什么叫虚数
虚假不实的数字,实数与虚数单位之积、亦即实部为零的复数(如3i)。在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b可对应平面上的纵轴。这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。sin(a+bi)=sin(a)cos(bi)+sin(bi)cos(a)=sin(a)cosh(b)+isinh(b)cos(a)cos(a-bi)=cos(a)cos(bi)+sin(bi)sin(a)=cos(a)cosh(b)+isinh(b)sin(a)tan(a+bi)=sin(a+bi)/cos(a+bi)cot(a+bi)=cos(a+bi)/sin(a+bi)sec(a+bi)=1/cos(a+bi)csc(a+bi)=1/sin(a+bi)康康map2023-05-20 08:55:541
什么是虚数?
-1开方,就是虚数i还有很多,都是一些无法表示成实数,但数学家们坚称存在的数在我们高中范围内虚数的平方是负数,但具体还有没有其它的就不知道了wpBeta2023-05-20 08:55:542
虚数是什么 举一个例子有哪些?
在数学中,虚数就是形如a+b*i的数,其中a、b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内地点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。例如:(1)2+3i就表示一个复数,2是实部,3i表示虚部,3i就表示一个纯虚数;(2)-1的开方就是虚数,称为一个虚数单位。虚数的由来:随着数学的发展,数学家发现一些三次方程的实数根还非得用负数的平方根表示不可,而且如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这样一个令人满意的结果,此外对负数的平方根按数的运算法则进行运算,结果也是正确的。意大利数学家卡尔丹作出一个折中,表示他称负数的平方根为 “虚构的数”,意思是可以承认它为数,但不像实数那样可以表示实际存在的量,而是虚构的,到了1632年,法国数学家笛卡儿正式给了负数的平方根,一个大家乐于接受的名字——虚数。虚数的虚字,表示它不代表实际的数,而只存在于想象之中,尽管虚数是 “虚”的,但数学家却没有放松对它的研究。他们发现了关于虚数的许许多多的性质和应用,大数学家欧拉提出了 “虚数单位”的概念,他把U作为虚数单位,用符号i表示,相当于实数的单位1,虚数有了单位,就能像实数一样写成虚数单位倍数的形式了。从此数学家把实数与虚数同等对待,并合称为复数,于是数的家族得到了统一,任何一个复数可以写成a+bi的形式,当b=0时,a+bi=a,它就是实数当;b#0时,a+bi就是虚数了。以上内容参考:百度百科-虚数hi投2023-05-20 08:55:541
虚数是什么
虚数就是指数幂是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。人类地板流精华2023-05-20 08:55:543
虚数是什么
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。下面是我整理的详细内容,一起来看看吧! 虚数定义 在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 虚数的由来 随着数学的发展,数学家发现一些 三次方程的实数根还非得用负数的平方根表示不可。而且,如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这 样一个令人满意的结果。此外,对负数的 平方根按数的运算法则进行运算,结果也是正确的。 意大利数学家卡尔丹作出一个折中表示,他称负数的平方根为 “虚构的数”,意思是,可以承认它为数,但不像实数那样可以表示实际存在的 量,而是虚构的。到了 1632年,法国数学家笛卡儿,正式给了负数的平方根一个 大家乐于接受的名字——虚数。 虚数的虚字表示它不代表实际的 数,而只存在于想象之中。尽管虚数是 “虚”的,但数学家却没有放松对它的研 究,他们发现了关于虚数的许许多多的性 质和应用。大数学家欧拉提出了 “虚数单位”的概念,他把U 作为虚数单位,用符号i表示,相当于实数的单位1。虚数有了单位,就能像实数 一样,写成虚数单位倍数的形式了。 从此,数学家把实数与虚数同等对待,并合称为复数,于是,数的家族得到 了统一。任何一个复数可以写成a+bi的 形式,当b=0时a+bi=a,它就是实数,当 b#0时,a+bi就是虚数了。无尘剑 2023-05-20 08:55:541
什么是虚数和复数??
