。九章算术将书中的所有数学问题分为九大类,是陈凯靖编辑的 1984年,在湖北出土了《算数书》书简。据考证,它比《九章算术》要早一个半世纪以上,书中有些内容和《九章算术》非常相似,一些内容的文句也基本相同。有人推测两书具有某些继承关系,但也有不同的看法认为《九章算术》没有直接受到《算数书》影响。 后世的数学家,大都是从《九章算术》开始学习和研究数学,许多人曾为它作过注释。其中最著名的有刘徽(263)、李淳风(656)等人。刘、李等人的注释和《九章算术》一起流传至今。唐宋两代,《九章算术》都由国家明令规定为教科书。到了北宋,《九章算术》还曾由政府进行过刊刻(1084),这是世界上最早的印刷本数学书。在现传本《九章算术》中,最早的版本乃是上述北宋本的南宋翻刻本(1213),现藏于上海图书馆(孤本,残,只余前五卷)。清代戴震由《永乐大典》中抄出《九章算术》全书,并作了校勘。此后的《四库全书》本、武英殿聚珍本、孔继涵刻的《算经十书》本(1773)等,大多数都是以戴校本为底本的。 作为一部世界数学名著,《九章算术》就在隋唐时期即已传入朝鲜、日本。它已被译成日、俄、德、法等多种文字版本。主要内容《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股。共九章如下所示。原作有插图,今传本已只剩下正文了。 《九章算术》共收有246个数学问题,分为九章。它们的主要内容分别是: 第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。 第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术; 第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。这是世界上最早的多位数和分数开方法则。它奠定了中国在高次方程数值解法方面长期领先世界的基础。 第四章“少广”:已知面积、体积,反求其一边长和径长等; 第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。 第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。 第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。 第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世
苏萦2023-06-30 08:49:101

九章算术是数学家谁编写的

《九章算术》数学家是张苍、耿寿昌编写的。《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(cuī)分、少广、商功、均输、盈不足、方程及勾股。原作有插图,今传本已只剩下正文了。《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题。后世影响《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显着特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。
西柚不是西游2023-06-30 08:49:091

九章算术 翻译版

《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。它是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股。共九章如下所示。原作有插图,今传本已只剩下正文了。《九章算术》共收有246个数学问题,分为九章。它们的主要内容分别是:第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括矩形、等腰三角形、直角梯形、等腰梯形、圆、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术。第三章“衰分”:比例分配问题。第四章“少广”:已知面积、体积,反求其一边长和径长等;介绍了开平方、开立方的方法。第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。第八章“方程”:即含有未知数的等式,一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解一次方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的一次方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的二元一次方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解一次方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。第九章“勾股定理”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。勾股章还有些内容,在西方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。
小白2023-06-30 08:49:083

请对《九章算术》作一简要介绍

九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术.这些问题依照性质和解法分别隶属于方田、粟米、衰(音崔cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。  《九章算术》的九章的主要内容分别是:第一章“方田”:田亩面积计算;第二章“粟米”:谷物粮食的按比例折换;第三章“衰分”:比例分配问题;第四章“少广”:已知面积、体积、求其一边长和径长等;第五章“商功”:土石工程、体积计算;第六章“均输”:合理摊派赋税;第七章“盈不足”:即双设法问题;第八章“方程”:一次方程组问题;第九章“勾股”:利用勾股定理求解的各种问题.
铁血嘟嘟2023-06-30 08:49:081

九章算术的作者

  《九章算术》是中国古代数学专著,是算经十书中最重要的一种.该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就.同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题.该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本.许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)等人.   《九章算术》的主要内容:   《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术.这些问题依照性质和解法分别隶属于方田、粟米、衰(音崔cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示.原作有插图,今传本已只剩下正文了.   《九章算术》的九章的主要内容分别是:   第一章“方田”:田亩面积计算;   第二章“粟米”:谷物粮食的按比例折换;   第三章“衰分”:比例分配问题;   第四章“少广”:已知面积、体积、求其一边长和径长等;   第五章“商功”:土石工程、体积计算;   第六章“均输”:合理摊派赋税;   第七章“盈不足”:即双设法问题;   第八章“方程”:一次方程组问题;   第九章“勾股”:利用勾股定理求解的各种问题.   《九章算术》的数学成就   《九章算术》中的数学成就是多方面的:   (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法.《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的.“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.   (2)、在几何方面,主要是面积、体积计算.   (3)、在代数方面,主要有一次方程组解法、开平方、开立方、一般二次方程解法等.“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本.现在它已被译成日、俄、德、英、法等多种文字.   关于《九章算术》的历史考证:   现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详.很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶.由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释.   关于对《九章算术》所做的注住要有:三国时曹魏刘徽注,唐朝李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作.现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释.80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版.   对《九章算术》的评价和其对后世的影响:   《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则.在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同.注重实际应用是《九章算术》的一个显著特点.该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲.   《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的.唐宋两代都由国家明令规定为教科书.1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书.   可以说,《九章算术》是中国为数学发展做出的又一杰出贡献.
mlhxueli 2023-06-30 08:49:081

九章算术与几何原本的区别与联系

《九章算术》和《几何原本》在思维方法上有很大的不同。《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。《九章》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。 《几何原本》是欧几里德一生著有的多部数学著作其中最有价值的一部。它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。几何原本的一些内容五条公理1.等于同量的量彼此相等; 2.等量加等量,其和相等;3.等量减等量,其差相等; 4.彼此能重合的物体是全等的; 5.整体大于部分。五条公设1.过两点能作且只能作一直线;2.线段(有限直线)可以无限地延长; 3.以任一点为圆心,任意长为半径,可作一圆;4.凡是直角都相等;5.在一平面内,过直线外一点,可作且只可作一直线跟已知直线平行。(最后一条公设就是著名的平行公设,或者叫做第五公设。它引发了几何史上最著名的长达两千多年的关于“平行线理论”的讨论,并最终诞生了非欧几何。) 关于几何论证的方法,欧几里得提出了分析法、综合法和归谬法。所谓分析法就是先假设所要求的已经得到了,分析这时候成立的条件,由此达到证明的步骤;综合法是从以前证明过的事实开始,逐步的导出要证明的事项;归谬法是在保留命题的假设下,否定结论,从结论的反面出发,由此导出和已证明过的事实相矛盾或和已知条件相矛盾的结果,从而证实原来命题的结论是正确的,也称作反证法。
水元素sl2023-06-30 08:49:081

《九章算术·少广》主要讲述了什么内容

《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股。共九章如下所示。原作有插图,今传本已只剩下正文了。 《九章算术》共收有246个数学问题,分为九章。它们的主要内容分别是: 第一章“方田”: 主要讲述了平面几何图形面积的计算方法。包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法。另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法。第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术; 第三章“衰分”:比例分配问题。 第四章“少广”:已知面积、体积,反求其一边长和径长等;介绍了开平方、开立方的方法。 第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。 第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。 第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。勾股章还有些内容,在西方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。
大鱼炖火锅2023-06-30 08:49:081

对于 九章算术 中的九章:方田 栗米 衰分 少广 商功 均输 盈不足 方程 勾股 你了解多少。

《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、 《九章算术》  生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。 《九章算术》共收有246个数学问题,分为九章、它们的主要内容分别是: 第一章“方田”:田亩面积计算;提出了各种多边形、圆、弓形等的面积公式;分数的通分、约分和加减乘除四则运算的完整法则。后者比欧洲早1400多年。 第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术; 第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。这是世界上最早的多位数和分数开方法则。它奠定了中国在高次方程数值解法方面长期领先世界的基础。 第四章“少广”:已知面积、体积,反求其一边长和径长等; 第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论。西方直到15世纪末以后才形成类似的全套方法。 第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。这也是处于世界领先地位的成果,传到西方后,影响极大。 第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组, 勾股定理求解  相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法。这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系。外国则到7世纪印度的婆罗摩及多才认识负数。 第九章“勾股”:利用勾股定理求解的各种问题。其中的绝大多数内容是与当时的社会生活密切相关的。提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n。在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了。勾股章还有些内容,在西方却还是近代的事。例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出。  主要特点  《九章算术》确定了中国古代数学的框架,以计算为中心的特点,密切联系实际,以解决人们生产、生活中的数学问题为目的的风格。其影响之深,以致以后中国数学着作大体采取两种形式:或为之作注,或仿其体例着书;甚至西算传入中国之后,人们着书立说时还常常把包括西算在内 《九章算术》  的数学知识纳入九章的框架。 然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。魏景元四年(263年),刘徽给《九章算术》作注,才大大弥补了这个缺陷。 刘徽是中国数学家之一。他的生平现在知之甚少。据考证,他是山东邹平人。刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。 刘徽对数学概念的定义抽象而严谨。他揭示了概念的本质,基本符合现代逻辑学和数学对概念定义的要求。而且他使用概念时亦保持了其同一性。如他提出凡数相与者谓之率,把率定义为数量的相互关系。又如他把正负数定义为今两算得失相反,要令正负以名之,摆脱了正为余,负为欠的原始观念,从本质上揭示了正负数得失相反的相对关系。 《九章算术》的算法尽管抽象,但相互关系不明显,显得零乱。刘徽大大发展深化了中算中久已使用的率概念和齐同原理,把它们看作运算的纲纪。许多问题,只要找出其中的各种率关系,通过乘以散之,约以聚之,齐同以通之,都可以归结为今有术求解。 一平面(或立体)图形经过平移或旋转,其面积(或体积)不变。把一个平面(或立体)图形分解成若干部分,各部分面积(或体积)之和与原图形面积(或体积)相等。基于这两条不言自明的前提的出入相补原理,是中国古代数学进行几何推演和证明时最常用的原理。刘徽发展了出入相补原理,成功地证明了许多面积、体积以及可以化为面积、体积问题的勾股、开方的公式和算法的正确性。  数学成就  《九章算术》中的数学成就是多方面的: (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的. (2)、在几何方面,主要是面积、体积计算。 (3)、在代数方面,主要有一次方程组解法、平方、立方、一般二次方程解法等。“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本。现在它已被译成日、俄、德、英、法等多种文字。 《九章算术方程》章共18问,全都是一次方程组问题,未知数最多时可达五个。其解法,首先以竖行用算筹列出各方程的系数,如“方程”章第一题,它相当于求解: 《九章算术》  3x+2+=39,(1) 2x+3+=34,(2) x+2+3=26。(3) 列出的筹式如 123 232 311 263439 [3][2][1], 竖行[1]、[2]、[3],即相当于上面的式(1)、(2)、(3)。其消元方法就是令左右行连续相减(如以3乘[2]再连续减[1]即可消去x项系数)。“程”是指“计算”、“方”是指这样列出的筹式是方形的,这才是“方程”这一数学术语的原意。《九章算术》中的这项成果,比世界其它国家和地区的同类成果要早很多年。“方程”章还在世界数学史上首次引入了负数及其加减法运算法则。 在《九章算术》中,开平方和开立方时所列筹式以及演算过程,其意义和求解x=、x=的数值解法是相同的。这样,在开平方的过程中便可很自然地引出一般二次方程的解法。由此出发,更开宋元时期高次方程数值解法的先声。  历史考证  现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。 关于对《九章算术》所做的校注主要有:西汉张苍增订、删补,三国时曹魏刘徽注,唐李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。  后世影响  《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。 所以,《九章算术》是中国为数学发展做出的一杰出贡献。  历史影响  现传本《九章算术》成书于何时, 目前众说纷纭,多数 祖冲之  认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。 关于对《九章算术》所做的注住要有:三国时曹魏刘徽注,唐朝李淳风注,南宋杨辉着《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所着《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。 《九章算术》是世界上最早系统叙述了分数运算的着作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显着特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。可以说,《九章算术》是中国为数学发展做出的又一杰出贡献。
左迁2023-06-30 08:49:082

有关《九章算术》的相关知识? 作者,内容

 概述:   《九章算术》是中国古代第一部数学专著,是算经十书中最重要的一种.该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就.同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则.该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本.西汉张苍曾经对之校正补充.许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年).要注意的是《九章算术》没有作者,它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系.[编辑本段]《九章算术》的主要内容:  《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术.这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示.原作有插图,今传本已只剩下正文了.   《九章算术》的九章的主要内容分别是:   第一章“方田”:田亩面积计算;   第二章“粟米”:谷物粮食的按比例折换;   第三章“衰分”:比例分配问题;   第四章“少广”:已知面积、体积、求其一边长和径长等;   第五章“商功”:土石工程、体积计算;   第六章“均输”:合理摊派赋税;   第七章“盈不足”:即双设法问题;   第八章“方程”:一次方程组问题;   第九章“勾股”:利用勾股定理求解的各种问题. [编辑本段]《九章算术》的数学成就  《九章算术》中的数学成就是多方面的:   (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法.《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的.“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.   (2)、在几何方面,主要是面积、体积计算.   (3)、在代数方面,主要有一次方程组解法、平方、立方、一般二次方程解法等.“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本.现在它已被译成日、俄、德、英、法等多种文字.[编辑本段]关于《九章算术》的历史考证:  现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详.很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶.由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释.   关于对《九章算术》所做的校注主要有:西汉张苍增订、删补,三国时曹魏刘徽注,唐李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作.现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释.80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版.[编辑本段]对《九章算术》的评价和其对后世的影响:  《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则.在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同.注重实际应用是《九章算术》的一个显著特点.该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲.   《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的.唐宋两代都由国家明令规定为教科书.1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书.   可以说,《九章算术》是中国为数学发展做出的一杰出贡献.
北有云溪2023-06-30 08:49:071

请对《九章算术》作一简要介绍

《九章算术》是中国古代数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本。 许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)........要注意的是《九章算术》没有作者,它是一本综合性的历史著作。佛教是西汉末年传入,东汉明帝时传播开来.麦哲伦船队探险航线没有经过巴拿马运河和苏伊士运河的原因是:当时这两个运河都还没有开凿。1519年9月,麦哲伦船队开航。巴拿马运河是由美国建成的,1914年先通航。苏伊士运河是1869年先竣工。
tt白2023-06-30 08:49:071

数学教材《九章算术》中所提的几个问题。其中一个问题是,有五个人,分属于从一到五的不同爵级,他们猎

想啦半天终于想出来啦!你看这样行不? 第一个人得到一只鹿的三分之一 第二个人得到一只鹿的三分之二 第三个人得到一只鹿的三分之三 第四个得到三分之四, 第五个得到三分之五 刚好所有相加得到五只整鹿
LuckySXyd2023-06-30 08:49:022

九章算术的作者 九章算术简介

1、《九章算术》作者是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。 2、《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。 3、《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(cuī)分、少广、商功、均输、盈不足、方程及勾股共九章。
tt白2023-06-30 08:49:011

《九章算术》中哪些问题的运算是世界上最早的?

