拓扑结构是什么意思
计算机网络拓扑结构是指网络中各个站点相互连接的形式,在局域网中明确一点讲就是文件服务器、工作站和电缆等的连接形式。现在最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑、树形拓扑(由总线型演变而来)以及它们的混合型。顾名思义,总线型其实就是将文件服务器和工作站都连在称为总线的一条公共电缆上,且总线两端必须有终结器;星型拓扑则是以一台设备作为中央连接点,各工作站都与它直接相连形成星型;而环型拓扑就是将所有站点彼此串行连接,像链子一样构成一个环形回路;把这三种最基本的拓扑结构混合起来运用自然就是混合型了!http://baike.baidu.com/view/82343.htmtt白2023-05-22 18:14:041
在CCNA中”拓扑”是什么意思?
用几何空间的形象语言来描述网络的实际形式u投在线2023-05-22 18:14:042
网络拓扑是什么意思?为什么叫拓扑?
我母鸡啦余辉2023-05-22 18:14:042
有哪些常见的拓扑结构
以计算机网络为例,计算机网络拓扑结构主要有:总线型拓扑、星型拓扑、环型拓扑、树型拓扑和混合型拓扑。 网络拓扑结构就是指用传输媒体把计算机等各种设备互相连接起来的物理布局,是指互连过程中构成的几何形状,它能表示出网络服务器、工作站的网络配置和互相之间的连接。网络拓扑结构可按形状分类,分别有:星型、环型、总线型、树型、总线/星型和网状型拓扑结构。 星型拓扑结构将各个节点与中心节点连接,呈现出放射状排列,通过中心节点对全网的通信进行控制。总线型计算机网络拓扑结构主要是通过一条高速主干电缆对周围节点进行连接。环型计算机网络拓扑结构可以对节点收尾的信息进行循环,形成闭合的环型线路,提高单项传输的完整性。树型计算机网络拓扑结构可以保证两节点之间的无回路传输,保证计算机网络拓扑结构扩充的方便性。网状型计算机网络拓扑结构将节点之间的线路进行网状连接,有效提高了线路之间信息传递的可靠性。余辉2023-05-22 18:14:041
计算机网络有哪几种拓扑结构?各自特点是什么?
计算机网络的拓扑结构主要有:总线型拓扑、星型拓扑、环型拓扑、树型拓扑和混合型拓扑。总线型拓扑 总线型结构由一条高速公用主干电缆即总线连接若干个结点构成网络。网络中所有的结点通过总线进行信息的传输。这种结构的特点是结构简单灵活,建网容易,使用方便,性能好。其缺点是主干总线对网络起决定性作用,总线故障将影响整个网络。 总线型拓扑是使用最普遍的一种网络。星型拓扑 星型拓扑由中央结点集线器与各个结点连接组成。这种网络各结点必须通过中央结点才能实现通信。星型结构的特点是结构简单、建网容易,便于控制和管理。其缺点是中央结点负担较重,容易形成系统的“瓶颈”,线路的利用率也不高。环型拓扑 环型拓扑由各结点首尾相连形成一个闭合环型线路。环型网络中的信息传送是单向的,即沿一个方向从一个结点传到另一个结点;每个结点需安装中继器,以接收、放大、发送信号。这种结构的特点是结构简单,建网容易,便于管理。其缺点是当结点过多时,将影响传输效率,不利于扩充。树型拓扑 树型拓扑是一种分级结构。在树型结构的网络中,任意两个结点之间不产生回路,每条通路都支持双向传输。这种结构的特点是扩充方便、灵活,成本低,易推广,适合于分主次或分等级的层次型管理系统。网型拓扑 主要用于广域网,由于结点之间有多条线路相连,所以网络的可靠性较搞高。由于结构比较复杂,建设成本较高。混合型拓扑 混合型拓扑可以是不规则型的网络,也可以是点-点相连结构的网络。蜂窝拓扑结构 蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。编辑本段局域网的结构 局域网中常见的结构为总线型或星型。LuckySXyd2023-05-22 18:14:041
网络拓扑结构有哪几种类型
网络拓扑结构有以下几类:1、星型拓扑。星型拓扑结构是一个中心,多个分节点。多节点与中央节点通过点到点的方式连接。中央节点执行集中式控制策略,因此中央节点相当复杂,负担比其他各节点重的多。2、环形拓扑。环形拓扑结构是节点形成一个闭合环。环形网中各节点通过环路接口连在一条首尾相连的闭合环形通信线路中,环上任何节点均可请求发送信息。传输媒体从一个端用户到另一个端用户,直到将所有的端用户连成环型。数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。3、总线型拓扑。总线拓扑结构所有设备连接到一条连接介质上。由一条高速公用总线连接若干个节点所形成的网络即为总线形网络,每个节点上的网络接口板硬件均具有收发功能,接收器负责接收总线上的串行信息并转换成并行信息送到PC工作站。4、树形拓扑。树形拓扑从总线拓扑演变而来,形状像一棵倒置的树,顶端是树根,树根以下带分支,每个分支还可再带子分支,树根接收各站点发送的数据,然后再广播发送到全网。我国电话网络即采用树形结构。5、网状拓扑。主要指各节点通过传输线互联连接起来,并且每一个节点至少与其他两个节点相连。网状拓扑结构具有较高的可靠性,但其结构复杂,实现起来费用较高,不易管理和维护,不常用于局域网。6、混合型拓扑。也就是将两种或几种网络拓扑结构混合起来构成的一种网络拓扑结构。NerveM 2023-05-22 18:14:041
计算机网络的拓扑结构有哪些?
计算机网络的拓扑结构有:网状拓扑、树形拓扑结构、混合型拓扑结构等等。1、网状拓扑网状拓扑又称作无规则结构,结点之间的联结是任意的,没有规律。就是将多个子网或多个局域网连接起来构成网际拓扑结构。在一个子网中,集线器、中继器将多个设备连接起来,而桥接器、路由器及网关则将子网连接起来。根据组网硬件不同,主要有三种网际拓扑。2、树形拓扑结构树形拓扑从总线拓扑演变而来,形状像一棵倒置的树,顶端是树根,树根以下带分支,每个分支还可再带子分支。 3、混合型拓扑结构将两种或几种网络拓扑结构混合起来构成的一种网络拓扑结构称为混合型拓扑结构(也有的称之为杂合型结构)。扩展资料开关电源拓扑开关电源常用拓扑:buck开关型调整器拓扑 、boost开关调整器拓扑 、反极性开关调整器拓扑 、推挽拓扑 、正激变换器拓扑 、双端正激变换器拓扑 、交错正激变换器拓扑 、半桥变换器拓扑 、全桥变换器拓扑 、反激变换器 、电流模式拓扑和电流馈电拓扑 、SCR振谐拓扑 、CUK变换器拓扑。开关电源各种拓扑集锦先给出六种基本DC/DC变换器拓扑,依次为buck、boost、buck-boost、cuk、zeta、sepic变换器。参考资料来源:百度百科——拓扑结构mlhxueli 2023-05-22 18:14:041
局域网常见的拓扑结构是哪些?
局域网常用的拓扑结构有以下几种:1、总线型拓扑结构。网络中各个节点由一根总线相连,数据在总线上由一个节点传向另一个节点。优点是节点的加入和退出都很方便,可靠性高,而且结构简单,成本低,因此这种结构是局域网普遍采用的形式。缺点是故障检测比较困难。2、星型拓扑结构。星型拓扑结构是最早的通用网络拓扑结构形式,在星型拓扑中,每个节点与中心点连接,中心节点控制全网的通信,任何两个节点之间的通信都要通过中心节点。因此,要求中心节点有很好的可靠性。优点是星型拓扑结构简单,易于实现和管理。缺点是由于其集中控制方式的结构,一旦中心节点出现故障,就会造成全网的瘫痪,可靠性较差。3、环型拓扑结构。各个节点通过中继器连接到一个闭合的环路上,环中的数据沿着一个方向传输,由目的节点接收。优点是环型拓扑结构简单、成本低,是用于数据不需要在中心节点上处理而主要在各自节点上进行处理的情况。缺点是环中任意一个节点的故障都可能造成网络瘫痪,成为环型网络可靠性的瓶颈。4、树型拓扑结构。节点按层次进行连接,像树一样,有分支、根节点、叶子节点等,信息交换主要在上、下节点之间进行,树型拓扑可以看作是星型拓扑的一种扩展,主要适用于汇集信息的应用要求。优点是易于扩展和故障隔离。缺点是对根节点依赖性太大。5、网状型拓扑结构。网状型拓扑结构没有上述四种那么明显的规则,所以又成为无规则型。节点与节点之间的连接是任意的,没有规律。目前实际存在和使用的广域网基本上都是采用网状型拓扑结构。优点是系统可靠性高。缺点是由于结构复杂,就必须采用路由协议、流量控制等方法。余辉2023-05-22 18:14:041
拓扑是什么意思呢?