(1)[unreliable figure]∶虚假不实的数字(2)[imaginary part]∶复数中a+bi,b不等于零时bi叫虚数(3)[英文]:imaginary number汉语中不表明具体数量的词。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) a为实数部,b虚数部为2+3i为复数,(分为2,分为3i) 虚数的实际意义 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA. 不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。1<2是对的,但1+i<2+i是错的。 我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 “虚数”这个名词,使人觉得挺玄乎,好像有点“虚”,实际上它的内容却非常“实”。 虚数是在解方程时产生的。求解方程时,常常需要将数开方,如果被开方数是正数,就可以算出要求的根;但如果被开方数是负数,那怎么办呢? 早以前,大多数人都认为负数是没有平方根的。到了16世纪,意大利数学家卡当在其著作《大法》(年)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如 继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。真是:虚数不虚! 虚数的发展说明了:许多数学概念的产生并不直接来自实践,而是来自思维,但只有在实际生活中有了用处时,这些概念才能被接受而获得发展。[编辑本段]i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1[编辑本段]虚数的符号 1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。 通常,我们用符号C来表示复数集,用符号R来表示实数集。复数的定义 数集拓展到实数范围内,仍有些运算无法进行。比如判别式小于0的一元二次方程仍无解。因此将数集再次扩充,达到复数范围。 我们定义,形如z=a+bi的数称为复数,其中规定i为虚数单位,且i^2=i*i=-1(a与b是任意实数) 我们将复数z=a+bi中的实数a称为虚数z的实部(real part)记作Rez=a 实数b称为虚数z的虚部(imaginary part)记作 Imz=b. 易知:当b=0时,z=a+ib=a+0,这时复数成为实数; 当a=0时z=a+bi=0+bi我们就将其称为纯虚数。 设z=a+bi是一个复数,则称复数z‘=a-bi为z的共轭复数。 定义:复数的模(绝对值)=√(a^2+b^2)(定义原因见下述内容) 复数的集合用C表示,显然,R∩C=R(即R是C的真子集)复数(代数式)的四则运算:(a+bi)+(c+di)=(a+c)+(b+d)i, (a+bi)-(c+di)=(a-c)+(b-d)i, (a+bi)•(c+di)=(ac-bd)+(bc+ad)i, (c与d不同时为零) (a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i, (c+di)不等于0hi投2023-05-20 08:55:538
什么叫虚数?
√-1在实数范围内无解,定义:√-1=i,虚数的形式就是:biLuckySXyd2023-05-20 08:55:532
什么是虚数和复数
在数学中,将偶指数幂是负数的数定义为纯虚数。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。复数包含虚数,所以所有的虚数都是复数。虚数没有正负可言,不是实数的复数,即使是纯虚数,也不能比较大小。复数集包含了实数集,因而是复数是实数的扩张。拌三丝2023-05-20 08:55:532
虚数在实际生活中究竟有什么意义?
因为没有什么实际意义,所以叫虚数LuckySXyd2023-05-20 08:55:5311
什么是实数、虚数?
实数可以分为有理数和无理数两类,或正实数,负实数和零三类,或代数式和超越数三类.我们平常生活、学习中碰到的数都是实数. 虚数就是指数幂是负数的数.如果有一个数的平方是负数,那这个数就是虚数了,例:x^2=-1,那么x就是虚数.可桃可挑2023-05-20 08:55:531
虚数是什么
高中课本 选修2 104页余辉2023-05-20 08:55:525
数学:什么是虚数?详细!
在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。这种数有一个专门的符号“i”(imaginary),它称为虚数单位。定义为i^2=-1。小菜G的建站之路2023-05-20 08:55:524
虚数的定义是什么?
一个实数乘以i称为纯虚数,例如5i 就是一个纯虚数。在复数域中,负数-1的平方根记为i(即i²=-1),称为虚数或虚数单位。从复数相等的定义知道,任何一个复数都可以用一个有序实数对(a,b)唯一确定,可以用建立直角坐标系的平面来表示复数。建立了直角坐标系来表示复数的平面叫作复平面,x轴叫作实轴,y轴叫作虚轴,这样,实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。扩展资料在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b*i分别被称为复数的实部和虚部。虚数表示具有非零虚部的任何复数。参考资料来源:百度百科——纯虚数参考资料来源:百度百科——虚数拌三丝2023-05-20 08:55:521
虚数是什么?
虚数就是指数幂是负数的数.虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字.后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实. 虚数都是复数.定义为i²=-1CarieVinne 2023-05-20 08:55:521
什么是虚数?
亲,虽然百度上有一种解释为虚数[xūshù]更多图片(3张)虚数就是指数幂是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实水元素sl2023-05-20 08:55:5215
什么是虚数?
为了定义一个数i的平方是负一的一个常数gitcloud2023-05-20 08:55:522
虚数有什么性质?