这是对春秋战国以来数学知识的全面总结。和平时期的水利建设、开垦和丈量农田、商业活动和天文计算都需要数学知识。《九章算术》最为完整,内容包括9类计算问题,分方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股等9章,共246个例题,全是生产和生活中的实际计算问题,相当于现代小学算术的大部分内容和部分中学算术的内容,它奠定了我国古代数学的基础,它是中国最有影响的一部古代数学著作,也属于世界古典数学名著之列。其中,分数的概念和运算,比例问题的计算,负数概念和正负数运算等,都是世界上最早的。
bikbok2023-06-30 08:49:011

比较《几何原本》与《九章算术》。

《九章算术》和《几何原本》在思维方法上有很大的不同。《九章算术》是一部经几代人整理、删补和修订而成的古代数学经典著作,约成书于东汉初年〔公元前一世纪〕。全书采用问题集的形式编写,共收集了246个问题及其解法,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章。主要内容包括分数四则和比例算法、各种面积和体积的计算、关于勾股测量的计算等。《九章算术》很强调辩证思维,它注重应用,注重理论联系实际,形成了以筹算为中心的数学体系,对中国古算影响深远。它的一些成就如十进制值制、今有术、盈不足术等还传到印度和阿拉伯,并通过这些国家传到欧洲,促进了世界数学的发展。 《几何原本》是欧几里德一生著有的多部数学著作其中最有价值的一部。它系统的总结了古代劳动人民在实践中获得的几何知识,把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。
小白2023-06-30 08:49:011

九章算术将小学数学分成几大类,怎么分

5
铁血嘟嘟2023-06-30 08:49:013

《九章算术》分为哪九章﹖

第一章“方田”: 主要讲述了平面几何图形面积的计算方法。第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术;第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致。第四章“少广”:已知面积、体积,反求其一边长和径长等第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法;第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题。第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法。第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组, 勾股定理求解相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。第九章“勾股”:利用勾股定理求解的各种问题。
凡尘2023-06-30 08:49:002

《九章算术》属于科技成就还是文艺成就

  数学成就编辑  《九章算术》中的数学成就是多方面的:  (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”的算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.  《九章算术》中有比较完整的分数计算方法,包括四则运算,通分、约分、化带分数为假分数(我国古代称为通分内子,“内”读为纳)等等。其步骤与方法大体与现代的雷同。  分数加减运算,《九章算术》已明确提出先通分,使两分数的分母相同,然后进行加减。加法的步骤是“母互乘子,并以为实,母相乘为法,实如法而一”这里“实”是分子。“法”是分母,“实如法而一”也就是用法去除实,进行除法运算,《九章算术》还注意到两点:其一是运算结果如出现“不满法者,以法命之”。就是分子小于分母时便以分数形式保留。其二是“其母同者,直相从之”,就是分母相同的分数进行加减,运算时不必通分,使分子直接加减即可。  《九章算术》中还有求最大公约数和约分的方法。求最大公约数的方法称为“更相减损”法,其具体步骤是“可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也。以等数约之。”这里所说的“等数”就是我们现在的最大公约数。可半者是指分子分母都是偶数,可以折半的先把它们折半,即可先约去2。不都是偶数了,则另外摆(即副置)分子分母算筹进行计算,从大数中减去小数,辗转相减,减到余数和减数相等,即得等数。  在《九章算术》的第二、三、六等章内,广泛地使用了各种比例解应用问题。粟米章的开始就列举了各种粮食间互换的比率如下:“粟米之法:粟率五十,粝米三十,粺米二十七,糳米二十四,……”(图1-23)这是说:谷子五斗去皮可得糙米三斗,又可舂得九折米二斗七升,或八拆米二斗四升,……。例如,粟米章第一题:“今有粟米一斗,欲为粝米,问得几何”。它的解法是:“以所有数乘所求率为实,以所有率为法,实如法而一”。  《九章算术》第七章“盈不足”专讲盈亏问题及其解法其中第一题:“今有(人)共买物,(每)人出八(钱),盈(余)三钱;人出七(钱),不足四(钱),问人数、物价各几何”,“答曰:七人,物价53(钱)。”“盈不足术曰:置所出率,盈、不足各居其下。令维乘(即交错相乘)所出率,并以为实,并盈,不足为法,实如法而一……置所出率,以少减多,余,以约法、实。实为物价,法为人数”。盈不足术是中国数学史上解应用问题的一种别开生面的创造,它在我国古代算法中占有相当重要的地位。盈不足术还经过丝绸之路西传中亚阿拉伯国家,受到特别重视,被称为“契丹算法”,后来又传入欧洲,中世纪时期“双设法”曾长期统治了他们的数学王国。  (2)、《九章算术》总结了生产、生活实践中大量的几何知识,在方田、商功和勾股章中提出了很多面积、体积的计算公式和勾股定理的应用。  《九章算术》方田章主要论述平面图形直线形和圆的面积计算方法。《九章算术》方田章第一题“今有田广十五步,从(音纵zong)十六步。问为田几何。”“答曰:一亩”。这里“广”就是宽,“从”即纵,指其长度,“方田术曰:广从步数相乘得积步,(得积步就是得到乘积的平方步数)以亩法二百四十步(实质应为积步)除之,即亩数。百亩为一顷。”当时称长方形为方田或直田。称三角形为圭田,面积公式为“术曰:半广以乘正从”。这里广是指三角形的底边,正从是指底边上的  高,刘徽在注文中对这一计算公式实质上作了证明:“半广者,以盈补虚,为直田也。”“亦可以半正从以乘广”(图1-30)。盈是多余,虚乃不足。“以盈补虚”就是以多余部分填补不足的部分,这就是我国古代数学推导平面图形面积公式所用的传统的“出入相补”的方法,由上图“以盈补虚”变圭田为与之等积的直田,于是得到了圭田的面积计算公式。  方田章第二十七、二十八题把直角梯形称为“邪田”(即斜田)它的面积公式是:“术曰:并两邪(即两斜,应理解为梯形两底)而半之,以乘正从……,又可半正从……以乘并。”刘徽在注中说明他的证法仍是“出入相补”法。在方田章第二十九、三十题把一般梯形称为“箕田”,上、下底分别称为“舌”、“踵”,面积公式是:“术曰:并踵舌而半之,以乘正从”。  至于圆面积,在《九章算术》方田章第三十一、三十二题中,它的面积计算公式为:“半周半径相乘得积步”。这里“周”是圆周长,“径”是指直径。这个圆面积计算公式是正确的。只是当时取径一周三(即π≈3)。于是由此计算所得的圆面积就不够精密。  《九章算术》商功章收集的都是一些有关体积计算的问题。但是商功章并没有论述长方体或正方体的体积算法。看来《九章算术》是在长方体或正方体体积计算公式:V=abc的基础上来计算其他立体图形体积的。  《九章算术》商功章提到城、垣、堤、沟、堑、渠,因其功用不同因而名称各异,其实质都是正截面为等腰梯形的直棱柱,他们的体积计算方法:“术曰:并上、下广而半之,以高若深乘之,又以袤乘之,即积尺”。这里上、下广指横截面的上、下底(a,b)高或深(h),袤是指城垣……的长(l)。因此城、垣…的体积计算术公式V=1/2(a+b)h.  刘徽在注释中把对于平面图形的出入相补原理推广应用到空间图形,成为“损广补狭”以证明几何体体  堑堵  积公式。  刘徽还用棋验法来推导比较复杂的几何体体积计算公式。所谓棋验法,“棋”是指某些几何体模型即用几何体模型验证的方法,例如长方体本身就是“棋”[图1-32(1)]斜解一个长方体,得两个两底面为直角三角形的直三棱柱,我国古代称为“堑堵”(如图),所以堑堵的体积是长方体体积的二分之一。  《九章算术》商功章还有圆锥、圆台(古代称“圆亭”)的体积计算公式。甚至对三个侧面是等腰梯形,其他两面为勾股形的五面体[图1-33(1)],上、下底为矩形的拟  柱体(古代称“刍童”)以及上底为一线段,下底为一矩形的拟柱体(古代称“刍甍”)(“甍”音“梦”)等都可以计算其体积。  (3)、《九章算术》中的代数内容同样很丰富,具有当时世界的先进水平。  1.开平方和开立方  《九章算术》中讲了开平方、开立方的方法,而且计算步骤基本一样。所不同的是古代用筹算进行演算,现以少广章第12题为例,说明古代开平方演算的步骤,“今有积五万五千二百二十五步。问为方几何”。“答曰:二百三十五步”。这里所说的步是我国古代的长度单位。  “开方(是指开平方,由正方形面积求其一边之长。)术曰:置积为实(即指筹算中把被开方数放置于第二行,称为实)借一算(指借用一算筹放置于最后一行,如图1-25(1)所示用以定位)。步之(指所借的算筹一步一步移动)超一等(指所借的算筹由个位越过十位移至百位或由百位越过千位移至万位等等,这与现代笔算开平方中分节相当如图1-25(2)所示)。议所得(指议得初商,由于实的万位数字是5,而且22<5<32,议得初商为2,而借算在万位,因此应在第一行置初商2于百位,如图1-25(3)所示)。以一乘所借一算为法(指以初商2乘所借算一次为20000,置于“实”下为“法”,如图1-25(4)所示)而以除(指以初商2乘“法”20000得40000,由“实”减去得:55225-40000=15225,如图1-25(5)所示)除已,倍法为定法,其复除,折法而下(指将“法”加倍,向右移一位,得4000为“定法”因为要求平方根的十位数字,需要把“借算”移至百位,如图1-25(6)所示)。复置借算步之如初,以复议一乘之,所得副,以加定法,以除(这一段是指:要求平方根的十位数字,需置借算于百位。因“实”的千位数字为15,且4×3<15<4×4,于是再议得次商为3。置3于商的十位。以次商3乘借算得3×100=300,与定法相加为4000+300=4300。再乘以次商,则得:3×4300=12900,由“实”减去得:15225-12900=2325。如图1-25(7)所示,以所得副从定法,复除折下如前(这一段是指演算如前,即再以300×1+4300=4600向右移一位,得460,是第三位方根的定法,再把借算移到个位,如图1-25(8)所示;又议得三商应为5,再置5于商的个位如图1-25(9)所示,以5+460=465,再乘以三商5,得465×5=2325经计算恰尽如图1-25(10)所示,因此得平方根为235。)  上述由图1-25(1)~(10)是按算筹进行演算的,看起来似乎很繁琐,实际上步骤十分清楚,易于操作。它的开平方原理与现代开平方原理相同。其中“借算”的右移、左移在现代的观点下可以理解为一次变换和代换。《九章算术》时代并没有理解到变换和代换,但是这对以后宋、元时期高次方程的解法是有深远影响的。  《九章算术》方程章中的“方程”是专指多元一次方程组而言,与“方程”的含义并不相同。《九章算术》中多元一次方程组的解法,是将它们的系数和常数项用算筹摆成“方阵”(所以称之谓“方程”)。消元的过程相当于现代大学课程高等代数中的线性变换。  由于《九章算术》在用直除法解一次方程组过程中,不可避免地要出现正负数的问题,于是在方程章第三题中明确提出了正负术。刘徽在该术的注文里实质上给出了正、负数的定义:“两算得失相反,要令‘正"、‘负"以名之”。并在计算工具即算筹上加以区别“正算赤,负算黑,否则以邪正为异”。这就是规定正数用红色算筹,负数用黑色算筹。如果只有同色算筹的话,则遇到正数将筹正放,负数时邪(同斜)放。宋代以后出现笔算也相应地用红、黑色数码字以区别正、负数,或在个位数上记斜划以表示负数,如(即—1824),后来这种包括负数写法在内的中国数码字还传到日本。
CarieVinne 2023-06-30 08:49:002

《九章算术》的内容有哪些?