所谓“拓扑”就是把实体抽象成与其大小、形状无关的“点”,而把连接实体的线路抽象成“线”,进而以图的形式来表示这些点与线之间关系的方法,其目的在于研究这些点、线之间的相连关系。表示点和线之间关系的图被称为拓扑结构图。在几何结构中,我们要考察的是点、线之间的位置关系,或者说几何结构强调的是点与线所构成的形状及大小。如梯形、正方形、平行四边形及圆都属于不同的几何结构,但从拓扑结构的角度去看,由于点、线间的连接关系相同,从而具有相同的拓扑结构即环型结构。也就是说,不同的几何结构可能具有相同的拓扑结构。结构特征(1)总线型拓扑结构是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。(2)星形拓扑结构的每个节点都由一条单独的通信线路与中心节点连结。优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心节点是全网络的可靠瓶颈,中心节点出现故障会导致网络的瘫痪。(3)环形拓扑结构各结点通过通信线路组成闭合回路,环中数据只能单向传输。wpBeta2023-05-22 18:14:031
“拓扑”是什么意思?
从数学上发展起来的老师说过属于几何部分无尘剑 2023-05-22 18:14:038
什么是拓扑?
计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。 ① 总线拓扑结构 是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。 优点:结构简单、布线容易、可靠性较高,易于扩充,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。最著名的总线拓扑结构是以太网(Ethernet)。 ② 星型拓扑结构 每个结点都由一条单独的通信线路与中心结点连结。 优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。 ③ 环形拓扑结构 各结点通过通信线路组成闭合回路,环中数据只能单向传输。 优点:结构简单、容易实现,适合使用光纤,传输距离远,传输延迟确定。缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最著名的环形拓扑结构网络是令牌环网(Token Ring) ④ 树型拓扑结构 是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的应用要求。缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。 ⑤ 网状拓扑结构 又称作无规则结构,结点之间的联结是任意的,没有规律。优点:系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。目前广域网基本上采用网状拓扑结构。大鱼炖火锅2023-05-22 18:14:031
点集拓扑的康托尔集是什么?
在数学中,康托尔集,由德国数学家格奥尔格·康托尔在1883年引入(但由亨利·约翰·斯蒂芬·史密斯在1875年发现),是位于一条线段上的一些点的集合,具有许多显著和深刻的性质。通过考虑这个集合,康托尔和其他数学家奠定了现代点集拓扑学的基础。虽然康托尔自己用一种一般、抽象的方法定义了这个集合,但是最常见的构造是康托尔三分点集,由去掉一条线段的中间三分之一得出。康托尔自己只附带介绍了三分点集的构造,作为一个更加一般的想法——一个无处稠密的完备集的例子。 康托尔三分集的形成过程实际上斯梅尔的马蹄映射也会形成康托尔集。康托尔定理:用P(X)记X的一切子集构成的集,用cardX表示X的势,康托尔定理如下:cardX<cardP(X) .证明:对于空集来说,上述结论显然成立,所以可设X≠空集。因为P(X)含有X的一切单元素子集,故cardX≤cardP(X),现只需证明两者不相等。若相等,假定f:X-P(X)是双射,考察集合A={x∈X|x不∈f(x)},它由那样一些元素x∈X,x不含于它对应的集f(x)∈P(X),,组成的。因为A∈P(X),所以必能找到一个元素a∈X,使f(a)=A,这个元素a∈X既不能有a∈A(据A的定义),也不能有a不∈A(也是根据A的定义),这与排中律矛盾。得证。西柚不是西游2023-05-21 22:10:331
微分几何和拓扑哪个难
以我们数学系的同学感觉 从难到易 拓扑学>实变>泛函>微分几何,偏微分方程>初等数论,概率论与数学统计,复变函数论 逗号表示差不多 但是个别强人会有不同评价,有的人很喜欢拓扑就觉得它不难了,看人的吧 这是一个平均的参考水元素sl2023-05-20 17:38:451
网络拓扑结构中的“拓扑”是什么意思?
ginseng,人家问的是“拓扑”的意思,不是“网络拓扑结构”的意思。 我查到了一些资料,看看是否满足你的需要: =======拓扑学的由来====== 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,哥尼斯堡七桥问题示意图普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,化简后用点、线表示七桥问题中路、桥的示意图他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。仅有的五种正多面体 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。 ============什么是拓扑学?=============== 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。 应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。 我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。 拓扑变换的不变性、不变量还有很多,这里不在介绍。 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。 因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945 年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。 拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。 拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。阿啵呲嘚2023-05-20 17:38:451
电路拓扑结构是什么
问题一:什么是电路拓扑结构?有哪几种? 开关电源常用的基本拓扑约有14种。 每种拓扑都有其自身的特点和适用场合。一些拓扑适用于离线式(电网供电的)AC/DC变换器。其中有些适合小功率输出(~200V)或者多组(4~5组以上)输出场合有的优势; 有些在相同输出功率下使用器件较少或是在器件数与可靠性之间有较好的折中。较小的输入/输出纹波和噪声也是选择拓扑经常考虑的因素。 问题二:什么是电路拓扑 一、电路拓扑的定义: 电路拓扑是指电路的连接关系,或组成电路的各个电子元件相互之间的连接关系。 二、举例说明: AC/DC和DC/DC的电路拓扑结构是一样的,AC经过整流滤波后就是DC270V了。主要的拓扑都是反激、单管正激、双管正激、半桥、全桥和LLC谐振。 问题三:什么叫两电路有相同的拓扑结构? 就是连接方式。走线方式。 问题四:拓扑电路是什么意思 是指电路的组成架构。比如,要完成AM广播信号的声音还原――我们可以采用直接接收、放大、检波滤波来还原声音,也可以采用超外差接收、放大、检波滤波来完成。这就是两种拓扑电路。 问题五:电路拓扑是什么? 电路拓扑是指电路的连接关系,或组成电路的各个电子元件相互之间的连接关系。 就是组成结构,开关电源电路有几种典型的结构,如Buck,Boost,反激,正激,半桥,全桥等,实际电路也都是以这些结构为基础再进行具体化。 问题六:拓扑结构的开关电源拓扑 随着PWM技术的不断发展和完善,开关电源以其高的性价比得到了广泛的应用。开关电源的电路拓扑结构很多,常用的电路拓扑有推挽、全桥、半桥、单端正激和单端反激等形式。其中, 在半桥电路中,变压器初级在整个周期中都流过电流,磁芯利用充分,且没有偏磁的问题,所使用的功率开关管耐压要求较低,开关管的饱和压降减少到了最小,对输入滤波电容使用电压要求也较低。由于以上诸多原因,半桥式变换器在高频开关电源设计中得到广泛的应用。开关电源常用的基本拓扑约有14种,每种拓扑都有其自身的特点和适用场合。一些拓扑适用于离线式(电网供电的)AC/DC变换器。其中有些适合小功率输出(~200V)或者多组(4~5组以上)输出场合有的优势;有些在相同输出功率下使用器件较少或是在器件数与可靠性之间有较好的折中。较小的输入/输出纹波和噪声也是选择拓扑经常考虑的因素。一些拓扑更适用于DC/DC变换器。选择时还要看是大功率还是小功率,高压输出还是低压输出,以及是否要求器件尽量少等。另外,有些拓扑自身有缺陷,需要附加复杂且难以定量分析的电路才能工作。因此,要恰当选择拓扑,熟悉各种不同拓扑的优缺点及适用范围是非常重要的。错误的选择会使电源设计一开始就注定失败。开关电源常用拓扑:buck开关型调整器拓扑 、boost开关调整器拓扑 、反极性开关调整器拓扑 、推挽拓扑 、正激变换器拓扑 、双端正激变换器拓扑 、交错正激变换器拓扑 、半桥变换器拓扑 、全桥变换器拓扑 、反激变换器 、电流模式拓扑和电流馈电拓扑 、SCR振谐拓扑 、CUK变换器拓扑开关电源各种拓扑集锦先给出六种基本DC/DC变换器拓扑,依次为buck、boost、buck-boost、cuk、zeta、sepic变换器。树形拓扑的缺点:各个节点对根的依赖性太大。 问题七:什么是拓扑结构 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,哥尼斯堡七桥问题示意图普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,化简后用点、线表示七桥问题中路、桥的示意图他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论――不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。仅有的五种正多面体 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。 ============什么是拓扑学?=============== 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这......>> 问题八:什么是逆变器的拓扑结构 目前采用的逆变器拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。 拓扑结构的选择和逆变器额定输出功率有关。对于 4kw 以下的光伏逆变器,通常选用直流母线不超过 500V,单相输出的拓扑结构。 Boost 电路通过对输入电压的调整实现最大功率点跟踪。H 桥逆变器把直流电逆变为正弦交流电注入电网。上半桥的 IGBT 作为极性控制器,工作在 50HZ,从而降低总损耗和逆变器的输出电磁干扰。下半桥的 IGBT 或者 MOSFET 进行PWM 高频切换,为了尽量减小 Boost 电感和输出滤波器的大小,切换频率要求尽量高一些,如 16KHz。 问题九:电路的拓扑结构是什么意思 拓扑我个人理解就是组成结构,开关电源电路有几种典型的结构,如Buck,Boost,反激,正激,半桥,全桥等,实际电路也都是以这些结构为基础再进行具体化的肖振2023-05-20 17:38:451
数学小论文之拓扑学
打击你一下,我觉得拓扑学对于初一的孩子来说太难了……不过要是真想写,还是可以写一些东西的。以初一的知识很难接触到拓扑学的核心内容,所以你可以写的就只有比较直观的那些东西了最开始可以写写拓扑学的历史:七桥问题等等的……接下来介绍拓扑学中认为两个物体等价的条件:可以通过拉伸互相转变。重点在于不能粘接,不能打洞。在这种意义下,拓扑学认为圆柱面和环带是一样的,球体和正方体是一样的,烟斗和茶杯是一样的囧。。。还有拓扑学中必不可少的东西:墨笔乌斯带……如果你知识比较丰富的话还可能知道克莱因瓶。还可以讲讲拓扑学的分类:点集拓扑,代数拓扑,微分拓扑,几何拓扑……论文的最后可以写写拓扑学和你们所学的东西的关系啥的。也可以写写拓扑学里现在还未解决的问题,展望一下拓扑学的发展……这就比较困难了单独和我谈谈吧,我可以帮你构思一下比较具体的提纲以上内容均由本人亲自输入,未经本人允许不得拷贝byFizban_Yang余辉2023-05-20 17:38:451