虚数的性质:没有大小,可以用向量在复平面表示,有其共轭虚数,纯虚数的平方为负。所有的虚数都是复数。虚数就是其平方是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念 认为这是真实不存在的数字。后来发现 虚数可对应平面上的纵轴,与对应平面 上横轴的实数同样真实。虚数轴和实数轴构成的平面称复数平面,复平面上每一点对应着一个复数。大鱼炖火锅2023-05-20 08:55:523
虚数的概念,定义
对形如z=a+bi(a,b是实数)的数叫复数当a=0时叫纯虚数当b=0时为实数当b不为零时叫虚数人类地板流精华2023-05-20 08:55:516
“虚数”包括什么?
“虚数”包括形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。虚数的作用:如果涉及到旋转角度的改变,处理起来更方便。比如,一条船的航向是 3 + 4i 。如果该船的航向,逆时针增加45度,计算新航向。45度的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )所以,该船的新航向是 -1 + 7i 。如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:( 3 + 4i ) * i = ( -4 + 3i )。拌三丝2023-05-20 08:55:511
什么是虚数?虚数的定义又是什么??
虚数可以指以下含义: (1)[unreliable figure]:虚假不实的数字。 (2)[imaginary part]:复数中a+bi,b不等于零时bi叫虚数。 (3)[imaginary number]:汉语中不表明具体数量的词。 [编辑本段]数学中的虚数 在数学里,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的,所以√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。 这种数有一个专门的符号“i”(imaginary),它称为虚数单位。不过在电子等行业中,因为i通常用来表示电流,所以虚数单位用j来表示。 [编辑本段]虚数的实际意义 我们可以在平面直角坐标系中画出虚数系统。如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。 [编辑本段]起源 “虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。 人们发现即使使用全部的有理数和无理数,也不能长度解决代数方程的求解问题。像x 2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负根的存在。 到了16世纪,意大利数学家卡当在其著作《大法》(《大衍术》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。 1545年意大利米兰的卡丹发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式: 形如:x^3+ax+b=0的三次方程解如下:x={(-b/2)+[(b^2)/4+(a^3)/27]^(1/2)}^(1/3)+{(-b/2)-[(b^2)/4+(a^3)/27]^(1/2)}^(1/3) 当卡丹试图用该公式解方程x^3-15x-4=0时他的解是:x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3) 在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)^(1/2)的出现。认为是“不可捉摸而无用的东西”。 直到19世纪初,高斯系统地使用了这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。 由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如 继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。 [编辑本段]i的性质 i 的高次方会不断作以下的循环: i^1 = i i^2 = - 1 i^3 = - i i^4 = 1 i^5 = i i^6 = - 1... 由于虚数特殊的运算规则,出现了符号i 当ω=(-1+√3i)/2或ω=(-1-√3i)/2时: ω^2 + ω + 1 = 0 ω^3 = 1 许多实数的运算都可以推广到i,例如指数、对数和三角函数。 一个数的ni次方为: x^(ni) = cos(ln(x^n)) + i sin(ln(x^n)). 一个数的ni次方根为: x^(1/ni) = cos(ln(x^(1/n))) - i sin(ln((x^(1/n))). 以i为底的对数为: log_i(x) = 2 ln(x)/ i*pi. i的余弦是一个实数: cos(i) = cosh(1) = (e + 1/e)/2 = (e^2 + 1) /2e = 1.54308064. i的正弦是虚数: sin(i) = sinh(1) * i = (e - 1/e)/ 2} * i = 1.17520119 i. i,e,π,0和1的奇妙关系: e^(i*π)+1=0 i^I=e^(-π÷2) [编辑本段]符号来历 1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。 通常,我们用符号C来表示复数集,用符号R来表示实数集。 [编辑本段]相关描述 虚数 原作:劳伦斯·马克·莱瑟(阿姆斯特朗大西洋州立学院) 翻译:徐国强 虚文自古向空构,艾字如今可倍乘。所问逢人惊诧甚,生活何处有真能?嗟哉小试调音放,讶矣大为掌夜灯。三极管中知用否,交流电路肯咸恒。凭君漫问荒唐义,负值求根疑窦增。情类当初听惯耳,事关负数见折肱。几分繁复融学域,百计联席悦有朋。但看几何三角地,蓬勃艾草意同承[①]。 IMAGINARY by Lawrence Mark LesserArmstrong Atlantic State University Imaginary numbers, multiples of iEverybody wonders, "are they used in real life?"Well, try the amplifier I"m using right now -- A.C.!You say it"s absurd,this root of minus one.but the same things once were heardAbout the number negative one!Imaginary numbers are a bit complex,But in real mathematics, everything connects:Geometry, trig and call all see "i to i." [①] see "i to i."指可见虚数符号的应用,并谐音双关see eye to eye 为意见一致[1]参考资料: 《人文数学网络期刊》22期48页开放分类: 词语,数学,词汇,数词,复数苏萦2023-05-20 08:55:511
什么是虚数
与实数相对。LuckySXyd2023-05-20 08:55:513
什么是虚数?