《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。它是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
tt白2023-06-30 08:49:003

《九章算术》为什么不属于科学著作

   科学是一个系统化的学问体系,这种系统化是观察、分类、归纳、演绎、分析、推理、计算和实验的结果。因为《九章算术》的结构散乱,尚未形成体系,《九章算术》虽然成就巨大,但只能是一种技术,而不能归属于科学。中国的数学没有实现系统化,所以中国文明与科学无缘,只能属于技术大国。
LuckySXyd2023-06-30 08:48:591

关于《九章算术》是不是最早的数学书

不是。最早的数学书是《算数书》 1983年在湖北省江陵县张家山,出土了一批西汉初年,即吕后至文帝初年的竹简,共千余支。经初步整理,其中有律令、《脉书》、《引书》、历谱、日书等多种古代珍贵的文献,还有一部数学著作,据写在一支竹简背面的字迹辨认,这部竹简算书的书名叫《算数书》。  全书约有200多支竹简,其中完整的有185支,10余根已残破。经研究,它和《九章算术》有许多相同之处,体例也是“问题集”形式,大多数题都由问、答、术三部分组成,而且有些概念、术语也与《九章算术》的一样。全书总共约七千多字,有60多个小标题,如“方田”、“少广”、“金价”、“合分”、“约分”、“经分”、“分乘”、“相乘”、“增减分”、“贾盐”、“息钱”、“程未”等等,但未分章或卷。《算数书》是中国现已发现的最古的一部算书,大约比现有传本的《九章算术》还要早近二百年,而且《九章算术》是传世抄本或刊书,《算数书》则是出土的竹筒算书,属于更可珍贵的第一手资料。
陶小凡2023-06-30 08:48:591

线性方程的解法,哪本数学典籍最早提供? A,九章算术 B,杨辉算法。C,五曹算经 D,周牌算经

九章算术第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致。这是世界上最早的完整的线性方程组的解法。在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则。
豆豆staR2023-05-21 08:45:281

《九章算术》之后,人们进一步用等差数列求和公式来解决更多的问题,《张丘建算经》卷上第22题为:“今有

设该妇子织布每天增加d尺,由题意知S30=30×5+30×292d=390,解得d=1629.故该女子织布每天增加1629尺.故答案为:1629
康康map2023-05-21 08:45:061

九章算术的作者

《九章算术》成书约东汉初年,不是一时一人之作,而是经由很多人的修改和补充而成,目前仅知汉北平侯张苍(?~公元前一五二年)和大司农中丞耿寿昌(约公元前一世纪中叶)都曾参与过搜集、增删的工作。刘徽是魏晋之间的大数学家,曾注过此书。刘徽在魏元帝景元四年(公元二六三年)注《九章算术》,并撰《重差》一卷。《重差》之今名为《海岛算经》,与《九章算术》同列入《算经十书》《九章算术》成书约东汉初年,不是一时一人之作,而是经由很多人的修改和补充而成,目前仅知汉北平侯张苍(?~公元前一五二年)和大司农中丞耿寿昌(约公元前一世纪中叶)都曾参与过搜集、增删的工作。刘徽是魏晋之间的大数学家,曾注过此书。刘徽在魏元帝景元四年(公元二六三年)注《九章算术》,并撰《重差》一卷。《重差》之今名为《海岛算经》,与《九章算术》同列入《算经十书》
真颛2023-05-20 22:10:051

周髀算经、几何原本、数术记遗、九章算术哪本书不是算经十书之一?

当然是几何原本
苏州马小云2023-05-20 22:10:052

九章算术与孙子算经的区别

《九章算术》是我国现存的最早的一部数学专著。它不是一时一人的著作,是经过很多人长时间修改删补,到东汉时期才逐渐形成定本的。而《周髀算经》大约成书于西汉时期(公元前1世纪)《孙子算经》算经的十书之一,是中国最古老的天文学和数学著作,约成书于公元前1世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,
阿啵呲嘚2023-05-20 22:10:052

九章算术注和海岛算经作者

刘徽(250-?),魏晋时期著名数学家,山东淄乡(今临淄或淄川一带)人。魏景元年(公元263年)注《九章算术》九卷。他在注释中有很多创见,尤其用割圆术来计算圆周率的方法,含有极限概念,这是他的一个伟大创造,他正确计算出圆内接正3072边形的面积,从而得出π=3.1416的数学成就。《海岛算经》原名《重差》,附于刘徽所注《九章算术》之后。唐初这一卷单行,由于他的第一题是测量海岛的高和远的问题,因而得名,改称《海岛算经》。书中所收集的都有是两次或多次测望所得。在算理算法方面主要运用重差。这部书显示了我国古代测量数学的进步和发展。刘徽不仅是中国数学史上一个非常伟大的数学家,而且在世界数学史上也占有重要地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
hi投2023-05-20 22:10:011

周髀算经和九章算术哪个早

《九章算术》是我国现存的最早的一部数学专著。它不是一时一人的著作,是经过很多人长时间修改删补,到东汉时期才逐渐形成定本的。而《周髀算经》大约成书于西汉时期(公元前1世纪)。《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。《周髀算经》原名《周髀》,算经的十书之一,是中国最古老的天文学和数学著作,约成书于公元前1世纪,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。
无尘剑 2023-05-20 22:09:491

周髀算经和九章算术包含哪些数学成就

九章算术》中的数学成就是多方面的: (1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法.《(2)、在几何方面,主要是面积、体积计算. (3)、在代数方面,主要有一次方程组解法、开平方、开立方、一般二次方程解法等 《周髀算经》乃算经十书之一.《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用.
黑桃花2023-05-20 22:09:491

数学著作《九章算术》数学家是谁编的

【导读】中公事业单位为大家带来公共基础知识公共基础知识之中国古代数学成就,希望可以帮助各位考生顺利备考事业单位考试。《周髀算经》是中国最古老的天文学和数学著作,约成书于公元前1世纪,记录着商高同周公的一段对话,商高说:“故折矩,勾广三,股修四,经隅五。”意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5,后人简单地把这个事实说成勾三股四弦五。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作“商高定理”。幻方。我国最早记载幻方法的是春秋时代的《论语》和《书经》,而在国外,幻方出现在公元2世纪,我国早于国外600多年。幻方又称为魔方、方阵,它最早起源于我国。宋代数学家杨辉称之为纵横图。《九章算术》成于公元1世纪左右,是我国最重要、影响最深远的一本数学著作。后世不少人如刘徽、祖冲之等均为《九章算术》作过注。特别是刘徽,加进了不少自己的见解,阐述了重要的数学理论。分数运算法则和小数。中国完整的分数运算法则出现在《九章算术》中,印度在公元7世纪才出现同样的法则,我国早于印度500多年。祖冲之出生于历法世家,他是历代为数不多能名列正史的数学家之一。祖冲之最大的数学成就是对圆周率的精确计算。祖冲之在圆周率计算方面领先西方近千年。为了纪念祖冲之的贡献,20世纪的日本天文学家将自己发现的一颗有行星以祖冲之的名字命名。出于官方数学教育的需要,唐高宗亲自下令对以前的数学著作进行整理。公元656年由李淳风负责编定了算经十书:《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《张邱建算经》、《夏候阳算经》、《缉古算经》、《海岛算经》、《五经算术》和《缀术》。宋元时期的杰出数学家秦九韶、杨辉、李治、朱世杰被称为“宋元四大家”。宋元时期的数学代表著作有《数书九章》、《详解九章算法》等。清代蒙古族的数学家明安图推出“割圆九术”。【题目练习】我国最早的数学著作是:A.《周髀算经》B.《缀术》C.《九章算术》D.《数书九章》【答案】A。解析:《周髀算经》是中国最古老的天文学和数学著作,约成书于公元前1世纪。在数学上的主要成就是介绍了勾股定理。故本题答案为A。【方法总结】近年来山西各类型的事业单位考试中,文史常识占比较大,主要都是以记忆性为主,所以平时要注意积累,多记忆、多做题。
西柚不是西游2023-05-20 22:09:261

我国古代数学家秦九韶在《九章算术》中记述了“三斜求积术”,怎么推导出海伦公式

由三斜求积直接推导出海伦公式,不过需要两个公式的代换
阿啵呲嘚2023-05-20 22:09:256

《九章算术》的历史故事

《九章算术》内容丰富,题材广泛,共九章,分为二百四十六题二百零二术,不但是汉代重要的数学著作。在中国和世界数学史上占有重要的地位。作为中国古代数学的系统总结,对中国传统数学的发展有了深远的影响。根据研究,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,但是其基本内容在东汉后期已经基本定型。九章算术将书中的所有数学问题分为九大类,就是“九章”。《九章算术》共收有246个数学问题,分为九大类,在一个或几个问题之后,列出这个问题的解法。方田章:主要是田亩面积的计算和分数的计算,是世界上最早对分数进行系统叙述的著作。粟米章:主要是粮食交易的计算方法,其中涉及许多比例问题。衰分章:主要内容为分配比例的算法。少广章:主要讲开平方和开立方的方法。商功章:主要是土石方和用工量等工程数学问题,以体积的计算为主。均输章:计算税收等更加复杂的比例问题。盈不足章:双设法的问题方程章:主要是联立一次方程组的解法和正负数的加减法,在世界数学史上是第一次出现。勾股章:勾股定理的应用《九章算术》总结了自先秦以来的中国古代数学,它既包含了以前已经解决了的数学问题,又有汉朝时新发现的数学成就。一般认为,它在数学史上,标志着中国古代数学体系的形成,是中国古代数学体系的初期代表作
CarieVinne 2023-05-20 17:39:132

九章算术分为哪几章,各章主要讲什么?

《九章算术》的九章的主要内容分别是:第一章“方田”:田亩面积计算;第二章“粟米”:谷物粮食的按比例折换;第三章“衰分”:比例分配问题;第四章“少广”:已知面积、体积、求其一边长和径长等;第五章“商功”:土石工程、体积计算;第六章“均输”:合理摊派赋税;第七章“盈不足”:即双设法问题;第八章“方程”:一次方程组问题;第九章“勾股”:利用勾股定理求解的各种问题。
tt白2023-05-20 17:39:133

《九章算术》的简单介绍

《九章算术》是西汉以来许多数学家研究的结晶,西汉前期的著名数学家张苍、耿寿昌等人曾经对他进行增减。全书一共分为9章,搜集了246个数学问题的解法,其中记载了当时世界上最先进的分数四则和比例算法。还有各种面积体积的算法和利用勾股定理进行测量的问题,以及开方、开立方的方法。特别是在世界数学史上的第一次记载了负数的概念和正负数的加减法运算法则。这部书对中国古代数学的发展所产生的影响是很大的。标志着我国古代数学的完整体系的形成。他不仅在中国数学史上占有重要的地位,而且影响到了朝鲜、日本,被翻译成许多种外文出版。
mlhxueli 2023-05-20 17:39:132

古代的《九章算术》都写了什么内容?

《九章算术》是中国古代数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本。 许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)等人。《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音崔cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。《九章算术》的九章的主要内容分别是:第一章“方田”:田亩面积计算;第二章“粟米”:谷物粮食的按比例折换;第三章“衰分”:比例分配问题;第四章“少广”:已知面积、体积、求其一边长和径长等;第五章“商功”:土石工程、体积计算;第六章“均输”:合理摊派赋税;第七章“盈不足”:即双设法问题;第八章“方程”:一次方程组问题;第九章“勾股”:利用勾股定理求解的各种问题.现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。  关于对《九章算术》所做的注住要有:三国时曹魏刘徽注,唐朝李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。
Chen2023-05-20 17:39:131

九章算术 谁写的?

现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。 关于对《九章算术》所做的校注主要有:西汉张苍增订、删补,三国时曹魏刘徽注,唐李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版
hi投2023-05-20 17:39:122

《九章算术》的内容及历史地位

《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。它是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
豆豆staR2023-05-20 17:39:121

《九章算术》

http://cache.baidu.com/c?word=%A1%B6%3B%BE%C5%D5%C2%3B%CB%E3%CA%F5%3B%A1%B7%3B%D6%D0%3B%D3%D0%3B%D5%E2%D1%F9%3B%D2%BB%3B%B5%C0%3B%CC%E2%3B%3A%3B%BD%F1%3B%D3%D0%3B%C8%CB%3B%B3%D6%3B%C3%D7%3B%B3%F6%3B%C8%FD%B9%D8%3B%2E%3B%B9%FD%3B%C4%DA&url=http%3A//www%2Eycsyxx%2Enet/ycsyxx/js2005/ShowArticle%2Easp%3FArticleID%3D6412&p=9757c54ad0c308ec0be29478565292&user=baidu#baidusnap3里面有答案
u投在线2023-05-20 17:39:122

《九章算术》的作者是谁?

《九章算术》的作者是张苍、耿寿昌。《九章算术》作者是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。公元前200年,张苍收集了自公元前1000年积累下来的官方数学数据,编辑了《九章算术》,这成为《九章算术》的原始版本,此后又经过众多学者编撰、修改、评注,最终合为一本。影响:《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。
左迁2023-05-20 17:39:121

《九章算术》是哪个朝代出书的?