拓扑学与微分几何谁更重要
拓扑学更重要。拓扑学是一种研究空间形状和变形的数学学科,主要研究拓扑空间的性质,如连通性、紧性、维数、同伦性等,而微分几何是一种研究空间曲率和变形的数学学科,主要研究流形上的微分结构和几何性质,如曲率等,因此拓扑学更重要。陶小凡2023-05-20 17:38:451
拓扑学历史指的是什么
拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴.有关拓扑学的一些内容早在十八世纪就出现了.那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位. 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题.哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中.十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来.人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置.这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到.看来要得到一个明确、理想的答案还不那么容易.1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答.欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线.那么这个问题就简化成,能不能用一笔就把这个图形画出来.经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置.并且给出了所有能够一笔画出来的图形所应具有的条件.这是拓扑学的“先声”. 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关.这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2. 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体.它们是正四面体、正六面体、正八面体、正十二面体、正二十面体. 著名的“四色问题”也是与拓扑学发展有关的问题.四色问题又称四色猜想,是世界近代三大数学难题之一. 四色猜想的提出来自英国.1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色.”1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题.世界上许多一流的数学家都纷纷参加了四色猜想的大会战.1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理.但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的.不久,泰勒的证明也被人们否定了.于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题.进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行.电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程.1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明.不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法. 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念.这些就是“拓扑学”的先声.什么是拓扑学?拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科.我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的. 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同.通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质.拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关.举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形.但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化.在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变.例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数.这些就是拓扑学思考问题的出发点. 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质. 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念.比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形.左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的. 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块.在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价.一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价. 应该指出,环面不具有这个性质.比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面.所以球面和环面在拓扑学中是不同的曲面. 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质.在拓扑学中曲线和曲面的闭合性质也是拓扑性质. 我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样.但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面.这种曲面就不能用不同的颜色来涂满两个侧面. 拓扑变换的不变性、不变量还有很多,这里不在介绍. 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展.特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展. 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌.拓扑学的研究就变成了关于任意点集的对应的概念.拓扑学中一些需要精确化描述的问题都可以应用集合来论述.因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性.通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系.本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念.比如,一致性结构概念、抽象距概念和近似空间概念等等.有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系.1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展. 拓扑学发展到今天,在理论上已经十分明显分成了两个分支.一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学.另一个分支是偏重于用代数方法来研究的,叫做代数拓扑.现在,这两个分支又有统一的趋势. 拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用.ardim2023-05-20 17:38:451
拓扑包含岛与非岛是什么意思
拓扑包含岛与非岛表示拓扑除了包含岛,还包含一些不是岛的其他地貌类型。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。岛和非岛的地形都包含在拓扑的研究范围。拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。Chen2023-05-20 17:38:441
拓扑结构是什么意思啊??
拓扑(Topology)是将各种物体的位置表示成抽象位置。在网络中,拓扑形象地描述了网络的安排和配置,包括各种结点和结点的相互关系。拓扑不关心事物的细节也不在乎什么相互的比例关系,只将讨论范围内的事物之间的相互关系表示出来,将这些事物之间的关系通过图表示出来。网络中的计算机等设备要实现互联,就需要以一定的结构方式进行连接,这种连接方式就叫做"拓扑结构",通俗地讲这些网络设备如何连接在一起的。拓扑图给出网络服务器、工作站的网络配置和相互间的连接,它的结构主要有星型结构、总线结构、树型结构、网状结构、蜂窝状结构、分布式结构等。??星型结构??星型结构是指各工作站以星型方式连接成网。网络有中央节点,其他节点(工作站、服务器)都与中央节点直接相连,这种结构以中央节点为中心,因此又称为集中式网络。它具有如下特点:结构简单,便于管理;控制简单,便于建网;网络延迟时间较小,传输误差较低。但缺点也是明显的:成本高、可靠性较低、资源共享能力也较差。??环型结构??环型结构由网络中若干节点通过点到点的链路首尾相连形成一个闭合的环,这种结构使公共传输电缆组成环型连接,数据在环路中沿着一个方向在各个节点间传输,信息从一个节点传到另一个节点。??环型结构具有如下特点:信息流在网中是沿着固定方向流动的,两个节点仅有一条道路,故简化了路径选择的控制;环路上各节点都是自举控制,故控制软件简单;由于信息源在环路中是串行地穿过各个节点,当环中节点过多时,势必影响信息传输速率,使网络的响应时间延长;环路是封闭的,不便于扩充;可靠性低,一个节点故障,将会造成全网瘫痪;维护难,对分支节点故障定位较难。??总线型结构??总线结构是指各工作站和服务器均挂在一条总线上,各工作站地位平等,无中心节点控制,公用总线上的信息多以基带形式串行传递,其传递方向总是从发送信息的节点开始向两端扩散,如同广播电台发射的信息一样,因此又称广播式计算机网络。各节点在接受信息时都进行地址检查,看是否与自己的工作站地址相符,相符则接收网上的信息。??总线型结构的网络特点如下:结构简单,可扩充性好。当需要增加节点时,只需要在总线上增加一个分支接口便可与分支节点相连,当总线负载不允许时还可以扩充总线;使用的电缆少,且安装容易;使用的设备相对简单,可靠性高;维护难,分支节点故障查找难。??分布式结构??分布式结构的网络是将分布在不同地点的计算机通过线路互连起来的一种网络形式,分布式结构的网络具有如下特点:由于采用分散控制,即使整个网络中的某个局部出现故障,也不会影响全网的操作,因而具有很高的可靠性;网中的路径选择最短路径算法,故网上延迟时间少,传输速率高,但控制复杂;各个节点间均可以直接建立数据链路,信息流程最短;便于全网范围内的资源共享。缺点为连接线路用电缆长,造价高;网络管理软件复杂;报文分组交换、路径选择、流向控制复杂;在一般局域网中不采用这种结构。??树型结构??树型结构是分级的集中控制式网络,与星型相比,它的通信线路总长度短,成本较低,节点易于扩充,寻找路径比较方便,但除了叶节点及其相连的线路外,任一节点或其相连的线路故障都会使系统受到影响。??网状拓扑结构??在网状拓扑结构中,网络的每台设备之间均有点到点的链路连接,这种连接不经济,只有每个站点都要频繁发送信息时才使用这种方法。它的安装也复杂,但系统可靠性高,容错能力强。有时也称为分布式结构。??蜂窝拓扑结构??蜂窝拓扑结构是无线局域网中常用的结构。它以无线传输介质(微波、卫星、红外等)点到点和多点传输为特征,是一种无线网,适用于城市网、校园网、企业网。??在计算机网络中还有其他类型的拓扑结构,如总线型与星型混合。总线型与环型混合连接的网络。在局域网中,使用最多的是总线型和星型结构。小菜G的建站之路2023-05-20 17:38:443
什么叫拓扑技术?