虚数定义在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i²=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。虚数的由来随着数学的发展,数学家发现一些 三次方程的实数根还非得用负数的平方根表示不可。而且,如果承认了负数的平方根,那么代数方程的有无根问题就可以得到解决,并且会得出n次方程有n个根这 样一个令人满意的结果。此外,对负数的 平方根按数的运算法则进行运算,结果也是正确的。意大利数学家卡尔丹作出一个折中表示,他称负数的平方根为 “虚构的数”,意思是,可以承认它为数,但不像实数那样可以表示实际存在的 量,而是虚构的。到了 1632年,法国数学家笛卡儿,正式给了负数的平方根一个 大家乐于接受的名字——虚数。虚数的虚字表示它不代表实际的 数,而只存在于想象之中。尽管虚数是 “虚”的,但数学家却没有放松对它的研 究,他们发现了关于虚数的许许多多的性 质和应用。大数学家欧拉提出了 “虚数单位”的概念,他把U 作为虚数单位,用符号i表示,相当于实数的单位1。虚数有了单位,就能像实数 一样,写成虚数单位倍数的形式了。从此,数学家把实数与虚数同等对待,并合称为复数,于是,数的家族得到 了统一。任何一个复数可以写成a+bi的 形式,当b=0时a+bi=a,它就是实数,当 b#0时,a+bi就是虚数了。“在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴。这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。”ardim2023-05-20 08:55:511
什么是虚数?
在数学中,虚数就是形如a+b*i的数,其中a,b是实数,且b≠0,i2 = - 1。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。可以将虚数bi添加到实数a以形成形式a + bi的复数,其中实数a和b分别被称为复数的实部和虚部。一些作者使用术语纯虚数来表示所谓的虚数,虚数表示具有非零虚部的任何复数。定义在数学里,将偶指数幂是负数的数定义为纯虚数。所有的虚数都是复数。定义为i2=-1。但是虚数是没有算术根这一说的,所以±√(-1)=±i。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。虚数没有正负可言。不是实数的复数,即使是纯虚数,也不能比较大小。“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。无尘剑 2023-05-20 08:55:515
什么叫虚数
虚数 在数学里,如果有数平方是负数的话,那个数就是虚数了;所有的虚数都是复数。“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。 虚数的符号 1777年瑞士数学家欧拉开始使用符号i=√(-1)表示叙述的单位。而后人将虚数和实数有机的结合起来,写成a+bi形式 (a、b为实数),称为复数。 虚数的历史 由于虚数闯入数的领域时,人们对它的实际用处一无所知,在实际生活中似乎也没有用复数来表达的量,因此,在很长的一段时间里,人们对虚数产生过种种怀疑和误解。卡迪尔称“虚数”的本意是指他是假的;莱布尼兹在公元18世纪初则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说一切形如√(-1)、√(-2)的数学式都是不可能有的,纯属虚幻的。 欧拉之后,挪威的一个测量学家维塞尔,提出把复数a+bi用平面上的点(a,b)来表示。后来,高斯提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,复数一盘用来表示向量(有方向的数量),这在水力学、地图学、航空学中的应用是十分广泛的。虚数越来越显示出其丰富的内容,真是:虚数不虚苏萦2023-05-20 08:55:511
什么叫做虚数
虚数释义:1.复数a+bi中,当b≠0时叫做虚数,如1-3i;当a=0,b≠0时叫做纯虚数,如5i。见〖复数〗。bikbok2023-05-20 08:55:511
虚数是什么