东汉 《九章算术》是中国古代数学专著,是《算经十书》(汉唐之间出现的十部古算书)中最重要的一种.魏晋时刘徽为《九章算术》作注时说:“周公制礼而有九数,九数之流则《九章》是矣”,又说“汉北平侯张苍、大司农中丞耿寿昌皆以善算命世.苍等因旧文之遗残,各称删补,故校其目则与古或异,而所论多近语也”.根据研究,西汉的张苍、耿寿昌曾经做过增补.最后成书最迟在东汉前期,但是其基本内容在东汉后期已经基本定型. 《九章算术》是中国汉族学者在古代第一部数学专著,是算经十书中最重要的一种.该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就.同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则.要注意的是《九章算术》没有作者,它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系. 《九章算术》共收有246个数学问题,分为九章、它们的主要内容分别是: 第一章“方田”: 主要讲述了平面几何图形面积的计算方法.包括长方形、等腰三角形、直角梯形、等腰梯形、圆形、扇形、弓形、圆环这八种图形面积的计算方法.另外还系统地讲述了分数的四则运算法则,以及求分子分母最大公约数等方法. 第二章“粟米”:谷物粮食的按比例折换;提出比例算法,称为今有术;衰分章提出比例分配法则,称为衰分术; 第三章“衰分”:比例分配问题;介绍了开平方、开立方的方法,其程序与现今程序基本一致.这是世界上最早的多位数和分数开方法则.它奠定了中国在高次方程数值解法方面长期领先世界的基础. 第四章“少广”:已知面积、体积,反求其一边长和径长等; 第五章“商功”:土石工程、体积计算;除给出了各种立体体积公式外,还有工程分配方法; 第六章“均输”:合理摊派赋税;用衰分术解决赋役的合理负担问题.今有术、衰分术及其应用方法,构成了包括今天正、反比例、比例分配、复比例、连锁比例在内的整套比例理论.西方直到15世纪末以后才形成类似的全套方法. 第七章“盈不足”:即双设法问题;提出了盈不足、盈适足和不足适足、两盈和两不足三种类型的盈亏问题,以及若干可以通过两次假设化为盈不足问题的一般问题的解法.这也是处于世界领先地位的成果,传到西方后,影响极大. 第八章“方程”:一次方程组问题;采用分离系数的方法表示线性方程组,相当于现在的矩阵;解线性方程组时使用的直除法,与矩阵的初等变换一致.这是世界上最早的完整的线性方程组的解法.在西方,直到17世纪才由莱布尼兹提出完整的线性方程的解法法则.这一章还引进和使用了负数,并提出了正负术——正负数的加减法则,与现今代数中法则完全相同;解线性方程组时实际还施行了正负数的乘除法.这是世界数学史上一项重大的成就,第一次突破了正数的范围,扩展了数系.外国则到7世纪印度的婆罗摩及多才认识负数. 第九章“勾股”:利用勾股定理求解的各种问题.其中的绝大多数内容是与当时的社会生活密切相关的.提出了勾股数问题的通解公式:若a、b、c分别是勾股形的勾、股、弦,则,m>n.在西方,毕达哥拉斯、欧几里得等仅得到了这个公式的几种特殊情况,直到3世纪的丢番图才取得相近的结果,这已比《九章算术》晚约3个世纪了.勾股章还有些内容,在西方却还是近代的事.例如勾股章最后一题给出的一组公式,在国外到19世纪末才由美国的数论学家迪克森得出.
CarieVinne 2023-05-20 17:39:121

有关《九章算术》的相关知识?

《九章算术》是中国古代第一部数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本。 西汉张苍曾经对之校正补充。许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)........要注意的是《九章算术》没有作者,它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。 [编辑本段]《九章算术》的主要内容:《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。《九章算术》的九章的主要内容分别是:第一章“方田”:田亩面积计算;第二章“粟米”:谷物粮食的按比例折换;第三章“衰分”:比例分配问题;第四章“少广”:已知面积、体积、求其一边长和径长等;第五章“商功”:土石工程、体积计算;第六章“均输”:合理摊派赋税;第七章“盈不足”:即双设法问题;第八章“方程”:一次方程组问题;第九章“勾股”:利用勾股定理求解的各种问题. [编辑本段]《九章算术》的数学成就《九章算术》中的数学成就是多方面的:(1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.(2)、在几何方面,主要是面积、体积计算。(3)、在代数方面,主要有一次方程组解法、平方、立方、一般二次方程解法等。“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本。现在它已被译成日、俄、德、英、法等多种文字。 [编辑本段]关于《九章算术》的历史考证:现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。关于对《九章算术》所做的校注主要有:西汉张苍增订、删补,三国时曹魏刘徽注,唐李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。 [编辑本段]对《九章算术》的评价和其对后世的影响:《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。可以说,《九章算术》是中国为数学发展做出的一杰出贡献。
无尘剑 2023-05-20 17:39:122

数学名著《九章算术》内容 急急急急!!!

去书店买本呗
黑桃花2023-05-20 17:39:124

九章算术是哪个朝代的

不知道
苏州马小云2023-05-20 17:39:126

九章算术谁写的?

NerveM 2023-05-20 17:39:122

《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列:

66/67
meira2023-05-20 17:39:122

粟米的九章算术

粟米(以御交质变易)粟米之法〔凡此诸率相与大通,其时相求,各如本率。可约者约之。别术然也。〕粟率五十 大抃五十四 稻六十粝米三十 粝饭七十五 豉六十三粺米二十七 粺饭五十四 飧九十米二十四 饭四十八 熟菽一百三半御米二十一 御饭四十二 糵一百七十五小<麦啇>十三半 菽荅麻麦各四十五今有〔此都术也。凡九数以为篇名,可以广施诸率。所谓告往而知来,举一隅而三隅反者也。诚能分诡数之纷杂,通彼此之否塞,因物成率,审辨名分,平其偏颇,齐其参差,则终无不归于此术也。〕术曰:以所有数乘所求率为实。以所有率为法。〔少者多之始,一者数之母,故为率者必等之于一。据粟率五、粝率三,是粟五而为一,粝米三而为一也。欲化粟为米者,粟当先本是一。一者,谓以五约之,令五而为一也。讫,乃以三乘之,令一而为三。如是,则率至于一,以五为三矣。然先除后乘,或有余分,故术反之。又完言之知,粟五升为粝米三升;以分言之知,粟一斗为粝米五分斗之三,以五为母,三为子。以粟求粝米者,以子乘,其母报除也。然则所求之率常为母也。淳风等按:“宜云所求之率常为子,所有之率常为母。”今乃云“所求之率常为母”知,脱错也。〕实如法而一。今有粟一斗,欲为粝米。问得几何?答曰:为粝米六升。术曰:以粟求粝米,三之,五而一。〔淳风等按:都术:以所求率乘所有数,以所有率为法。此术以粟求米,故粟为所有数。三是米率,故三为所求率。五为粟率,故五为所有率。粟率五十,米率三十,退位求之,故惟云三、五也。〕今有粟二斗一升,欲为粺米。问得几何?答曰:为粺米一斗一升五十分升之十七。术曰:以粟求粺米,二十七之,五十而一。〔淳风等按:粺米之率二十有七,故直以二十七之,五十而一也。〕今有粟四斗五升,欲为米。问得几何?答曰:为米二斗一升五分升之三。术曰:以粟求米,十二之,二十五而一。〔淳风等按:米之率二十有四,以为率太繁,故因而半之。半所求之率,以乘所有之数。所求之率既减半,所有之率亦减半。是故十二乘之,二十五而一也。〕今有粟七斗九升,欲为御米。问得几何?答曰:为御米三斗三升五十分升之九。术曰:以粟求御米,二十一之,五十而一。今有粟一斗,欲为小<麦啇>。问得几何?答曰:为小<麦啇>二升一十分升之七。术曰:以粟求小<麦啇>,二十七之,百而一。〔淳风等按:小<麦啇>之率十三有半。半者二为母,以二通之,得二十七,为所求率。又以母二通其粟率,得一百,为所有率。凡本率有分者,须即乘除也。他皆仿此。〕今有粟九斗八升,欲为大<麦啇>。问得几何?答曰:为大<麦啇>一十斗五升二十五分升之二十一。术曰:以粟求大<麦啇>,二十七之,二十五而一。〔淳风等按:大<麦啇>之率五十有四。因其可半,故二十七之,亦如粟求米,半其二率。〕今有粟二斗三升,欲为粝饭。问得几何?答曰:为粝饭三斗四升半。术曰:以粟求粝饭,三之,二而一。〔淳风等按:粝饭之率七十有五,粟求粝饭,合以此数乘之。今以等数二十有五约其二率,所求之率得三,所有之率得二,故以三乘二除。〕今有粟三斗六升,欲为粺饭。问得几何?答曰:为粺饭三斗八升二十五分升之二十二。术曰:以粟求粺饭,二十七之,二十五而一。〔淳风等按:此术与大<麦啇>多同。〕今有粟八斗六升,欲为饭。问得几何?答曰:为饭八斗二升二十五分升之一十四。术曰:以粟求饭,二十四之,二十五而一。〔淳风等按:<麦啇>饭率四十八。此亦半二率而乘除。〕今有粟九斗八升,欲为御饭。问得几何?答曰:为御饭八斗二升二十五分升之八。术曰:以粟求御饭,二十一之,二十五而一。〔淳风等按:此术半率,亦与饭多同。〕今有粟三斗少半升,欲为菽。问得几何?答曰:为菽二斗七升一十分升之三。今有粟四斗一升太半升,欲为荅。问得几何?答曰:为荅三斗七升半。今有粟五斗太半升,欲为麻。问得几何?答曰:为麻四斗五升五分升之三。今有粟一十斗八升五分升之二,欲为麦。问得几何?答曰:为麦九斗七升二十五分升之一十四。术曰:以粟求菽、荅、麻、麦,皆九之,十而一。〔淳风等按:四术率并四十五,皆是为粟所求,俱合以此率乘其本粟。术欲从省,先以等数五约之,所求之率得九,所有之率得十,故九乘十除,义由于此。〕今有粟七斗五升七分升之四,欲为稻。问得几何?答曰:为稻九斗三十五分升之二十四。术曰:以粟求稻,六之,五而一。〔淳风等按:稻率六十,亦约二率而乘除。〕今有粟七斗八升,欲为豉。问得几何?答曰:为豉九斗八升二十五分升之七。术曰:以粟求豉,六十三之,五十而一。今有粟五斗五升,欲为飧。问得几何?答曰:为飧九斗九升。术曰:以粟求飧,九之,五而一。〔淳风等按:飧率九十,退位,与求稻多同。〕今有粟四斗,欲为熟菽。问得几何?答曰:为熟菽八斗二升五分升之四。术曰:以粟求熟菽,二百七之,百而一。〔淳风等按:熟菽之率一百三半。半者,其母二,故以母二通之。所求之率既被二乘,所有之率随而俱长,故以二百七之,百而一。〕今有粟二斗,欲为糵。问得几何?答曰:为糵七斗。术曰:以粟求糵,七之,二而一。〔淳风等按:糵率一百七十有五,合以此数乘其本粟。术欲从省,先以等数二十五约之,所求之率得七,所有之率得二,故七乘二除。〕今有粝米十五斗五升五分升之二,欲为粟。问得几何?答曰:为粟二十五斗九升。术曰:以粝米求粟,五之,三而一。〔淳风等按:上术以粟求米,故粟为所有数,三为所求率,五为所有率。今此以米求粟,故米为所有数,五为所求率,三为所有率。准都术求之,各合其数。以下所有反求多同,皆准此。〕今有粺米二斗,欲为粟。问得几何?答曰:为粟三斗七升二十七分升之一。术曰:以粺米求粟,五十之,二十七而一。今有米三斗少半升,欲为粟。问得几何?答曰:为粟六斗三升三十六分升之七。术曰:以米求粟,二十五之,十二而一。今有御米十四斗,欲为粟。问得几何?答曰:为粟三十三斗三升少半升。术曰:以御米求粟,五十之,二十一而一。今有稻一十二斗六升一十五分升之一十四,欲为粟。问得几何?答曰:为粟一十斗五升九分升之七。术曰:以稻求粟,五之,六而一。今有粝米一十九斗二升七分升之一,欲为粺米。问得几何?答曰:为粺米一十七斗二升一十四分升之一十三。术曰:以粝米求粺米,九之,十而一。〔淳风等按:粺米率二十七,合以此数乘粝米。术欲从省,先以等数三约之,所求之率得九,所有之率得十,故九乘而十除。〕今有粝米六斗四升五分升之三,欲为粝饭。问得几何?答曰:为粝饭一十六斗一升半。术曰:以粝米求粝饭,五之,二而一。〔淳风等按:粝饭之率七十有五,宜以本粝米乘此率数。术欲从省,先以等数十五约之,所求之率得五,所有之率得二,故五乘二除,义由于此。〕今有粝饭七斗六升七分升之四,欲为飧。问得几何?答曰:为飧九斗一升三十五分升之三十一。术曰:以粝饭求飧,六之,五而一。〔淳风等按:飧率九十,为粝饭所求,宜以粝饭乘此率。术欲从省,先以等数十五约之,所求之率得六,所有之率得五。以此,故六乘五除也。〕今有菽一斗,欲为熟菽。问得几何?答曰:为熟菽二斗三升。术曰:以菽求熟菽,二十三之,十而一。〔淳风等按:熟菽之率一百三半。因其有半,各以母二通之,宜以菽数乘此率。术欲从省,先以等数九约之,所求之率得一十一半,所有之率得五也。〕今有菽二斗,欲为豉。问得几何?答曰:为豉二斗八升。术曰:以菽求豉,七之,五而一。〔淳风等按:豉率六十三,为菽所求,宜以菽乘此率。术欲从省,先以等数九约之,所求之率得七,而所有之率得五也。〕今有麦八斗六升七分升之三,欲为小<麦啇>。问得几何?答曰:为小<麦啇>二斗五升一十四分升之一十三。术曰:以麦求小<麦啇>,三之,十而一。〔淳风等按:小<麦啇>之率十三半,宜以母二通之,以乘本麦之数。术欲从省,先以等数九约之,所求之率得三,所有之率得十也。〕今有麦一斗,欲为大<麦啇>。问得几何?答曰:为大抃一斗二升。术曰:以麦求大<麦啇>,六之,五而一。〔淳风等按:大<麦啇>之率五十有四,合以麦数乘此率。术欲从省,先以等数九约之,所求之率得六,所有之率得五也。〕今有出钱一百六十,买瓴甓十八枚。〔瓴甓,砖也。〕问枚几何?答曰:一枚八钱九分钱之八。今有出钱一万三千五百,买竹二千三百五十个。问个几何?答曰:一个,五钱四十七分钱之三十五。经率 术曰:以所买率为法,所出钱数为实,实如法得一。〔此术犹经分。淳风等按:今有之义,以所求率乘所有数,合以瓴甓一枚乘钱一百六十为实。但以一乘不长,故不复乘,是以径将所买之率与所出之钱为法、实也。又按:此今有之义。出钱为所有数,一枚为所求率,所买为所有率,而今有之,即得所求数。一乘不长,故不复乘,是以径将所买之率为法,以所出之钱为实,实如法得一枚钱。不尽者,等数而命分。〕今有出钱五千七百八十五,买漆一斛六斗七升太半升。欲斗率之,问斗几何?答曰:一斗,三百四十五钱五百三分钱之一十五。今有出钱七百二十,买缣一匹二丈一尺。欲丈率之,问丈几何?答曰:一丈,一百一十八钱六十一分钱之二。今有出钱二千三百七十,买布九匹二丈七尺。欲匹率之,问匹几何?答曰:一匹,二百四十四钱一百二十九分钱之一百二十四。今有出钱一万三千六百七十,买丝一石二钧一十七斤。欲石率之,问石几何?答曰:一石,八千三百二十六钱一百九十七分钱之百七十八。术曰:以求所率乘钱数为实,以所买率为法,实如法得一。〔淳风等按:今有之义,钱为所求率,物为所有数,故以乘钱,又以分母乘之为实。实如法而一,有分者通之。所买通分内子为所有率,故以为法。得钱数不尽而命分者,因法为母,实余为子。实见不满,故以命之。〕今有出钱五百七十六,买竹七十八个。欲其大小率之,问各几何?答曰:其四十八个,个七钱;其三十个,个八钱。今有出钱一千一百二十,买丝一石二钧十八斤。欲其贵贱斤率之,问各几何?答曰:其二钧八斤,斤五钱;其一石一十斤,斤六钱。今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱石率之,问各几何?答曰:其一钧九两一十二铢,石八千五十一钱;其一石一钧二十七斤九两一十七铢,石八千五十二钱。今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱钧率之,问各几何?答曰:其七斤一十两九铢,钧二千一十二钱;其一石二钧二十斤八两二十铢,钧二千一十三钱。今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱斤率之,问各几何?答曰:其一石二钧七斤十两四铢,斤六十七钱;其二十斤九两一铢,斤六十八钱。今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱两率之,问各几何?答曰:其一石一钧一十七斤一十四两一铢,两四钱;其一钧一十斤五两四铢,两五钱。其率 术曰:各置所买石、钧、斤、两以为法,以所率乘钱数为实,实如法而一。不满法者,反以实减法。法贱实贵。其求石、钧、斤、两,以积铢各除法、实,各得其积数,余各为铢。〔其率知,欲令无分。按:出钱五百七十六,买竹七十八个,以除钱,得七,实余三十,是为三十个复可增一钱。然则实余之数即是贵者之数,故曰实贵也。本以七十八个为法,今以贵者减之,则其余悉是贱者之数。故曰法贱也。其求石、钧、斤、两,以积铢各除法、实,各得其积数,余各为铢者,谓石、钧、斤、两积铢除实,又以石、钧、斤、两积铢除法,余各为铢,即合所问。〕今有出钱一万三千九百七十,买丝一石二钧二十八斤三两五铢。欲其贵贱铢率之,问各几何?答曰:其一钧二十斤六两十一铢,五铢一钱;其一石一钧七斤一十二两一十八铢,六铢一钱。今有出钱六百二十,买羽二千一百翭。〔翭,羽本也。数羽称其本,犹数草木称其根株。〕欲其贵贱率之,问各几何?答曰:其一千一百四十翭,三翭一钱;其九百六十翭,四翭钱。今有出钱九百八十,买矢榦五千八百二十枚。欲其贵贱率之,问各几何?答曰:其三百枚,五枚一钱;其五千五百二十枚,六枚一钱。反其率 术曰:以钱数为法,所率为实,实如法而一。不满法者,反以实减法。法少实多。二物各以所得多少之数乘法、实,即物数。〔按:其率:出钱六百二十,买羽二千一百翭。反之,当二百四十钱,一钱翭;其三百八十钱,一钱三翭。是钱有二价,物有贵贱。故以羽乘钱,反其率也。淳风等按:其率者,钱多物少;反其率知,钱少物多;多少相反,故曰反其率也。其率者,以物数为法,钱数为实。反之知,以钱数为法,物数为实。不满法知,实余也。当以余物化为钱矣。法为凡钱,而今以化钱减之,故以实减法。法少知,经分之所得,故曰法少;实多者,余分之所益,故曰实多。乘实宜以多,乘法宜以少,故曰各以其所得多少之数乘法、实,即物数。
北营2023-05-20 17:39:121