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。拓扑变换的不变性、不变量还有很多,这里不在介绍。拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。①总线拓扑结构是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。优点:结构简单、布线容易、可靠性较高,易于扩充,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。最著名的总线拓扑结构是以太网(Ethernet)。②星型拓扑结构每个结点都由一条单独的通信线路与中心结点连结。优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。③环形拓扑结构各结点通过通信线路组成闭合回路,环中数据只能单向传输。优点:结构简单、蓉以是线,适合使用光纤,传输距离远,传输延迟确定。缺点:环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最著名的环形拓扑结构网络是令牌环网(TokenRing)④树型拓扑结构是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的应用要求。缺点:资源共享能力较低,可靠性不高,任何一个工作站或链路的故障都会影响整个网络的运行。⑤网状拓扑结构又称作无规则结构,结点之间的联结是任意的,没有规律。优点:系统可靠性高,比较容易扩展,但是结构复杂,每一结点都与多点进行连结,因此必须采用路由算法和流量控制方法。目前广域网基本上采用网状拓扑结构。瑞瑞爱吃桃2023-05-20 17:38:445
拓扑学在生活中的应用
其他信息:拓扑学是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科,它只考虑物体间的位置关系而不考虑它们的形状和大小。在拓扑学里,重要的拓扑性质包括连通性与紧致性。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。拓扑学是由几何学与集合论里发展出来的学科,研究空间、维度与变换等概念。这些词汇的来源可追溯至哥特佛莱德·莱布尼茨,他在17世纪提出“位置的几何学”和“位相分析”的说法。莱昂哈德-欧拉的柯尼斯堡七桥问题与欧拉示性数被认为是该领域最初的定理。拓扑学的一些内容早在十八世纪就出现了,后来在拓扑学的形成中占着重要的地位。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。补充材料:一、拓扑学的子领域:拓扑学的分支学科包括点集拓扑学、代数拓扑学、微分拓扑学、几何拓扑学,具体介绍如下:1、一般拓扑学建立拓扑的基础,并研究拓扑空间的性质,以及与拓扑空间相关的概念。一般拓扑学亦被称为点集拓扑学,被用于其他数学领域(如紧致性与连通性等主题)之中。2、代数拓扑学运用同调与同伦群等代数结构量测连通性的程度。3、微分拓扑学研究在微分流形上的可微函数,与微分几何密切相关,并一齐组成微分流形的几何理论。4、几何拓扑学主要研究流形与其对其他流形的嵌入。几何拓扑学中一个特别活跃的领域为“低维拓扑学”,研究四维以下的流形。几何拓扑学亦包括“纽结理论”,研究数学上的纽结。二、拓扑学的学科起源:有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题。后来在拓扑学的形成中占着重要的地位。譬如哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。二十世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究曲线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。拓扑学在泛函分析、李群论、微分几何、微分方程和其他许多数学分支中都有广泛的应用。三、拓扑学的学科简介:Topology原意为地貌,起源于希腊语Τοπολογ。形式上讲,拓扑学主要研究“拓扑空间”在“连续变换”下保持不变的性质。简单的说,拓扑学是研究连续性和连通性的一个数学分支。拓扑学起初叫形势分析学,是德国数学家莱布尼茨1679年提出的名词。十九世纪中期,德国数学家黎曼在复变函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。拓扑学研究的是几何形体在连续形变,精确地说,双方一一而且双方连续的变换(称为同胚)之下保持不变的性质。简言之些,拓扑学是研究数学中连续性现象的学科。最典型拓扑学研究对象便是DNA的双螺旋结构。四、拓扑学的学科影响:连续性与离散性这对矛盾在自然现象与社会现象中普遍存在着,数学也可以粗略地分为连续性的与离散性的两大门类。拓扑学对于连续性数学自然是带有根本意义的,对于离散性数学也起着巨大的推进作用。例如,拓扑学的基本内容已经成为现代数学工作者的常识。拓扑学的重要性,体现在它与其他数学分支、其他学科的相互作用。拓扑学在泛函分析、实分析、群论、微分几何、微分方程其他许多数学分支中都有广泛的应用。gitcloud2023-05-20 17:38:441
什么是拓扑变换
1、简介: 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。2、拓展:拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。3、性质拓扑的中心任务是研究拓扑性质中的不变性。拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变换,就存在拓扑等价。应该指出,环面不具有这个性质。设想,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。苏萦2023-05-20 17:38:442
什么叫做拓扑?我学生物化学,学到了DNA拓扑异构酶,为什么这么命名呢?
虽然我不支持从网上大段copy的回答,但我更不支持对不了解的问题随意猜测,即使加上“可能”“大概”等词语。DNA拓扑异构酶的命名来源于这种酶催化的反应是改变DNA的拓扑结构。楼主如果学到了生化,就应该对DNA的高级结构有所了解,而不能仅知道双螺旋。正负超螺旋的转化在各种生化过程中都是相当重要的。而如果楼主要问的是“拓扑”的来历,就可以参照一楼的答案了。NerveM 2023-05-20 17:38:444
拓补和拓扑的区别
拓扑简单的的说就是几何结构,是指网络中各个站点相互连接的形式,主要有总线型拓扑、星型拓扑、环形拓扑以及混合型拓扑。 数学定义:设X是一个非空集合。X的一个子集族τ称为X的一个拓扑,如果它满足: (1)X和空集{}都属于τ; (2)τ中任意多个成员的并集仍在τ中; (3)τ中有限多个成员的交集仍在τ中。 称集合X连同它的拓扑τ为一个拓扑空间,记作(X,τ)。 称τ中的成员为这个拓扑空间的开集。 例子:1.欧几里德空间在通常开集的意义下是拓扑空间,它的拓扑就是所有开集组成的集合。 2.设X是一个非空集合。则集合t:{X,{}}是X的一个拓扑。称t为X的平凡拓扑。显然(X,t)只有两个开集,X和{}。 3.设X是一个非空集合。则X的幂集T=2^X也是X的一个拓扑。称T为X的离散拓扑。显然X的任意子集都是(X,T)的开集。 4.一个具体的例子。设X={1,2,3}。则{X,{},{1,2}}是X的一个拓扑,但{X,{},{1},{2}}不是拓扑。(自己想想为什么) 拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿次判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。 什么是拓扑学? 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。 应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。 我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。 拓扑变换的不变性、不变量还有很多,这里不在介绍。 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。 因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。 拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。 拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。 拓扑学 topology 数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支.在拓扑学的孕育阶段,19世纪末,就已出现点集拓扑学与组合拓扑学两个方向。现在前者已演化成一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓扑学、几何拓扑学等分支。拓扑学主要是由于分析学和几何学的需要而发展起来的,它自30年代以来的大发展,尤其是它的成果与方法对于数学的各个领域的不断渗透,是20世纪理论数学发展中的一个明显特征。 拓扑问题的一些初等例子 柯尼斯堡的七桥问题(一笔画问题) 柯尼斯堡是东普鲁士首府,普莱格尔河横贯其中,上有七座桥(见图论)。一个散步者怎样才能走遍七座桥而每座桥只经过一次?这个18世纪的智力游戏,被L.欧拉简化为用细线画出的网络能否一笔画出的问题,然后他证明这是根本办不到的。一个网络之能否一笔画出,与线条的长短曲直无关,只决定于其中的点与线的连接方式。设想一 个网络是用柔软而有弹性的材料制作的,在它被弯曲、拉伸后,能否一笔画出的性质是不会改变的。欧拉的多面体公式与曲面的分类 欧拉发现,不论什么形状的凸多面体,其顶点数□、棱数 □、面数□之间总有□这个关系。从这个公式可以证明正多面 体只有五种(见正多面体)。值得注意的是,如果多面体不是凸的而呈框形(图1凸形与框形),也不管框的形状如何,总有□。这说明,凸形与框形之间有比长短曲直更本质的差别,通俗的说法是框形里有个洞。 连续变形下,凸体的表面可以变为球面,框的表面可以变为环面(轮胎面)。这两者却不能通过连续变形互变。在连续变形下封闭曲面有多少种不同类型?怎 样鉴别它们?这曾是19世纪后半叶拓扑学研究的主要问题。把曲面变形成多面体后的欧拉数□-□+□在其中起着关键的作用(见闭曲面的分类)。四色问题 在平面或球面上绘制地图,有公共边界线的区域用不同的颜色加以区别。19世纪中期,人们从经验猜想用四种颜色就足以给所有的地图上色。证明这个猜想的尝试,却延续了100多年,到1976年才出现了一个借助于计算机的证明。如果不是在平面上而是在轮胎面上画地图,四色就不够了,要七色才够。用橡皮做一个曲面模型,然后随意扭曲,弄得山峦起伏,这对其上的地图着色毫无影响,所以这颜色数也是曲面在连续变形下不变的性质。 纽结问题 空间中一条自身不相交的封闭曲线,会发生打结现象。