通常是指负数的平方根,用i表示。例如,-2的平方根为根2i。tt白2023-05-20 08:55:515
什么是虚数
a+bi(b不等于0)的形式出现凡尘2023-05-20 08:55:514
虚数是什么意思
虚数没有正负可言。不是实数的复数,即使是纯虚数,将平方是负数的数定义为纯虚数。所有的虚数都是复数。定义为i^2=-1。但是虚数是没有算术根这一说的在数学里。对于z=a+bi,也可以表示为e的iA次方的形式,其中e是常数,起名为复数,i为虚数单位,A为虚数的幅角,即可表示为z=cosA+isinA。实数和虚数组成的一对数在复数范围内看成一个数,所以±√(-1)=±i,也不能比较大小拌三丝2023-05-20 08:55:511
虚数是什么意思
题库内容:虚数的解释(1) [unreliable figure]∶虚假 不实 的数字 (2) [imaginary number]∶实数与虚数单位之积,亦即实部为零的 复数 (如3i) 详细解释 (1).不表示 实际 数量的数词。 宋 司马 光 《言山陵择地札子》 :“伏望朝廷特赐指挥按行山陵使等,只於 永安县 界旧陵侧近选择善地,旬日之内,早定夺闻奏……不得 大约 虚数及妄立近限,必使号令明信,则事无不济而民力不困矣。” 清 汪中 《述学·释三九上》 :“因而生人之措辞,凡一二之所不能尽者,则约之三以见其多;三之所不能尽者,则约之九以见其极多,此 言语 之虚数也。实数可稽也,虚数不可执也。” (2).虚假的数额。 宋 苏轼 《应诏论四事状》 :“ 元丰 八年登极大赦以前,人户积欠共计五万三百馀贯,若谓非贫乏有可送纳,即自 元祐 元年 至今,并不曾纳到分文,显见 有司 空留帐籍虚数,以害朝廷实惠。” 宋 陆游 《陆郎中墓 志铭 》 :“尝为 丹徒 丞,朝廷用言者,遣使籍江上沙田,立税额,使指甚厉,吏莫敢违,亦或从而张虚数以为功。” 《宋史·食货志下五》 :“十三场茶岁课缗钱五十万……岁纔得息钱三万馀缗,而官吏廪给杂费不预,是则虚数多而 实利 寡。” 《金史·陈规传》 :“ 唐 魏徵 曰:‘兵在以道御之而已。御壮健 足以 无敌于 天下 ,何取细弱以增虚数。"” (3).虚伪的礼节。数, 礼数 。 清 侯方域 《陈 将军 二鹤记》 :“世之战士,皆骁雄劲悍之徒……养以有馀之财而作其感恩之气, 然后 报其主而不叛。吾未见其可以虚数致也。” (4).数学 名词 。负数的平方根。 词语分解 虚的解释 虚 ū 空:虚无。虚实。虚度。虚名。虚左( 尊敬 地空出左边的座位,古代以左为尊)。空虚。乘虚而入。 不真实的:虚伪。虚假(?)。虚妄。虚惊。虚夸。虚构。虚传。虚张声势。 内心怯懦:做贼 心虚 。 不 自满 :虚 数的解释 数 (数) ù 表示、划分或 计算 出来的量:数目。数量。数词。数论(数学的一支,主要 研究 正整数的 性质 以及和它有关的 规律 )。数控。 几,几个:数人。数日。 技艺 ,学术:“今夫弈之为数,小数也”。 命运 ,天善士六合2023-05-20 08:55:511
什么是虚数?虚数的定义是什么?
在数学里,将平方是负数的数定义为纯虚数负数开平方,在实数范围内无解。 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。 虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i)阿啵呲嘚2023-05-20 08:55:5012
虚数是什么?
虚数可以表示为z=a+bi(a、b∈R),当a=0,b≠0时就表示的是纯虚数。【扩展】虚数就是其平方是负数的数。虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。1777年瑞士数学家欧拉(或译为欧勒)开始使用符号i[其中i=√(-1)]表示虚数的单位,后来人们将虚数和实数有机地结合起来,写成a+bi形式,其中a称为该虚数的实部,b称为该虚数的虚部,且a、b均为实数,当复数的实部为0且虚部不为0时,平方是负数的数定义为纯虚数即为已知:当b=0时,z=a,这时复数成为实数 当a=0且b≠0时,z=bi,我们就将其称为纯虚数。负数是纯虚数的充要条件:1:z=a+bi(a,b∈R)是纯虚数<=>a=0且b≠02:z是纯虚数<=>z+z"=0且z≠03: z是纯虚数<=>z²<0韦斯特兰2023-05-20 08:55:501
什么是虚数?