有关《九章算术》的相关知识

《九章算术》是中国古代第一部数学专著,是算经十书中最重要的一种。该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本。 西汉张苍曾经对之校正补充。许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)........要注意的是《九章算术》没有作者,它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。 [编辑本段]《九章算术》的主要内容:《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术。这些问题依照性质和解法分别隶属于方田、粟米、衰(音cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示。原作有插图,今传本已只剩下正文了。《九章算术》的九章的主要内容分别是:第一章“方田”:田亩面积计算;第二章“粟米”:谷物粮食的按比例折换;第三章“衰分”:比例分配问题;第四章“少广”:已知面积、体积、求其一边长和径长等;第五章“商功”:土石工程、体积计算;第六章“均输”:合理摊派赋税;第七章“盈不足”:即双设法问题;第八章“方程”:一次方程组问题;第九章“勾股”:利用勾股定理求解的各种问题. [编辑本段]《九章算术》的数学成就《九章算术》中的数学成就是多方面的:(1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的.(2)、在几何方面,主要是面积、体积计算。(3)、在代数方面,主要有一次方程组解法、平方、立方、一般二次方程解法等。“方程”一章还在世界数学史上首次引入了负数及其加减法运算法则.作为一部世界科学名著,《九章算术》在隋唐时期就已传入朝鲜、日本。现在它已被译成日、俄、德、英、法等多种文字。 [编辑本段]关于《九章算术》的历史考证:现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详。很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶。由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释。关于对《九章算术》所做的校注主要有:西汉张苍增订、删补,三国时曹魏刘徽注,唐李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?~1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作。现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释。80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版。 [编辑本段]对《九章算术》的评价和其对后世的影响:《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。可以说,《九章算术》是中国为数学发展做出的一杰出贡献。
hi投2023-05-20 17:39:121

《九章算术》的作者有哪些?

《九章算术》是西汉以来许多数学家研究的结晶,西汉前期的著名数学家张苍、耿寿昌等人曾经对他进行增减。全书一共分为9章,搜集了246个数学问题的解法,其中记载了当时世界上最先进的分数四则和比例算法。还有各种面积体积的算法和利用勾股定理进行测量的问题,以及开方、开立方的方法。特别是在世界数学史上的第一次记载了负数的概念和正负数的加减法运算法则。这部书对中国古代数学的发展所产生的影响是很大的。标志着我国古代数学的完整体系的形成。他不仅在中国数学史上占有重要的地位,而且影响到了朝鲜、日本,被翻译成许多种外文出版。
小白2023-05-20 17:39:123

九章算术是谁写的

  《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍,耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年,刘徽为《九章》所作的注本。   《九章算术》是中国古代第一部数学专著,是《算经十书》中最重要的一种,成于公元一世纪左右。该书内容十分丰富,系统总结了战国,秦,汉时期的数学成就。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系
NerveM 2023-05-20 17:39:121

九章算术到底是怎么出的?

魏晋时刘徽为《九章算术》作注时说:“周公制礼而有九数,九数之流则《九章》是矣”,又说“汉北平侯张苍、大司农中丞耿寿昌皆以善算命世。苍等因旧文之遗残,各称删补,故校其目则与古或异,而所论多近语也”。 根据研究,西汉的张苍、耿寿昌曾经做过增补。最后成书最迟在东汉前期,但是其基本内容在东汉后期已经基本定型。《汉书艺文志》(班固根据刘歆《七略》写成者)中着录的数学书仅有《许商算术》、《杜忠算术》两种,并无《九章算术》,可见《九章算术》的出现要晚于《七略》。《后汉书马援传》载其侄孙马续“博览群书,善《九章算术》”,马续是公元1世纪最后二、三十年时人。再根据《九章算术》中可供判定年代的官名、地名等来推断,现传本《九章算术》的成书年代大约是在公元1世纪的下半叶。 它不是某个人出的,而是人们总结的数学知识,后人增删后又出版,就这样一直流传下来
善士六合2023-05-20 17:39:121

九章算术 哪年出的?

该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本。
北营2023-05-20 17:39:121

九章算术是我国东汉初年共有几个问题解法?

《九章算术》共收有246个数学问题,分为九大类,在一个或几个问题之后,列出这个问题的解法。
Jm-R2023-05-20 17:39:121

九章算术方田的具体内容

九章算术》是我国现存的最早的一部数学专著。它不是一时一人的著作,是经过很多人长时间修改删补,到东汉时期才逐渐形成定本的。现在。我们只知道西汉初年的张苍、耿寿昌等人曾经作过增补。据研究,它最后成书至迟在东汉前期(公元1世纪)。《九章算术》原本早已失传,现在流传的是刘徽注释本。 《九章算术》全书收有246个数学问题,分做九大类,就是“九章”。第一章“方田”,主要讲各种田亩面积的算法;第二章“粟米”。主要讲各种谷物按比例交换的算法;第三章“衰分”,主要讲按等级或比例进行分配的算法;第四章‘少广",主要讲已知面积和体积反求它一边的算法;第五章“商功”,主要讲有关土石方和用工量的各种工程的算法;第六章“均输”,主要讲按人口多少和路途远近等条件来摊派税收和分派劳力(徭役)的算法;第七章“盈不足”,主要讲两次假设来解决某些难解问题的算法;第八章“方程”,主要讲联立一次方程组的解法和正负数的加减法法则;第九章,“勾股”,主要讲勾股定理的应用、直角相似三角形和一元二次方程的解法。全书系统总结了先秦到东汉初期的数学成就,其中的负数运算和一元二次方程的解法是当时世界最先进的数学运算方法。它的特点就是和当时的实际需要密切相结合,这也可以说是中国古代数学的一大特色,一大优点。它的出现标志着以计算为中心的中国古代数学体系的形成。 《九章算术》的叙述方式以归纳为主,先给出若干例题,再列出解决这类问题的一般方法。这和古希腊数学的代表著作欧几里德(约公元前330—前275年)的《几何原本》以演绎为主的叙述方式有明显的不同。它对我国后世数学的发展一直有很大的影响,曾经被历代规定作为进行数学教育的教科书,是所谓“算经十书”之一。它还流传到朝鲜和日本,对朝鲜和日本古代数学的发展也有很大的影响,现在,作为世界古典科学名著,它已经被译成俄文、德文、日文等文字,受到世界各国的重视。日本的小仓金之助博士评价说:“《九章算术》是‘中国的基本教科书",包含了优秀的教学方法,如果将它与希腊数学比较的话,几何学虽劣于希腊,但算术和代数却凌驾于希腊之上,它是‘中国的欧氏几何"”。 第一章,「方田」: 平面图形面积的量法及算法,如矩形、三角形、圆、弧形、环形等的田地的求积公式,及分数算法,包括加减乘除法、约分[将分母,分子用辗转相除法求出它的最大公约数再作约分]、分数大小的比较及求几个分数的算术平均数等。 第二章,「粟米」: 各种粮食交换之间的计算,讨论比例算法。 第三章,「衰分」: 比例分配问题。 第四章,「少广」: 多位数开平方,开立方的法则。 第五章,「商功」: 立体形体积的计算。 第六章,「均输」: 处理行程和合理解决征税的问题,尤其是与人民从本地运送谷物到京城交税所需的时间有关的问题,还有一些与按人口征税有关的问题,其中还夹杂着衰分、比例及各种杂题。 第七章,「盈不足」: 算术中的盈亏问题的算法,实际上就是现在的线性插值法,它还有许多名称,如试位法、夹叉求零点、双假设法等。 第八章,「方程」: 有关一次方程组的内容,最后还有不定方程。将方程组的系数和常数项用算筹摆成「方程」,这是《九章算术》中解多一次方程组的方法,而整个消元过程则相当于代数中的线性变换。在方程章里提出了正负数的不同表示法和正负数的加减法则。 第九章,「勾股」: 专门讨论用勾股定理解决应用问题的方法 例题:○方田(以御田畴界域) 今有田广十五步,从十六步。问为田几何?答曰:一亩。 又有田广十二步,从十四步。问为田几何?答曰:一百六十八步
CarieVinne 2023-05-20 17:39:121

九章算术有哪些数学知识?