要问一个结能否解开(即能否变形成平放的圆圈),或者问两个结能否互变(例如,图2圆圈与三叶结中的两个三叶结能否互变),并且不只做个模型试试,还要给出证明,那就远不是件容易的事了(见纽结理论)。 维数问题 什么是曲线?朴素的观念是点动成线,随一个参数(时间)连续变化的动点所描出的轨迹就是曲线。可是,G.皮亚诺在1890年竟造出一条这样的“曲线”,它填满整个正方形!这激发了关于维数概念的深入探讨,经过20~30年才取得关键性的突破(见维数)。 布线问题(嵌入问题) 一个复杂的网络能否布在平面上而不自相交叉?做印刷电路时自然会碰到这个问题。图3可嵌入网络中左面的图把一根对角线移到方形外面就可以布在平面上,但图4不可嵌入网络两个图却无论怎样挪动都不能布在平面上。1930年K.库拉托夫斯基证明,一个网络是否能嵌入平面,就看其中是否不含有这两个图之一。 向量场问题 考虑光滑曲面上的连续的切向量场,即在曲面的每一点放一个与曲面相切的向量,并且其分布是连续的。其中向量等于0的地方叫作奇点。例如,地球表面上每点的风速向量就组成一个随时间变化的切向量场,而奇点就是当时没风的地方。从直观经验看出,球面上的连续切向量场一定有奇点,而环面上却可以造出没有奇点的向量场。 进一步分析,每个奇点有一个“指数”,即当动点绕它一周时,动点处的向量转的圈数;此指数有正负,视动点绕行方向与向量转动方向相同或相反而定(图5向量场齐点的指数)。庞加莱发现,球面上切向量场,只要奇点个数是有限的,这些奇点的指数的代数和(正负要相消)恒等于2;而环面上的则恒等于0(见曲面)。这2与0恰是那两个曲面的欧拉数,这不是偶然的巧合。 不动点问题 考虑一个曲面到自身的连续变换(映 射),即曲面的每一点被移到该曲面上Ntou1232023-05-20 17:38:441
简单的讲讲什么是拓扑学
多个点连接一个中心!FinCloud2023-05-20 17:38:443
拓扑学的学科简介
Topology原意为地貌,起源于希腊语Τοπολογ。形式上讲,拓扑学主要研究“拓扑空间”在“连续变换”下保持不变的性质。简单的说,拓扑学是研究连续性和连通性的一个数学分支。拓扑学起初叫形势分析学,是德国数学家莱布尼茨1679年提出的名词。十九世纪中期,德国数学家黎曼在复变函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,圆和方形、三角形的形状、大小不同,但在拓扑变换下,它们都是等价图形;足球和橄榄球,也是等价的----从拓扑学的角度看,它们的拓扑结构是完全一样的。而游泳圈的表面和足球的表面则有不同的拓扑性质,比如游泳圈中间有个“洞”。在拓扑学中,足球所代表的空间叫做球面,游泳圈所代表的空间叫环面,球面和环面是“不同”的空间。 拓扑学起初叫形势分析学,这是德国数学家莱布尼茨1679年提出的名词。欧拉在1736年解决了七桥问题,1750年发表了多面体公式;高斯1833年在电动力学中用线积分定义了空间中两条封闭曲线的环绕数。Topology这个词是由J.B.利斯廷提出的(1847),源自希腊文τόπος和λόγος(“位置”和“研究”)。这是拓扑学的萌芽阶段。1851年,德国数学家黎曼在复变函数的研究中提出了黎曼面的几何概念,并且强调为了研究函数、研究积分,就必须研究形势分析学。黎曼本人解决了可定向闭曲面的同胚分类问题。组合拓扑学的奠基人是法国数学家庞加莱。他是在分析学和力学的工作中,特别是关于复函数的单值化和关于微分方程决定的曲线的研究中,引向拓扑学问题的。他的主要兴趣在流形。在1895~1904年间,他创立了用剖分研究流形的基本方法。他引进了许多不变量:基本群、同调、贝蒂数、挠系数,探讨了三维流形的拓扑分类问题,提出了著名的庞加莱猜想。拓扑学的另一渊源是分析学的严密化。实数的严格定义推动康托尔从1873年起系统地展开了欧氏空间中的点集的研究,得出许多拓扑概念,如聚点(极限点)、开集、闭集、稠密性、连通性等。在点集论的思想影响下,分析学中出现了泛函(即函数的函数)的观念,把函数集看成一种几何对象并讨论其中的极限。这终于导致抽象空间的观念。 最早研究抽象空间的是M.-R.弗雷歇。他在1906年引进了度量空间的概念。F.豪斯多夫在《集论大纲》(1914)中用开邻域定义了比较一般的拓扑空间,标志着用公理化方法研究连续性的一般拓扑学的产生。随后波兰学派和苏联学派对拓扑空间的基本性质(分离性、紧性、连通性等)做了系统的研究。经过20世纪30年代中期起布尔巴基学派的补充(一致性空间、仿紧性等)和整理,一般拓扑学趋于成熟,成为第二次世界大战后数学研究的共同基础。欧氏空间中的点集的研究,例如,一直是拓扑学的重要部分,已发展成一般拓扑学与代数拓扑学交汇的领域,也可看作几何拓扑学的一部分。50年代以来,即问两个映射,以R.H.宾为代表的美国学派的工作加深了对流形的认识,是问两个给定的映射是否同伦,在四维庞加莱猜想的证明中发挥了作用。从皮亚诺曲线引起的维数及连续统的研究,习惯上也看成一般拓扑学的分支。 L.E.J.布劳威尔在1910~1912年间提出了用单纯映射逼近连续映射的方法, 许多重要的几何现象,用以证明了不同维的欧氏空间不同胚,它们就不同胚。引进了同维流形之间的映射的度以研究同伦分类,并开创了不动点理论。他使组合拓扑学在概念精确、论证严密方面达到了应有的标准。紧接着,J.W.亚历山大1915年证明了贝蒂数与挠系数的拓扑不变性。随着抽象代数学的兴起,1925年左右A.E.诺特提议把组合拓扑学建立在群论的基础上,在她的影响下H.霍普夫1928年定义了同调群。从此组合拓扑学逐步演变成利用抽象代数的方法研究拓扑问题的代数拓扑学。如维数、欧拉数,S.艾伦伯格与N.E.斯廷罗德1945年以公理化的方式总结了当时的同调论,后写成《代数拓扑学基础》(1952),对于代数拓扑学的传播、应用和进一步发展起了巨大的推动作用。他们把代数拓扑学的基本精神概括为:把拓扑问题转化为代数问题,通过计算来求解。直到今天,同调论所提供的不变量仍是拓扑学中最易于计算和最常用的不变量 。 同伦论研究空间的以及映射的同伦分类。W.赫维茨1935~1936年间引进了拓扑空间的n维同伦群,其元素是从n维球面到该空间的映射的同伦类,一维同伦群就是基本群。同伦群提供了从拓扑到代数的另一种过渡,其几何意义比同调群更明显,但是极难计算。同伦群的计算,特别是球面的同伦群的计算问题刺激了拓扑学的发展,产生了丰富多彩的理论和方法。1950年法国数学家塞尔利用J.勒雷为研究纤维丛的同调论而发展起来的谱序列这个代数工具,在同伦群的计算上取得突破。从50年代末在代数几何学和微分拓扑学的影响下产生了K理论,以及其他几种广义同调论。它们都是从拓扑到代数的过渡。尽管几何意义各不相同,代数性质却都与同调或上同调十分相像,是代数拓扑学的有力武器。从理论上也弄清了,同调论(普通的和广义的)本质上是同伦论的一部分。 微分拓扑是研究微分流形与可微映射的拓扑学。随着代数拓扑和微分几何的进步,在30年代重新兴起。H·惠特尼(H. Whitney)在1935年给出了微分流形的一般定义,并证明它总能嵌入高维欧氏空间。为了研究微分流形上的向量场,他还提出了纤维丛的概念,从而使许多几何问题都与同调(示性类)和同伦问题联系起来了。1953年R·托姆(Rene Thom)的配边理论开创了微分拓扑学与代数拓扑学并肩跃进的局面,许多困难的微分拓扑问题被化成代数拓扑问题而得到解决,同时也刺激了代数拓扑学的进一步发展。1956年米尔诺发现七维球面上除了通常的微分结构之外,还有不同寻常的微分结构。随后,不能赋以任何微分结构的流形又被人构作出来,这些都显示拓扑流形、微分流形以及介于其间的分段线性流形(piecewise linear manifold)这三个范畴有巨大的差别,微分拓扑学也从此被公认为一个独立的拓扑学分支。1960年斯梅尔证明了五维以上微分流形的庞加莱猜想。 J.W.米尔诺等人发展了处理微分流形的基本方法──剜补术,使五维以上流形的分类问题亦逐步趋向代数化。近些年来,有关流形的研究中,几何的课题、几何的方法取得不少进展。突出的领域如流形的上述三大范畴之间的关系以及三维、四维流形的分类。80年代初的重大成果有:证明了四维庞加莱猜想,发现四维欧氏空间存在不同寻常的微分结构。这种种研究,通常泛称几何拓扑学,以强调其几何色彩,区别于代数味很重的同伦论。Jm-R2023-05-20 17:38:441
拓扑学是个什么样的学科?
拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。 拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。 连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。 拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。肖振2023-05-20 17:38:442
谁能结合实际,具体说说拓扑结构不变性和拓扑结构不变量
数学定义设X是一个非空集合。X的一个子集族τ称为X的一个拓扑,如果它满足:(1)X和空集{}都属于τ;(2)τ中任意多个成员的并集仍在τ中;(3)τ中有限多个成员的交集仍在τ中。称集合X连同它的拓扑τ为一个拓扑空间,记作(X,τ)。称τ中的成员为这个拓扑空间的开集。例子:1.欧几里德空间在通常开集的意义下是拓扑空间,它的拓扑就是所有开集组成的集合。2.设X是一个非空集合。则集合t:{X,{}}是X的一个拓扑。称t为X的平凡拓扑。显然(X,t)只有两个开集,X和{}。3.设X是一个非空集合。则X的幂集T=2^X也是X的一个拓扑。称T为X的离散拓扑。显然X的任意子集都是(X,T)的开集。4.一个具体的例子。设X={1,2,3}。则{X,{},{1,2}}是X的一个拓扑,但{X,{},{1},{2}}不是拓扑。(自己想想为什么)拓扑学的由来几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿次判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。 什么是拓扑学?拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。拓扑结构的性质拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。 应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。 我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。 拓扑变换的不变性、不变量还有很多,这里不在介绍。 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。 因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。 拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。 拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。参考资料:http://www.ikepu.com/maths/maths_branch/topology_total.htm小菜G的建站之路2023-05-20 17:38:441
拓扑是什么意思啊?