什么是虚数? 负数开平方,在实数范围钉无解。 数学家们就把这种运算的结果叫做虚数,因为这样的运算在实数范围内无法解释,所以叫虚数。 实数和虚数组成的一对数在复数范围内看成一个数,起名为复数。 于是,实数成为特殊的复数(缺序数部分),虚数也成为特殊的复数(缺实数部分)。虚数单位为i, i即根号负1。 3i为虚数,即根号(-3), 即3×根号(-1) 2+3i为复数,(实数部分为2,虚数部分为3i) 什么是虚数单位? i的平方=-1 i就是虚数单位 高三数学课本上有 我们将形如:Z=x+iy的数称为复数,其中i为虚数单位,并规定i^2=i*i=-1.x与y是任意实数,依次称为z的实部(real part)与虚部(imaginary part),分别表示为Rz=x , Im z=y. 易知:当y=0时,z=x+iy=x+0,我们就认为它是实数;当x=0时z=x+iy=0+iy我们就认为它是纯虚数。设 Z1=x+iy是一个复数,称 Z2=x-iy为Z1的共轭复数。 复数的四则运算规定为: (a+bi)+(c+di)=(a+c)+(b+d)i, (a+bi)-(c+di)=(a-c)+(b-d)i, (a+bi)•(c+di)=(ac-bd)+(bc+ad)i, (c与d不同时为零) (a+bi)÷(c+di)=[(ac+bd) / (c^2+d^2)]+[(bc-ad) / (c^2+d^2)] i, (c+di)不等于0 复数有多种表示形式,常用形式 z=a+bi 叫做代数式。 此外有下列形式。 ①几何形式。复数z=a+bi 用直角座标平面上点 Z(a,b )表示。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。 ②向量形式。复数z=a+bi用一个以原点O为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数的加、减法运算得到恰当的几何解释。 ③三角形式。复数z=a+bi化为三角形式 z=r(cosθ+sinθi) 式中r= sqrt(a^2+b^2),叫做复数的模(或绝对值);θ 是以x轴为始边;向量OZ为终边的角,叫做复数的辐角。这种形式便于作复数的乘、除、乘方、开方运算。 ④指 数形式。将复数的三角形式 z=r( cosθ+isinθ)中的cosθ+isinθ换为 exp(iθ),复数就表为指数形式z=rexp(iθ) 复数三角形式的运算: 设复数z1、z2的三角形式分别为r1(cosθ1+isinθ1)和r2(cosθ2+isinθ2),那么z1z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)] z1÷z2=r1÷r2[cos(θ1-θ2)+isin(θ1-θ2)],若复数z的三角形式为r(cosθ+isinθ),那么z^n=r^n(cosnθ+isinnθ),n√z=n√r[cos(2kπ+θ)/n+isin(2kπ+θ)/n](k=1,2,3……)必须记住:z的n次方根是n个复数。 复数的乘、除、乘方、开方可以按照幂的运算法则进行。复数集不同于实数集的几个特点是:开方运算永远可行;一元n次复系数方程总有n个根(重根按重数计);复俯不能建立大小顺序。 高考的话出在第一道选择题上北有云溪2023-05-20 08:55:501
当幂的指数是虚数时应该怎么算
使用欧拉公式的。e^iθ=cosθ+i*sinθ,这个在电路分析中,尤其是RLC电路里用的很多。把它先用e的幂的形式写出来,然后再用欧拉公式。平面几何中的欧拉定理、多面体欧拉定理(在一凸多面体中,顶点数-棱边数+面数=2)。西方经济学中欧拉定理又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。mS-mR=a(xS-xR)=qn,即n能整除a(xS-xR)。但是a与n互质,a与n的最大公因子是1,而xS-xR<n,因而左式不可能被n整除。也就是说这些数中的任意两个都不模n同余,φ(n)个数有φ(n)种余数。扩展资料:如果产品市场和要素市场都是完全竞争的,而且厂商生产的规模报酬不变,那么在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品。该定理又叫做边际生产力分配理论,还被称为产品分配净尽定理。要素的价格是由于要素的市场供给和市场需求共同决定。在完全竞争的条件下,厂商和消费者都被动地接受市场形成的价格。定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。参考资料来源:百度百科——欧拉定理wpBeta2023-05-18 13:55:371