九章算术数学知识有数学中算术,代数几何等大部分内容。它的特点是重视理论,但不脱离实际,它记载了当时世界上最先进的分数四则运算和比例运算,九章算术是中国古代第一部数学专著,是算经十书中最重要的一部成于公元一世纪左右。九章算术数学知识特点九章算术内容十分丰富,全书总结了战国秦汉时期的数学成就,同时九章算术在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,方程章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系,该著作中包含246个数学应用问题,分别属于方田粟米衰分,少广商功均输盈不足方程及句股这九章。
余辉2023-05-20 17:39:121

什么是《九章算术》?

一本书,讲数学的
gitcloud2023-05-20 17:39:124

九章算术的作者是谁?

没作者的啊。。,至少没有记载啊
左迁2023-05-20 17:39:117

九章算术的内容是什么

1、《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。2、《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最简练有效的应用数学,它的出现标志中国古代数学形成了完整的体系。
hi投2023-05-20 17:39:111

《九章算术》的作者是谁?是什么朝代的?

《九章算术》其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。
瑞瑞爱吃桃2023-05-20 17:39:112

九章算术的数学成就

《九章算术》中的数学成就是多方面的:(1)、在算术方面的主要成就有分数运算、比例问题和“盈不足”算法。《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”的算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的。《九章算术》中有比较完整的分数计算方法,包括四则运算,通分、约分、化带分数为假分数(我国古代称为通分内子,“内”读为纳)等等。其步骤与方法大体与现代的雷同。分数加减运算,《九章算术》已明确提出先通分,使两分数的分母相同,然后进行加减。加法的步骤是“母互乘子,并以为实,母相乘为法,实如法而一”这里“实”是分子。“法”是分母,“实如法而一”也就是用法去除实,进行除法运算,《九章算术》还注意到两点:其一是运算结果如出现“不满法者,以法命之”。就是分子小于分母时便以分数形式保留。其二是“其母同者,直相从之”,就是分母相同的分数进行加减,运算时不必通分,使分子直接加减即可。《九章算术》中还有求最大公约数和约分的方法。求最大公约数的方法称为“更相减损”法,其具体步骤是“可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也。以等数约之。”这里所说的“等数”就是我们现在的最大公约数。可半者是指分子分母都是偶数,可以折半的先把它们折半,即可先约去2。不都是偶数了,则另外摆(即副置)分子分母算筹进行计算,从大数中减去小数,辗转相减,减到余数和减数相等,即得等数。在《九章算术》的第二、三、六等章内,广泛地使用了各种比例解应用问题。粟米章的开始就列举了各种粮食间互换的比率如下:“粟米之法:粟率五十,粝米三十,粺米二十七,糳米二十四,……”这是说:谷子五斗去皮可得糙米三斗,又可舂得九折米二斗七升,或八拆米二斗四升,……。例如,粟米章第一题:“今有粟米一斗,欲为粝米,问得几何”。它的解法是:“以所有数乘所求率为实,以所有率为法,实如法而一”。《九章算术》第七章“盈不足”专讲盈亏问题及其解法其中第一题:“今有(人)共买物,(每)人出八(钱),盈(余)三钱;人出七(钱),不足四(钱),问人数、物价各几何”,“答曰:七人,物价53(钱)。”“盈不足术曰:置所出率,盈、不足各居其下。令维乘(即交错相乘)所出率,并以为实,并盈,不足为法,实如法而一……置所出率,以少减多,余,以约法、实。实为物价,法为人数”。盈不足术是中国数学史上解应用问题的一种别开生面的创造,它在我国古代算法中占有相当重要的地位。盈不足术还经过丝绸之路西传中亚阿拉伯国家,受到特别重视,被称为“契丹算法”,后来又传入欧洲,中世纪时期“双设法”曾长期统治了他们的数学王国。(2)、《九章算术》总结了生产、生活实践中大量的几何知识,在方田、商功和勾股章中提出了很多面积、体积的计算公式和勾股定理的应用。《九章算术》方田章主要论述平面图形直线形和圆的面积计算方法。《九章算术》方田章第一题“今有田广十五步,从(音纵zong)十六步。问为田几何。”“答曰:一亩”。这里“广”就是宽,“从”即纵,指其长度,“方田术曰:广从步数相乘得积步,(得积步就是得到乘积的平方步数)以亩法二百四十步(实质应为积步)除之,即亩数。百亩为一顷。”当时称长方形为方田或直田。称三角形为圭田,面积公式为“术曰:半广以乘正从”。这里广是指三角形的底边,正从是指底边上的高,刘徽在注文中对这一计算公式实质上作了证明:“半广者,以盈补虚,为直田也。”“亦可以半正从以乘广”(图1-30)。盈是多余,虚乃不足。“以盈补虚”就是以多余部分填补不足的部分,这就是我国古代数学推导平面图形面积公式所用的传统的“出入相补”的方法,由上图“以盈补虚”变圭田为与之等积的直田,于是得到了圭田的面积计算公式。  方田章第二十七、二十八题把直角梯形称为“邪田”(即斜田)它的面积公式是:“术曰:并两邪(即两斜,应理解为梯形两底)而半之,以乘正从……,又可半正从……以乘并。”刘徽在注中说明他的证法仍是“出入相补”法。在方田章第二十九、三十题把一般梯形称为“箕田”,上、下底分别称为“舌”、“踵”,面积公式是:“术曰:并踵舌而半之,以乘正从”。至于圆面积,在《九章算术》方田章第三十一、三十二题中,它的面积计算公式为:“半周半径相乘得积步”。这里“周”是圆周长,“径”是指直径。这个圆面积计算公式是正确的。只是当时取径一周三(即π≈3)。于是由此计算所得的圆面积就不够精密。《九章算术》商功章收集的都是一些有关体积计算的问题。但是商功章并没有论述长方体或正方体的体积算法。看来《九章算术》是在长方体或正方体体积计算公式:V=abc的基础上来计算其他立体图形体积的。《九章算术》商功章提到城、垣、堤、沟、堑、渠,因其功用不同因而名称各异,其实质都是正截面为等腰梯形的直棱柱,他们的体积计算方法:“术曰:并上、下广而半之,以高若深乘之,又以袤乘之,即积尺”。这里上、下广指横截面的上、下底(a,b)高或深(h),袤是指城垣……的长(l)。因此城、垣…的体积计算术公式V=1/2(a+b)h.刘徽在注释中把对于平面图形的出入相补原理推广应用到空间图形,成为“损广补狭”以证明几何体体积公式。刘徽还用棋验法来推导比较复杂的几何体体积计算公式。所谓棋验法,“棋”是指某些几何体模型即用几何体模型验证的方法,例如长方体本身就是“棋”[图1-32(1)]斜解一个长方体,得两个两底面为直角三角形的直三棱柱,我国古代称为“堑堵”(如图),所以堑堵的体积是长方体体积的二分之一。《九章算术》商功章还有圆锥、圆台(古代称“圆亭”)的体积计算公式。甚至对三个侧面是等腰梯形,其他两面为勾股形的五面体[图1-33(1)],上、下底为矩形的拟柱体(古代称“刍童”)以及上底为一线段,下底为一矩形的拟柱体(古代称“刍甍”)(“甍”音“梦”)等都可以计算其体积。(3)、《九章算术》中的代数内容同样很丰富,具有当时世界的先进水平。1.开平方和开立方《九章算术》中讲了开平方、开立方的方法,而且计算步骤基本一样。所不同的是古代用筹算进行演算,现以少广章第12题为例,说明古代开平方演算的步骤,“今有积五万五千二百二十五步。问为方几何”。“答曰:二百三十五步”。这里所说的步是我国古代的长度单位。“开方(是指开平方,由正方形面积求其一边之长。)术曰:置积为实(即指筹算中把被开方数放置于第二行,称为实)借一算(指借用一算筹放置于最后一行,如图1-25(1)所示用以定位)。步之(指所借的算筹一步一步移动)超一等(指所借的算筹由个位越过十位移至百位或由百位越过千位移至万位等等,这与现代笔算开平方中分节相当如图1-25(2)所示)。议所得(指议得初商,由于实的万位数字是5,而且22<5<32,议得初商为2,而借算在万位,因此应在第一行置初商2于百位,如图1-25(3)所示)。以一乘所借一算为法(指以初商2乘所借算一次为20000,置于“实”下为“法”,如图1-25(4)所示)而以除(指以初商2乘“法”20000得40000,由“实”减去得:55225-40000=15225,如图1-25(5)所示)除已,倍法为定法,其复除,折法而下(指将“法”加倍,向右移一位,得4000为“定法”因为要求平方根的十位数字,需要把“借算”移至百位,如图1-25(6)所示)。复置借算步之如初,以复议一乘之,所得副,以加定法,以除(这一段是指:要求平方根的十位数字,需置借算于百位。因“实”的千位数字为15,且4×3<15<4×4,于是再议得次商为3。置3于商的十位。以次商3乘借算得3×100=300,与定法相加为4000+300=4300。再乘以次商,则得:3×4300=12900,由“实”减去得:15225-12900=2325。如图1-25(7)所示,以所得副从定法,复除折下如前(这一段是指演算如前,即再以300×1+4300=4600向右移一位,得460,是第三位方根的定法,再把借算移到个位,如图1-25(8)所示;又议得三商应为5,再置5于商的个位如图1-25(9)所示,以5+460=465,再乘以三商5,得465×5=2325经计算恰尽如图1-25(10)所示,因此得平方根为235。)上述由图1-25(1)—(10)是按算筹进行演算的,看起来似乎很繁琐,实际上步骤十分清楚,易于操作。它的开平方原理与现代开平方原理相同。其中“借算”的右移、左移在现代的观点下可以理解为一次变换和代换。《九章算术》时代并没有理解到变换和代换,但是这对以后宋、元时期高次方程的解法是有深远影响的。《九章算术》方程章中的“方程”是专指多元一次方程组而言,与“方程”的含义并不相同。《九章算术》中多元一次方程组的解法,是将它们的系数和常数项用算筹摆成“方阵”(所以称之谓“方程”)。消元的过程相当于现代大学课程高等代数中的线性变换。由于《九章算术》在用直除法解一次方程组过程中,不可避免地要出现正负数的问题,于是在方程章第三题中明确提出了正负术。刘徽在该术的注文里实质上给出了正、负数的定义:“两算得失相反,要令‘正"、‘负"以名之”。并在计算工具即算筹上加以区别“正算赤,负算黑,否则以邪正为异”。这就是规定正数用红色算筹,负数用黑色算筹。如果只有同色算筹的话,则遇到正数将筹正放,负数时邪(同斜)放。宋代以后出现笔算也相应地用红、黑色数码字以区别正、负数,或在个位数上记斜划以表示负数,如(即—1824),后来这种包括负数写法在内的中国数码字还传到日本。关于正、负数的加减运算法则,“正负术曰:同名相益,异名相除,正无入负之,负无入正之。其异名相除,同名相益,正无入正之,负无入负之”。这里所说的“同名”、“异名”分别相当于所说的同号、异号。“相益”、“相除”是指二数相加、相减。术文前四句是减法运算法则:(1)如果被减数绝对值大于减数绝对值,即a>b≥0,则同名相益:(±a)-(±b)=±(a-b),异名相除:(±a)-(b)=±(a+b)。(2)如果被减数绝对值小于减数绝对值,即b>a≥0。①如果两数皆正则a-b=a-[a+(b-a)]=-(b-a)。中间一式的a和a对消,而(b-a)无可对消,则改“正”为“负”,即“正无入负之”。“无入”就是无对,也就是无可对消(或不够减或对方为零)。②如果两数皆负则(-a)-(-b)=-a-[(-a)-(b-a)]=+(b-a)。在中间的式子里(-a)和(-a)对消,而-(b-a)无可对消,则改“负”为“正”所以说“负无入正之”。③如果两数一正一负。则仍同(1)的异名相益。术文的后四句是指正负数加法运算法则。(1)同号两数相加,即同名相益,其和的绝对值等于两数绝对值和。如果a>0,b>0,则a+b=a+b,(-a)+(-b)=-(a+b)(2)异号两数相加,实为相减,即异名相除。如果正数的绝对值较大,其和为正,即“正无入正之”。如果负数的绝对值较大,其和为负,即“负无入负之”。用符号表示为①如果a>b≥0,则 a+(-b)=[b+(a-b)]+(-b)=a-b,或 (-a)+b=[(-b)-(a-b)]+b=-(a-b)。②如果b>a≥0,则 a+(-b)=a+[(-a)-(b-a)]=-(b-a),或 (-a)+b=(-a)+[a+(b-a)]=b-a。关于正负数的乘除法则,在《九章算术》时代或许会遇到有关正负数的乘除运算。可惜书中并未论及,直到元代朱世杰于《算学启蒙》(1299年)中才有明确的记载:“同名相乘为正,异名相乘为负”,“同名相除所得为正,异名相除所得为负”,因此至迟于13世纪末我国对有理数四则运算法则已经全面作了总结。至于正负数概念的引入,正负数加减运算法则的形成的历史记录,我国更是遥遥领先。国外首先承认负数的是七世纪印度数学家婆罗门岌多(约598-?)欧洲到16世纪才承认负数。
西柚不是西游2023-05-20 17:39:111

跪求汉书《九章算术》中的所有古代数学问题`!!!