你所提问的“拓扑”的概念应是指数学里的拓扑(学)。拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。著名的“四色问题”就是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。这是具有划时代意义的事件。现在拓扑学在泛函分析、李群论、微分几何、微分方程等许多数学分支中都有广泛的应用。有人把拓扑说成“莫比乌斯带”,还什么“理解成网络好了”,那是概念狭隘化。这种说法是不妥的,就像我们不能把“鸡”理解成是肯德基饭店里那炸得金黄的鸡快一样。那是偷换概念。水元素sl2023-05-20 17:38:441
关于拓扑学的哲学理解
选我谢谢北营2023-05-20 17:38:442
拓扑谜题是什么意思
所谓“拓扑”就是把实体抽象成与其大小、形状无关的“点”,而把连接实体的线路抽象成“线”,进而以图的形式来表示这些点与线之间关系的方法,其目的在于研究这些点、线之间的相连关系。表示点和线之间关系的图被称为拓扑结构图。拓扑结构与几何结构属于两个不同的数学概念。在几何结构中,我们要考察的是点、线之间的位置关系,或者说几何结构强调的是点与线所构成的形状及大小。如梯形、正方形、平行四边形及圆都属于不同的几何结构,但从拓扑结构的角度去看,由于点、线间的连接关系相同,从而具有相同的拓扑结构即环型结构。也就是说,不同的几何结构可能具有相同的拓扑结构。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。小白2023-05-20 17:38:442
拓扑的成语拓扑的成语是什么
拓扑的成语有:开疆拓宇,落拓不羁,开疆拓境。拓扑的成语有:开疆拓宇,落拓不羁,开疆拓土。2:注音是、ㄊㄨㄛ_ㄆㄨ。3:拼音是、tuòpū。4:结构是、拓(左右结构)扑(左右结构)。5:词性是、名词。拓扑的具体解释是什么呢,我们通过以下几个方面为您介绍:一、词语解释【点此查看计划详细内容】拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。二、网络解释拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。关于拓扑的单词topoismerase关于拓扑的词语扑地掀天开疆拓境开疆拓土扑满之败掀天扑地猛虎扑食拓落不羁拓土开疆异香扑鼻垂头拓翼关于拓扑的造句1、旋转动力学理论是以辨证逻辑和心理学理论为指导,微分拓扑为工具建立起来的创新计算的统一理论框架。2、本文首先研究二极管箝位型三电平逆变器的拓扑结构和数学模型。3、其拓扑结构显示海洋喇叭虫属于异毛纲纤毛虫,但并不隶属喇叭虫科,应予以新的分类地位。4、在实际应用中,这些新的拓扑可以减少开关损耗,提高效率。5、例如,您可以创建一个复杂的部署拓扑图,在不同的层上管理复杂的关系,或者您可以使用层来显示一种设计方案随着时间的变化。点此查看更多关于拓扑的详细信息u投在线2023-05-20 17:38:441
拓扑的解释拓扑的解释是什么
拓扑的词语解释是:拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。拓扑的词语解释是:拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。结构是:拓(左右结构)扑(左右结构)。拼音是:tuòpū。注音是:ㄊㄨㄛ_ㄆㄨ。词性是:名词。拓扑的具体解释是什么呢,我们通过以下几个方面为您介绍:一、网络解释【点此查看计划详细内容】拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。关于拓扑的单词topoismerase关于拓扑的成语垂头拓翼落拓不羁开疆拓境开疆拓土望风扑影扑满之败颠扑不破拓落不羁扑地掀天开疆拓宇关于拓扑的词语掀天扑地扑地掀天落拓不羁开疆拓境开疆拓土异香扑鼻垂头拓翼猛虎扑食望风扑影拓落不羁关于拓扑的造句1、例如,您可以创建一个复杂的部署拓扑图,在不同的层上管理复杂的关系,或者您可以使用层来显示一种设计方案随着时间的变化。2、本文首先研究二极管箝位型三电平逆变器的拓扑结构和数学模型。3、在实际应用中,这些新的拓扑可以减少开关损耗,提高效率。4、其拓扑结构显示海洋喇叭虫属于异毛纲纤毛虫,但并不隶属喇叭虫科,应予以新的分类地位。5、旋转动力学理论是以辨证逻辑和心理学理论为指导,微分拓扑为工具建立起来的创新计算的统一理论框架。点此查看更多关于拓扑的详细信息九万里风9 2023-05-20 17:38:431
拓扑是什么?
画一个点,再过这个点画条线,再从这条线上标点,然后再从这个点画线,然后以此重复,说白了就是点面结合体tt白2023-05-20 17:38:433
“拓扑”是啥东西,还有那个拓扑环是啥?
不太懂北营2023-05-20 17:38:433
拓扑的意思拓扑的意思是什么
拓扑的词语解释是:拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。拓扑的词语解释是:拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。结构是:拓(左右结构)扑(左右结构)。拼音是:tuòpū。注音是:ㄊㄨㄛ_ㄆㄨ。词性是:名词。拓扑的具体解释是什么呢,我们通过以下几个方面为您介绍:一、网络解释【点此查看计划详细内容】拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。关于拓扑的单词topoismerase关于拓扑的成语开疆拓境扑地掀天颠扑不破落拓不羁垂头拓翼开疆拓土拓落不羁开疆拓宇望风扑影扑满之败关于拓扑的词语拓落不羁落拓不羁开疆拓宇拓土开疆垂头拓翼开疆拓土开疆拓境异香扑鼻扑满之败望风扑影关于拓扑的造句1、在实际应用中,这些新的拓扑可以减少开关损耗,提高效率。2、例如,您可以创建一个复杂的部署拓扑图,在不同的层上管理复杂的关系,或者您可以使用层来显示一种设计方案随着时间的变化。3、将一种三相四桥臂逆变器的拓扑结构应用于动态电压恢复器主电路。4、现在通过导入拓扑图,您可以使用其他拓扑中的虚拟机系统。5、本文首先研究二极管箝位型三电平逆变器的拓扑结构和数学模型。点此查看更多关于拓扑的详细信息人类地板流精华2023-05-20 17:38:431
拓扑学是什么意思
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。拓扑学的由来几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”北境漫步2023-05-20 17:38:431
什么拓扑使用细缆
100BASE-FX拓扑使用细缆。拓扑学直译是地志学,也就是和研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。mlhxueli 2023-05-20 17:38:431
拓扑学是什么?
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。Ntou1232023-05-20 17:38:431
什么是拓扑学?
拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。 拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。学科方向 由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。19世纪末,在拓扑学的孕育阶段,就已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。 拓扑学也是数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。[英topology] 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,下面将要讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。拓扑学由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡七桥问题哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。中国曾邦哲于20世纪80-90年代(结构论)将其命题转换为“四色定理”等价于“互邻面最大的多面体是四面体”的问题。 拓扑学四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。 拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。 连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。 拓扑学是几何学的一个分支,它是从图论演变过来的。拓扑学将实体抽象成与其大小、形状无关的点,将连接实体的线路抽象成线,进而研究点、线、面之间的关系。网络拓扑通过结点与通信线路之间的几何关系来表示网络结构,反映出网络中各个实体之间的结构关系。拓扑设计是建设计算机网络的第一步,也是实现各种网络协议的基础,它对网络性能、可靠性与通信代价有很大影响。网络拓扑主要是指通信子网的拓扑构型。大鱼炖火锅2023-05-20 17:38:431
拓扑学是什么
拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。 拓扑学是数学中一个重要的、基础的分支。起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。学科方向 由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。19世纪末,在拓扑学的孕育阶段,就已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。后来,又相继出现了微分拓朴学、几何拓扑学等分支。 拓扑学也是数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。[英topology] 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,下面将要讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。编辑本段拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡七桥问题哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。中国曾邦哲于20世纪80-90年代(结构论)将其命题转换为“四色定理”等价于“互邻面最大的多面体是四面体”的问题。 拓扑学四色猜想的提出来自于英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。 拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。 连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。 拓扑学是几何学的一个分支,它是从图论演变过来的。拓扑学将实体抽象成与其大小、形状无关的点,将连接实体的线路抽象成线,进而研究点、线、面之间的关系。网络拓扑通过结点与通信线路之间的几何关系来表示网络结构,反映出网络中各个实体之间的结构关系。拓扑设计是建设计算机网络的第一步,也是实现各种网络协议的基础,它对网络性能、可靠性与通信代价有很大影响。网络拓扑主要是指通信子网的拓扑构型。编辑本段拓扑性质 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变换,就存在拓扑等价。 应该指出,环面不具有这个性质。把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。 我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满,因为只有一个面。 拓扑变换的不变性、不变量还有很多,这里不再介绍。编辑本段拓扑发展 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。 因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。上世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究曲线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。 拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。 拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。hi投2023-05-20 17:38:431
图论的拓扑学
几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论--不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。tt白2023-05-20 17:38:431
拓扑学是什么意思
拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。墨然殇2023-05-20 17:38:431
拓扑是什么意思?
HH此后故乡只2023-05-20 17:38:433
拓扑是什么意思?
数据结构墨然殇2023-05-20 17:38:434
拓扑是什么意思啊?
拓扑学:拓扑学是近代发展起来的一个研究连续性现象的数学分支。其名称起源于希腊语Topology的音译,该词原意为地志学,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题网络拓扑:网络拓扑指构成网络的成员间特定的物理的即真实的、或者逻辑的即虚拟的排列方式。如果两个网络的连接结构相同我们就说它们的网络拓扑相同,尽管它们各自内部的物理接线、节点间距离可能会有不同。余辉2023-05-20 17:38:437
拓扑学是什么
拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογία的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。具体参看CarieVinne 2023-05-20 17:38:433
别人跟我说数学拓扑学博士很难毕业,这是为什么?拓扑学真的有这么难吗?