九章算术——勾股〔一〕今有句三尺,股四尺,问为弦几何?  荅曰:五尺。〔二〕今有弦五尺,句三尺,问为股几何?  荅曰:四尺。〔三〕今有股四尺,弦五尺,问为句几何?  荅曰:三尺。  句股术曰:句股各自乘,并,而开方除之,即弦。  又股自乘,以减弦自乘,其余开方除之,即句。  又句自乘,以减弦自乘,其余开方除之,即股。〔四〕今有圆材径二尺五寸,欲为方版,令厚七寸。问广几何?  荅曰:二尺四寸。  术曰:令径二尺五寸自乘,以七寸自乘减之,其余开方除之,即广。  〔五〕今有木长二丈,围之三尺。葛生其下,缠木七周,上与木齐。问葛长几何?  荅曰:二丈九尺。  术曰:以七周乘三尺为股,木长为句,为之求弦。弦者,葛之长。〔六〕今有池方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?  荅曰:  水深一丈二尺;  葭长一丈三尺。  术曰:半池方自乘,以出水一尺自乘,减之,余,倍出水除之,即得水深。加出水数,得葭长。〔七〕今有立木,系索其末,委地三尺。引索却行,去本八尺而索尽。问索长几何?  荅曰:一丈二尺、六分尺之一。  术曰:以去本自乘,令如委数而一,所得,加委地数而半之,即索长〔八〕今有垣高一丈。倚木于垣,上与垣齐。引木却行一尺,其木至地。问木几何?  荅曰:五丈五寸。  术曰:以垣高十尺自乘,如却行尺数而一,所得,以加却行尺数而半之,即木长数。〔九〕今有圆材,埋在壁中,不知大小。以鐻鐻之,深一寸,鐻道长一尺。问径几何?  荅曰:材径二尺六寸。  术曰:半鐻道自乘,如深寸而一,以深寸增之,即材径。〔一0〕今有开门去阃一尺,不合二寸。问门广几何?  荅曰:一丈一寸。  术曰:以去阃一尺自乘,所得,以不合二寸半之而一,所得,增不合之半,即得门广。〔一一〕今有户高多于广六尺八寸,两隅相去适一丈。问户高、广各几何?  荅曰:  广二尺八寸;  高九尺六寸。  术曰:令一丈自乘为实。半相多,令自乘,倍之,减实,半其余。以开方除之,所得,减相多之半,即户广。加相多之半,即户高。〔一二〕今有户不知高广,竿不知长短。横之不出四尺,从之不出二尺,邪之适出。问户高、广、袤各几何?  荅曰:  广六尺,  高八尺,  袤一丈。  术曰:从、横不出相乘,倍,而开方除之。所得加从不出即户广,加横不出即户高,两不出加之,得户袤。〔一三〕今有竹高一丈,末折抵地,去本三尺。问折者高几何?  荅曰:四尺、二十分尺之十一。  术曰:以去本自乘,令如高而一,所得,以减竹高而半其余,即折者之高也。〔一四〕今有二人同所立。甲行率七,乙行率三。乙东行。甲南行十步而邪东北与乙会。问甲乙行各几何?  荅曰:  乙东行一十步半;  甲邪行一十四步半及之。  术曰:令七自乘,三亦自乘,并而半之,以为甲邪行率。邪行率减于七自乘,余为南行率。以三乘七为乙东行率。置南行十步,以甲邪行率乘之,副置十步,以乙东行率乘之,各自为实。实如南行率而一,各得行数。〔一五〕今有句五步,股十二步。问句中容方几何?  荅曰:方三步、十七分步之九。  术曰:并句、股为法,句股相乘为实,实如法而一,得方一步。〔一六〕今有句八步,股十五步。问句中容圆,径几何?  荅曰:六步。  术曰:八步为句,十五步为股,为之求弦。三位并之为法,以句乘股,倍之为实。实如法得径一步。〔一七〕今有邑方二百步,各中开门。出东门十五步有木。问出南门几何步而见木?  荅曰:六百六十六步、太半步。  术曰:出东门步数为法,半邑方自乘为实,实如法得一步。〔一八〕今有邑,东西七里,南北九里,各中开门。出东门十五里有木。问出南门几何步而见木?  荅曰:三百一十五步。  术曰:东门南至隅步数,以乘南门东至隅步数为实。以木去门步数为法。实如法而一。〔一九〕今有邑方不知大小,各中开门。出北门三十步有木,出西门七百五十步见木。问邑方几何?  荅曰:一里。  术曰:令两出门步数相乘,因而四之,为实。开方除之,即得邑方。〔二0〕今有邑方不知大小,各中开门。出北门二十步有木。出南门十四步,折而西行一千七百七十五步见木。问邑方几何?  荅曰:二百五十步。  术曰:以出北门步数乘西行步数,倍之,为实。并出南门步数为从法,开方除之,即邑方。〔二一〕今有邑方十里,各中开门。甲乙俱从邑中央而出。乙东出;甲南出,出门不知步数,邪向东北磨邑,适与乙会。率甲行五,乙行三。问甲、乙行各几何?  荅曰:  甲出南门八百步,邪东北行四千八百八十七步半,及乙。  乙东行四千三百一十二步半。  术曰:令五自乘,三亦自乘,并而半之,为邪行率。邪行率减于五自乘者,余,为南行率。以三乘五,为乙东行率。置邑方半之,以南行率乘之,如东行率而一,即得出南门步数。以增邑方半,即南行。置南行步求弦者,以邪行率乘之,求东者以东行率乘之,各自为实。实如南行率得一步。〔二二〕有木去人不知远近。立四表,相去各一丈,令左两表与所望参相直。从后右表望之,入前右表三寸。问木去人几何?  荅曰:三十三丈三尺三寸、少半寸。  术曰:令一丈自乘为实,以三寸为法,实如法而一。〔二三〕有山居木西,不知其高。山去木五十三里,木高九丈五尺。人立木东三里,望木末适与山峰斜平。人目高七尺。问山高几何?  荅曰:一百六十四丈九尺六寸、太半寸。  术曰:置木高减人目高七尺,余,以乘五十三里为实。以人去木三里为法。实如法而一,所得,加木高即山高。〔二四〕今有井径五尺,不知其深。立五尺木于井上,从木末望水岸,入径四寸。问井深几何?  荅曰:五丈七尺五寸。  术曰:置井径五尺,以入径四寸减之,余,以乘立木五尺为实。以入径四寸为法。实如法得一寸。【 以上“句股”中的“句”字系繁体字 (liaowj加注) 】
左迁2023-05-20 17:39:111

九章算术什么是九章它的历史意义是什么 九章算术是什么

1、《九章算术》是中国古代张苍、耿寿昌所撰写的一部数学专著。是《算经十书》中最重要的一部,成于公元一世纪左右。其作者已不可考。一般认为它是经历代各家的增补修订,而逐渐成为现今定本的,西汉的张苍、耿寿昌曾经做过增补和整理,其时大体已成定本。最后成书最迟在东汉前期,现今流传的大多是在三国时期魏元帝景元四年(263年),刘徽为《九章》所作的注本。 2、九章是指九章算术分为九个章节。 3、《九章算术》是世界上最早系统叙述了分数运算的著作,在第二、三、六章中有许多比例问题,在世界上也是比较早的。“盈不足”的算法需要给出两次假设,是一项创造,中世纪欧洲称它为“双设法”,有人认为它是由中国经中世纪阿拉伯国家传去的。 4、《九章算术》中有比较完整的分数计算方法,包括四则运算,通分、约分、化带分数为假分数(我国古代称为通分内子,“内”读为纳)等等。其步骤与方法大体与现代的雷同。
韦斯特兰2023-05-20 17:39:111

《九章算术》在我国数学教育史上的历史价值

说历史价值,主要体现在各方面成就在今后的流传与引用,可以参考一下资料: 对《九章算术》的评价和其对后世的影响:《九章算术》是世界上最早系统叙述了分数运算的著作;其中盈不足的算法更是一项令人惊奇的创造;“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。在代数方面,《九章算术》在世界数学史上最早提出负数概念及正负数加减法法则;现在中学讲授的线性方程组的解法和《九章算术》介绍的方法大体相同。注重实际应用是《九章算术》的一个显著特点。该书的一些知识还传播至印度和阿拉伯,甚至经过这些地区远至欧洲。 《九章算术》是几代人共同劳动的结晶,它的出现标志着中国古代数学体系的形成.后世的数学家,大都是从《九章算术》开始学习和研究数学知识的。唐宋两代都由国家明令规定为教科书。1084年由当时的北宋朝廷进行刊刻,这是世界上最早的印刷本数学书。 可以说,《九章算术》是中国为数学发展做出的又一杰出贡献希望采纳
wpBeta2023-05-20 17:39:111

九章算术...

成书于公元前一世纪的《九章算术》是我国最重要的数学经典,它集先秦到西汉数学知识之大成,集中体现了当时中国数学领域的最高发展水平。全书以计算为中心,基本上采取算法统率应用问题的形式。它的许多成就居世界领先地位,对中国后世的数学发展和数学教育产生了深远的影响,奠定了此后中国数学居世界前列千余年的基础。《九章算术》成书后,注家峰起,并有诸多创造。魏晋时期数学泰斗刘徽的《九章算术》注贡献最大,影响深远。《九章》及其历代注释者在数学教育领域,内有许多值得我们学习的重要内容和见解。一般地说,《九章》并非当时的一本数学启蒙教育著作,其内容远远超过了今天小学六年的教学要求,但随着社会的长足进步和数学科学的迅速发展,前期的高深内容,到后期也许会成为大众化的基本内容。《九章》中的一些算术内容,对照今天小学数学的教学大纲,就已经成为小学高年级教学的重要内容。《九章》中所体现一些数学思想和方法对小学生也具有重要启迪和借鉴作用。现对此进行归纳,以便于教师在教学中认识和理解: 1.十进位置值制记数法 我国是世界上最早产生并确立完善的十进位置值记数法的国家。早在四五千年前就有了数目字,商朝已掌握了3万以内十进数目,以位置制记录,这种记数法比古巴比伦的60进制、玛雅人的20 进制、罗马人的5 - 10进制以及古埃及和希腊的十进非位置制优越得多。中国的十进位置制记数法被马克思誉为人类文明进程中 "最美妙的发明之一"。刘徽在此基础上创造了十进小数,外国直到14、15 世纪才出现十进小数,小数点直至17世纪才开始使用。 2.计算工具的发明 算筹是中国古代数学的一种独特的计算工具,"算术" 的意义即是运用算筹的技术,这恰当概括了中国古代数学使用算器、以算为主的特点。《九章》是以算筹为算具的数学教科书,算筹作为当时世界最灵巧的计算工具,使用起来既方便又准确,成为在中国历史上延续了1500年以上的科学传统。元朝以后发展的珠算是筹算制的发展、改革和继续。教师应认识筹算和珠算在世界数学发展史中的地位和作用,并具体在教学中发挥其独特的教育功能。中国的筹算在没有形成完备的口诀之前,主要是操作和摆数,筹算的这一特点,决定了其传授过程中最简便、最直接的方法就是 "做中学",这特别适合于儿童以演示、操作指导为主的教学方法,符合儿童动作思维的心理特点,加之中国的数学歌诀有着悠久的历史,利于兼用 "唱"、 "游" 式的教学方法。数学歌诀的流行和不断发展,对算法和算具的不断改进,不仅推动了小学数学教育的发展,而且也直接影响着珠算的产生和发展。作为中国文化宝库中 "货真价实" 的珍品 -- 珠算和算盘,既是一种优越的计算工具,又是一种好的教具和学具,相比于外国用计算板、计算块及小棒认识数和计算数,能够更好地起到从具体到抽象的中介作用,有助于学生形成数位须序及数位大小等清晰的表象,从而提高学生认识数的能力。正因为珠算的特殊价值和作用,在电子技术高度发达的现代商业圈中。在我国、日本及其他东南亚国家、珠算仍盛行不衰。此外,西方世界教育人士认为珠算在数学教育中有其不能偏废的特殊意义。 3.分数四则运算及其应用 《九章》中的分数知识 (包括约分、通分和加减乘除法则) 已是当时世界上最系统、最完备的分数理论。在方田章中已有明确的分数运算法则,其他各章还有很多分数应用题。 a)分数加减法 分数加法称为合分;分数减法称为减分。其法则为:以分数分子、分母交叉相乘,乘积相加减后的结果作为 " 实",以分母相乘作为 "法","实如法而一",用今天的符号表示就是 。 如方田章第8题 。这里用到了通分,但没有用到最小公分母,而是相加减后再约分,显得比较繁琐。少广章则进了一步,其程序可以求出较小的公倍数,有的甚至就是最小公倍数。 b)分数乘除法 分数乘法称为乘分,其法则是:以分母的乘积为分母,以分子的乘积为分子,同今天方法一样: 。分数除法称为经分,其法则是把实和法通分,然后让分子相除: ;后来刘徽又补充了一个更为简便的法则:将法的分母、分子颠倒,与实相乘: ,这就是今天小学数学教材中的颠倒相乘。 c)分数约分法则 先进行观察,若分子、分母都是偶数,则先除以2,否则将分子、分母 "以少减多,更相减损",最后得到 " 等数",此为原分子、分母的最大公约数。用等数约之,即把数化简了。这种求等数的方法与欧几里得求最大公约数的方法是一致的,现代算术教科书中的辗转相除法即由此而来。应该指出,古人的计算方式是筹算而不是上述的现代笔算,例如,方田章第6问约简 ,先用筹算求得 "等数" 7,以7除分子、分母,得最简分数 以上是世界上最早的分数运算法则。大约15世纪欧洲才通行分数算法,印度到七世纪才有与中国相同的分数四则运算法则。了解我国古代的分数理论及其成就,教师可以从中吸取营养,来丰富自己的教学是很有益的,特别是分数乘法和除法法则的理由对今天小学教学仍有重要的指导意义。历史上的分数概念及其运算的产生都先于小数,中外一理。而在教学顺序上则小数先于分数,这是由于小数运算接近整数,较分数方便。安排教学程序则以可接受性优先,教师应心中有数。 4.各种比例算法 《九章》粟米中的今有术,是完整的比例算法:已知所有数、所有率和所求率,则 所求数 = 所有数×所求率÷所有率这个方法传到印度和西方,叫做 "三率法" (rule of three)。在《九章》中,今有术所属例题都是粟米互换问题。比如,己知粟率50,糠米率30,"今有粟一斗,欲为糠米,问得几何?" 这里1斗是所有数, 50和30分别是所有率和所求率,按今有术,得糠米:10升×30÷50 = 6升。这个问题就是现在小学课本中的比例问题,按现在的解法是: 设所求的米为x升, 则有比例式 50:10 = 30:x 所以x = 即x = 6 此外,《九章》中还有一些复杂的比例问题,如复比例问题、连锁比例问题等等,但现在的小学数学课本中均已不再出现。对于各种比例问题,刘徽注以率为纲,结合齐同原理系统阐述,这些概念如果适当渗透到有关教材中去,将有利于教学。例如,刘徽提出 " 凡数相与者谓之率","相与" 即 "相关" 之意,成率关系的数量同时扩大或缩小同样的倍数,其率关系不变。若有甲、乙、丙三物之关系:甲:乙 = a:b1; ,乙:丙 = b2 :c,已知甲为A,问丙几何?《九章》两次应用今有术甲A化为乙B = ,乙B化为丙C = 叫重今有术。刘徽认为可先把两个率关系中乙率变成相同的值b1b2,为保持率关系不变,则甲的率须变成ab2,丙的率须变为cb1,称为与乙相齐,即甲:乙:丙 = ab2 : b1b2 : cb1,对甲、丙直接应用今有术:C = 。刘徽将此变换称为齐同原理。它源于分数通分, 与 通分必须使分母相同:bd,然后使分子与分母相齐,即分别变为ad、 bc,两分数变为 , 。这叫 "齐其子,同其母"。 5.几何初步知识 a)长方形面积概念:在《九章》方田章及其刘徽注中讲得很生动。"方田术曰,广从步数相乘得积步"。"方田" 即长方的田,"广" 指长方形的底,"从" (即纵) 指长形的高,"步" 是长度的单位,所以长方形的面积等于底乘高。教师可以参照现行教材,古今对比,借以进一步领会其所以然。 b)三角形面积计算:"圭田术曰,半广以乘正从"。三角形的田,古称 "圭田","正从" 是指垂直于底的那个高,所以三角形的面积等于底乘高的一半。 c)梯形面积的计算:梯形的田称 "箕田",同样给出其面积等于上、下底相加与高相乘的一半。 《九章》及其刘注中关于三角形、梯形面积公式借助于传统的出入相补原理作出的。所谓出入相补,刘徽称之为以盈补虚,按现代的说法,即:一个平面图形移动前后,面积不变;一个平面图形割成若干块,各块面积之和等于原图形面积 (立体也同样)。三角形和梯形面积的公式都可根据长方形面积公式,利用出入相补原理而得到如 三角形面积 = ×底×高 梯形面积 = ×(上底 +下底)×高 = 中广×高 出入相补原理是中国古代用于处理面积、体积问题以及可以化为面积和体积问题的一种传统方法,应用十分广泛,方法直观、巧妙,相当于给出证明,适应小学生的接受能力和心理特点,这对小学教学很有指导意义。 九章为算经之首,盖犹儒者之六经,医家之难素,兵法 之孙子欤。后事学者,有倚其门墙,瞻其步趋,或得一 二者,以能自成一家之书。 《九章算术》是中国的基本数学书,其中含有优秀的数 学方法。如与希腊数学比较,在几何学及数论方面,稍 见逊色,但在算术及代数方面,我确信凌驾于希腊数学之上的。 《九章算术》全书共有246道题,分别纳入方田、粟米、衰分、少广、商功、均输、盈不足、方程及勾股等九章。本质上,它是一本分门别类的官僚数学公式手册,史家认为「九章算术成于长安之官府,乃以秦汉之计籍为底稿,并非课吏之讲义。」应该是恰当的论断。至于其数学知识的背景,则可追溯到周秦和西汉时代;它的编纂过程与体例的形成,一方面配合了当时社会的需要,另一方面也反映了特定学术思想的旨趣。根据史学家的研究,孔门是继承周代城邦家臣传统而来。其「世传六艺之教:礼、乐、射、御、书、数,恐怕是结集历史经验的结果,也应乎当时需要。习礼乐以为相,练射御以治军,操书数便去当家臣。」因此,从封建时代的家臣到秦汉大一统以后的官吏,学习数学不过是他们干禄的途径之一吧!《颜氏家训》说得好:「算术亦见六艺要事,自古儒士论天道、定律历者皆通学之,然可以兼明,不可以专业。」  尽管士人难得将数学视为安身立命之道,但《九章算术》毕竟是周秦西汉数学知识的总结,自有其可观的成绩。大致说来。在初等数学的范畴内,它所给出的方法都具备了现代意义,这也就是说,只须换个形式,它的内容就可立刻纳入现代数学的一部份了。在算术方面,《九章算术》已经确立分数四则运算,并指出约分、通分法则。此外,它也处理了各式各样的比例问题,并且正确地指出一次代数方程的算术解法一一「盈不足术」。在几何方面,《九章算术》列出很多与土地丈量有关的面积公式,以及和土木建筑有关的体积公式,除极少数给出不太精密的近似值外,其余完全正确。另外,也包括了利用勾股定理解决的应用问题(包括测量问题)。至于在代数方面,《九章算术》已有明确的「开平方法」及「开立方法」,并有由「开平方法」所自然延拓的「开带从平方」(相当于二次方程的数值解法),以及多元一次方程组解法(「方程术」)和正负数加减法则(「正负术 」)。  由上简述可知,在《九章算术》的成书过程中,从实用问题解法深入分析、具体总结的倾向是很浓厚的,不过,这并不太能突出它的发生、发展背景,如众所周知,古埃及、巴比伦的数学成就地无非如此形成的。要想知道中国古代学者如何通过《九章算术》知识去实践他们的数学主张:也就是说,他们首先提出了什么问题?为何提出的?按着他们又是为何解决的?以及最终他们为何看待自己的数学成就?那就不能把数学局限在本身来看了,臂如,如果切断了欧几里得 (Euclid)与柏拉图(Plato)、亚里斯多德的思想联系,那么「几何原本」就真地成为少数数学家的禁脔了,因此,在一定的学术思想背景中,深入探索《九章算术》知识的形成,不但可以帮助我们确认数学在人类文明进展中所扮演的重要角色,同时也可以提示我们:大约两千多年前的中国人是为何从事数学思考的? 2007-01-17 21:54:05 补充: 第一章,「方田」: 平面图形面积的量法及算法,如矩形、三角形、圆、弧形、环形等的田地的求积公式,及分数算法,包括加减乘除法、约分﹝将分母,分子用辗转相除法求出它的最大公约数再作约分﹞、分数大小的比较及求几个分数的算术平均数等。第二章,「粟米」: 各种粮食交换之间的计算,讨论比例算法。 第三章,「衰分」: 比例分配问题。 2007-01-17 21:54:20 补充: 第四章,「少广」: 多位数开平方,开立方的法则。 第五章,「商功」: 立体形体积的计算。 第六章,「均输」: 处理行程和合理解决征税的问题,尤其是与人民从本地运送谷物到京城交税所需的时间有关的问题,还有一些与按人口征税有关的问题,其中还夹杂着衰分、比例及各种杂题。 2007-01-17 21:54:28 补充: 第七章,「盈不足」: 算术中的盈亏问题的算法,实际上就是现在的线性插值法,它还有许多名称,如试位法、夹叉求零点、双假设法等。第八章,「方程」: 有关一次方程组的内容,最后还有不定方程。将方程组的系数和常数项用算筹摆成「方程」,这是《九章算术》中解多一次方程组的方法,而整个消元过程则相当于代数中的线性变换。在方程章里提出了正负数的不同表示法和正负数的加减法则。第九章,「勾股」: 专门讨论用勾股定理解决应用问题的方法。 参考: .knowledge.yahoo/question/?qid=7006042500859
北有云溪2023-05-20 17:39:111

请你简述一下《九章算术》的主要内容.

《九章算术》是西汉以来许多数学家研究的结晶,西汉前期的著名数学家张苍、耿寿昌等人曾经对他进行增减。全书一共分为9章,搜集了246个数学问题的解法,其中记载了当时世界上最先进的分数四则和比例算法。还有各种面积体积的算法和利用勾股定理进行测量的问题,以及开方、开立方的方法。特别是在世界数学史上的第一次记载了负数的概念和正负数的加减法运算法则。这部书对中国古代数学的发展所产生的影响是很大的。标志着我国古代数学的完整体系的形成。他不仅在中国数学史上占有重要的地位,而且影响到了朝鲜、日本,被翻译成许多种外文出版。
gitcloud2023-05-20 17:39:113

九章算术是谁写的?主要讲得是什么内容?

 《九章算术》是中国古代数学专著,是算经十书中最重要的一种.该书内容十分丰富,系统总结了战国、秦、汉时期的数学成就.同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则.该书经多次增补,成书时间已不可考,但据估算最迟在公元一世纪已有了现传本.许多人曾为它作过注释,其中不乏历史上的数学名人,最著名的有刘徽(公元263年)、李淳风(公元656年)等人. 《九章算术》的内容十分丰富,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中每道题有问(题目)、答(答案)、术(解题的步骤,但没有证明),有的是一题一术,有的是多题一术或一题多术.这些问题依照性质和解法分别隶属于方田、粟米、衰(音崔cui)分、少广、商功、均输、盈不足、方程及勾股九章如下所示.原作有插图,今传本已只剩下正文了. 《九章算术》的九章的主要内容分别是: 第一章“方田”:田亩面积计算; 第二章“粟米”:谷物粮食的按比例折换; 第三章“衰分”:比例分配问题; 第四章“少广”:已知面积、体积、求其一边长和径长等; 第五章“商功”:土石工程、体积计算; 第六章“均输”:合理摊派赋税; 第七章“盈不足”:即双设法问题; 第八章“方程”:一次方程组问题; 第九章“勾股”:利用勾股定理求解的各种问题. 现传本《九章算术》成书于何时,目前众说纷纭,多数认为在西汉末到东汉初之间,约公元一世纪前后,《九章算术》的作者不详.很可能是在成书前一段历史时期内通过多人之手逐次整理、修改、补充而成的集体创作结晶.由于二千年来经过辗转手抄、刻印,难免会出现差错和遗漏,加上《九章算术》文字简略有些内容不易理解,因此历史上有过多次校正和注释.   关于对《九章算术》所做的注住要有:三国时曹魏刘徽注,唐朝李淳风注,南宋杨辉著《详解九章算法》选用《九章算术》中80道典型的题作过详解并分类,清李潢(?1811年)所著《九章算术细草图说》对《九章算术》进行了校订、列算草、补插图、加说明,尤其是图文并茂之作.现代钱宝琮(1892~1974年)曾对包括《九章算术》在内的《算经十书》进行了校点,用通俗语言、近代数学术语对《九章算术》及刘、李注文详加注释.80年代以来,今人白尚恕、郭书春、李继闵等都有校注本出版.
陶小凡2023-05-20 17:39:111
 首页 上一页  1 2 3  下一页  尾页