打击你一下,我觉得拓扑学对于初一的孩子来说太难了……不过要是真想写,还是可以写一些东西的。以初一的知识很难接触到拓扑学的核心内容,所以你可以写的就只有比较直观的那些东西了最开始可以写写拓扑学的历史:七桥问题等等的……接下来介绍拓扑学中认为两个物体等价的条件:可以通过拉伸互相转变。重点在于不能粘接,不能打洞。在这种意义下,拓扑学认为圆柱面和环带是一样的,球体和正方体是一样的,烟斗和茶杯是一样的囧。。。还有拓扑学中必不可少的东西:墨笔乌斯带……如果你知识比较丰富的话还可能知道克莱因瓶。还可以讲讲拓扑学的分类:点集拓扑,代数拓扑,微分拓扑,几何拓扑……论文的最后可以写写拓扑学和你们所学的东西的关系啥的。也可以写写拓扑学里现在还未解决的问题,展望一下拓扑学的发展……这就比较困难了单独和我谈谈吧,我可以帮你构思一下比较具体的提纲以上内容均由本人亲自输入,未经本人允许不得拷贝byfizban_yangu投在线2023-05-20 17:38:422
拓扑 [tuò pū]什么意思?近义词和反义词是什么?英文翻译是什么?
拓扑 [tuò pū] [拓扑]基本解释 1.涉及从严格定量测量中抽象出来的各种对象之间的关系的 2.在同胚下不变性质的或在包含于同胚下不变性质的 [拓扑]百科解释 拓扑学(topology)是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 更多→ 拓扑 [拓扑]英文翻译 topology [拓扑]相关词语 拓朴 数学 立方 代数 数论 湮灭 比例 几何 悖论 四舍五入康康map2023-05-20 17:38:421
大学数学系本科好像都开设有微分几何,拓扑学,流行,代数几何等课程。 不知道今后数学系研究生还学不学?
问问教授不就好了。~~~·北境漫步2023-05-20 17:38:422
拓扑的拓怎么念
tuo或ta苏州马小云2023-05-20 17:38:424
将CAD所建几何模型进行面片划分后,丢失了几何拓扑信息和装配约束信息,怎么找出其装配特征约束
^_^帮不了忙,像这样的问题不放上100分以上好少人注意的黑桃花2023-05-20 17:38:421
拓扑学中的一些概念
拓扑学(topology)是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。在拓扑学里,重要的拓扑性质包括连通性与紧致性。[1] 拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。拓扑学是由几何学与集合论里发展出来的学科,研究空间、维度与变换等概念。这些词汇的来源可追溯至哥特佛莱德·莱布尼茨,他在17世纪提出“位置的几何学”(geometria situs)和“位相分析”(analysis situs)的说法。莱昂哈德·欧拉的柯尼斯堡七桥问题与欧拉示性数被认为是该领域最初的定理。此后故乡只2023-05-20 17:38:421
拓扑学是讲的什么
拓扑学,是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογία的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。分支学科点集拓扑学又称为一般拓扑学组合拓扑学代数拓扑学微分拓扑学几何拓扑学详细:http://baike.baidu.com/view/41881.htm康康map2023-05-20 17:38:421
拓扑的词语拓扑的词语是什么
拓扑的词语有:异香扑鼻,垂头拓翼,拓土开疆。拓扑的词语有:落拓不羁,开疆拓土,扑满之败。2:词性是、名词。3:拼音是、tuòpū。4:注音是、ㄊㄨㄛ_ㄆㄨ。5:结构是、拓(左右结构)扑(左右结构)。拓扑的具体解释是什么呢,我们通过以下几个方面为您介绍:一、词语解释【点此查看计划详细内容】拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。二、网络解释拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。关于拓扑的单词topoismerase关于拓扑的成语开疆拓土扑地掀天扑满之败开疆拓境颠扑不破开疆拓宇落拓不羁拓落不羁望风扑影垂头拓翼关于拓扑的造句1、旋转动力学理论是以辨证逻辑和心理学理论为指导,微分拓扑为工具建立起来的创新计算的统一理论框架。2、介绍了现场总线光纤网络的简单可行的方法,就光纤媒介实现的可行拓扑方案进行了讨论。3、现在通过导入拓扑图,您可以使用其他拓扑中的虚拟机系统。4、其拓扑结构显示海洋喇叭虫属于异毛纲纤毛虫,但并不隶属喇叭虫科,应予以新的分类地位。5、在实际应用中,这些新的拓扑可以减少开关损耗,提高效率。点此查看更多关于拓扑的详细信息康康map2023-05-20 17:38:421
什么是拓扑
拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。拓扑学在研究物体几何形状的改变时,只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。其定义为:拓扑学是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的学科。形式上讲,拓扑学主要研究“拓扑空间”在“连续变换”下保持不变的性质。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,圆和方形、三角形的形状、大小不同,但在拓扑变换下,它们都是等价图形;足球和橄榄球,也是等价的。因为从拓扑学的角度看,它们的拓扑结构是完全一样的。比较著名的拓扑学问题有:一笔画问题、地图的四色问题、莫比乌斯面、克莱因瓶等。拓扑学已经应用于物理学、化学、生物学、语言学等方面,甚至应用于经济学。gitcloud2023-05-20 17:38:421
拓扑的定义
拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。网络拓扑简介拓扑是集合上的一种结构。设T为非空集X的子集族。若T满足以下条件:1.X与空集都属于T;2.T中任意有限个成员的交集属于T;3.T中任意个成员的并集属于T;则T称为X上的一个拓扑。具有拓扑T的集合X称为拓扑空间,记为(X,T)。设T1与T2为集合X上的两个拓扑。若有关系,则称T1粗于T2,或T2细于T1。当X上的两个拓扑相互之间没有包含关系时,则称它们是不可比较的。在集合X上,离散拓扑是最细的拓扑,平凡拓扑是最粗的拓扑。局域网拓扑图北境漫步2023-05-20 17:38:421
拓扑是什么意思 拓扑的含义
1、拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。 2、拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。拌三丝2023-05-20 17:38:421
“拓扑”是什么意思?
“拓扑”是研究几何图形或空间的一个学科。拓扑,读音:【tuò pū】释义:指的是设X是一个非空集合。拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。造句:1、拓扑的中心任务是研究拓扑性质中的不变性。2、计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点、线关系的方法。出处:“拓扑”英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。中国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续 变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、 立体几何不同。通常的 平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。 拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。参考资料互动百科:http://www.baike.com/wiki西柚不是西游2023-05-20 17:38:421
拓扑是什么?
【拓扑】定义拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。中国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。【拓扑】性质拓扑的中心任务是研究拓扑性质中的不变性。拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变换,就存在拓扑等价。应该指出,环面不具有这个性质。设想,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。kikcik2023-05-20 17:38:426
拓扑是什么意思 拓扑的含义
1、拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。 2、拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。meira2023-05-20 17:38:421
拓扑的结构拓扑的结构是什么
拓扑的结构是:拓(左右结构)扑(左右结构)。拓扑的结构是:拓(左右结构)扑(左右结构)。注音是:ㄊㄨㄛ_ㄆㄨ。词性是:名词。拼音是:tuòpū。拓扑的具体解释是什么呢,我们通过以下几个方面为您介绍:一、词语解释【点此查看计划详细内容】拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。二、网络解释拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。关于拓扑的单词topoismerase关于拓扑的成语落拓不羁垂头拓翼颠扑不破拓落不羁扑满之败望风扑影开疆拓土扑地掀天开疆拓境开疆拓宇关于拓扑的词语望风扑影扑地掀天落拓不羁开疆拓境开疆拓宇拓土开疆异香扑鼻扑满之败拓落不羁猛虎扑食关于拓扑的造句1、现在在拓扑图上您已经记录了目录程序。2、其拓扑结构显示海洋喇叭虫属于异毛纲纤毛虫,但并不隶属喇叭虫科,应予以新的分类地位。3、例如,您可以创建一个复杂的部署拓扑图,在不同的层上管理复杂的关系,或者您可以使用层来显示一种设计方案随着时间的变化。4、旋转动力学理论是以辨证逻辑和心理学理论为指导,微分拓扑为工具建立起来的创新计算的统一理论框架。5、在实际应用中,这些新的拓扑可以减少开关损耗,提高效率。点此查看更多关于拓扑的详细信息北营2023-05-20 17:38:421
数学中的拓扑是什么意思 意义何在?
拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。 拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。 连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。 拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。 哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。” 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。 上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。 什么是拓扑学? 拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。 拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。 在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。 在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。 应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。 直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。 我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。 拓扑变换的不变性、不变量还有很多,这里不在介绍。 拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。 二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。 因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。 拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。 拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。参考资料:http://www.yaohua.org/teacher/wangyvan/html/fazhan/youlai.doc此后故乡只2023-05-20 17:38:421
谁晓得拓扑学 通俗详细的解释下
拓扑定义 是近代发展起来的一个研究连续性现象的数学分支。中文名称起源于希腊语Τοπολογ�0�7α的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。 简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。苏州马小云2023-05-20 17:38:411
UG模型导入ICEM后为什么面缺失了。几何拓扑却显示是闭合的?
icem面显示功能并不完善,对于几何尺度变化不大的常规模型只要拓扑之后是红色的线,就可以直接划分网格。北营2023-05-20 17:38:412
拓扑的网络解释拓扑的网络解释是什么
拓扑的网络解释是:拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。拓扑的网络解释是:拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。词性是:名词。拼音是:tuòpū。注音是:ㄊㄨㄛ_ㄆㄨ。结构是:拓(左右结构)扑(左右结构)。拓扑的具体解释是什么呢,我们通过以下几个方面为您介绍:一、词语解释【点此查看计划详细内容】拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。关于拓扑的单词topoismerase关于拓扑的成语开疆拓土落拓不羁望风扑影拓落不羁开疆拓境垂头拓翼颠扑不破扑地掀天开疆拓宇扑满之败关于拓扑的词语拓落不羁扑满之败扑地掀天望风扑影开疆拓境垂头拓翼异香扑鼻开疆拓宇开疆拓土掀天扑地关于拓扑的造句1、在实际应用中,这些新的拓扑可以减少开关损耗,提高效率。2、将一种三相四桥臂逆变器的拓扑结构应用于动态电压恢复器主电路。3、用知识分化论域的观点,提出和研究了知识论域、知识拓扑。4、本文首先研究二极管箝位型三电平逆变器的拓扑结构和数学模型。5、现在通过导入拓扑图,您可以使用其他拓扑中的虚拟机系统。点此查看更多关于拓扑的详细信息余辉2023-05-20 17:38:411
拓扑的读音拓扑的读音是什么
拓扑的读音是:tuòpū。拓扑的拼音是:tuòpū。词性是:名词。结构是:拓(左右结构)扑(左右结构)。注音是:ㄊㄨㄛ_ㄆㄨ。拓扑的具体解释是什么呢,我们通过以下几个方面为您介绍:一、词语解释【点此查看计划详细内容】拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。二、网络解释拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。关于拓扑的单词topoismerase关于拓扑的成语开疆拓土垂头拓翼落拓不羁望风扑影拓落不羁颠扑不破扑地掀天开疆拓境开疆拓宇扑满之败关于拓扑的词语开疆拓境扑满之败落拓不羁拓土开疆扑地掀天垂头拓翼猛虎扑食开疆拓宇掀天扑地望风扑影关于拓扑的造句1、其拓扑结构显示海洋喇叭虫属于异毛纲纤毛虫,但并不隶属喇叭虫科,应予以新的分类地位。2、例如,您可以创建一个复杂的部署拓扑图,在不同的层上管理复杂的关系,或者您可以使用层来显示一种设计方案随着时间的变化。3、本文首先研究二极管箝位型三电平逆变器的拓扑结构和数学模型。4、现在通过导入拓扑图,您可以使用其他拓扑中的虚拟机系统。5、用知识分化论域的观点,提出和研究了知识论域、知识拓扑。点此查看更多关于拓扑的详细信息苏萦2023-05-20 17:38:411
拓扑是什么,属于哪个学科,应用于哪些领域
拓扑学的英文名是Topology,直译是地志学.几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴.拓扑学在泛函分析、李群论、微分几何、微分方程和其他许多数学分支中都有广泛的应用.康康map2023-05-20 17:38:411
拓扑怎么读 拓扑是什么意思
1. 拓扑的拼音为:tuò pū。 2. 拓扑是研究几何或空间的某些性质在连续的形状变化后仍能保持不变的学科。它只考虑对象之间的位置关系,而不考虑它们的形状和大小。 3.拓扑的英文名称为topology,直译为地志学。首先是指研究地形地貌的相关学科。几何拓扑学是19世纪形成的数学分支。它属于几何学的范畴。早在18世纪就出现了一些拓扑学的内容。当时发现的一些孤立的问题对后来拓扑学的形成起到了重要的作用。wpBeta2023-05-20 17:38:411
什么是"拓扑学"和"微积分"?
几何拓扑学(Geometric Topology),是数学中研究流形以及它们的嵌入,俱代表性的主题有扭结理论和辫子群。几何拓扑学几乎等同于考虑2维,3维,或者4维的低维拓扑学。 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。 极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。kikcik2023-05-20 17:38:411
认识一下网络拓扑,几张图片几条线。
网络拓扑,不就是网络和拓扑组合在一起的新名词吗。这样理解很有道理,网络很好理解,关键是这个拓扑,首先来了解一下什么是拓扑。 拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。是一种不考虑物体的大小、形状等物理属性,而仅仅使用点或者线描述多个物体实际位置与关系的抽象表示方法。拓扑不关心事物的细节,也不在乎相互的比例关系,而只是以图的形式表示一定范围内多个物体之间的相互关系。 拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。 "拓扑"是一个外来词,中国人把Topo译为“拓扑”!谁?江泽涵先生是也! 江泽涵(1902-1994年),安徽旌德人,1926年毕业于南开大学数学系教授,1955年当选为中国科学院数理学部委员。他是把拓扑学引入中国的第一人,他出版的《拓扑学引论》是中国人编写的第一部拓扑学教材。 译Topo为拓扑,音义兼顾,形神俱备———“拓”者,对土地之开发也,“扑”者,全面覆盖也。 网络拓扑(Network Topology)结构是指用传输介质互连各种设备的物理布局。指构成网络的成员间特定的物理的即真实的、或者逻辑的即虚拟的排列方式。如果两个网络的连接结构相同我们就说它们的网络拓扑相同,尽管它们各自内部的物理接线、节点间距离可能会有不同。 在实际生活中,计算机与网络设备要实现互联,就必须使用一定的组织结构进行连接,这种组织结构就叫做“拓扑结构”。网络拓扑结构形象地描述了网络的安排和配置方式,以及各节点之间的相互关系,通俗地说,“拓扑结构”就是指这些计算机与通讯设备是如何连接在一起的。 研究网络和它的线图的拓扑性质的理论,又称网络图论。拓扑是指几何体的一种接触关系或连接关系;当几何体发生连续塑性变形时,它的接触关系会保持不变。用节点和支路组成的线图表示的网络结构也具有这种性质。 网络拓朴的早期研究始于1736年瑞士数学家L.欧拉发表的关于柯尼斯堡桥问题的论文。1845年和1847年,G.R.基尔霍夫发表的两篇论文为网络奠定了基础。 在设计网络拓扑结构时,我们经常会遇到如“节点”、“结点”、”链路”和“通路”这四个术语。它们到底各自代表什么,它们之间又有什么关系呢? (1) 节点 一个“节点”其实就是一个网络端口。节点又分为“转节点”和“访问节点”两类。“转节点”的作用是支持网络的连接,它通过通信线路转接和传递信息,如交换机、网关、路由器、防火墙设备的各个[网络端口]等;而“访问节点”是信息交换的源点和目标点,通常是用户计算机上的网卡接口。如我们在设计一个网络系统时,通常所说的共有××个节点,其实就是在网络中有多个要配置IP地址的网络端口。 (2)结点 一个“结点”是指一台网络设备,因为它们通常连接了多个“节点”,所以称之为“结点”。在计算机网络中的结点又分为链路结点和路由结点,它们就分别对应的是网络中的交换机和路由器。从网络中的结点数多少就可以大概知道你的计算机网络规模和基本结构了。 (3)链路 “链路”是两个节点间的线路。链路分物理链路和逻辑链路(或称数据链路)两种,前者是指实际存在的通信线路,由设备网络端口和传输介质连接实现;后者是指在逻辑上起作用的网络通路,由计算机网络体系结构中的数据链路层标准和协议来实现。如果链路层协议没有起作用,数据链路也就无法建立起来。 (4)通路 “通路”从发出信息的节点到接收信息的节点之间的一串节点和链路的组合。也就是说,它是一系列穿越通信网络而建立起来的节点到节点的链路串连。它与“链路”的区别主要在于一条“通路”中可能包括多条“链路”。 星形拓扑结构的主要优点有: 1.结构简单,容易管理维护; 2.重新配置灵活; 3.方便故障检测与隔离; 4.控制简单,便于建网; 5.网络延迟时间较小,传输误差较低; 星形拓扑结构的主要缺点有: 1.成本高、可靠性较低; 优点是由于每个节点都同时与两个方向的各一个节点相连接,此路不通彼路通,因此环状拓扑具有天然的容错性。缺点是由于存在来自两个方向的数据流,因此必须对这两个方向加以区分,或者进行限制,以避免无法区分的冗余数据流对正常通信的干扰。管理和维护比较复杂。 优点是结构简单,可扩充性好。缺点是维护难、单点的结构可能会影响全网络。小菜G的建站之路2023-05-20 17:38:411
拓扑怎么读
拓扑,读音:【tuò pū】“拓扑”是研究几何图形或空间的一个学科。释义:指的是设X是一个非空集合。拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。造句:1、拓扑的中心任务是研究拓扑性质中的不变性。2、计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点、线关系的方法。此后故乡只2023-05-20 17:38:411
拓扑是什么意思?
拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。tt白2023-05-20 17:38:417
拓扑是什么意思怎么发音
Topology ,你应该说得时拓扑学吧。是几何学科的一种。很多数学家对他都有研究的。具体你可以百度一下Chen2023-05-20 17:38:414
请推荐几本拓扑学教材。
A.Hatcher 代数拓扑R.Bott 代数拓扑中的微分形式张筑生 微分拓扑新讲J.Milnor 从微分观点看拓扑、Morse理论北营2023-05-20 17:38:411
几何建模为什么必须同时给出几何信息和拓扑信息
没有拓扑元素的数量和连接关系怎么建模??CarieVinne 2023-05-20 17:38:412
拓扑的单词拓扑的单词是什么
拓扑的单词有:topoismerase。拓扑的单词有:topoismerase。词性是:名词。注音是:ㄊㄨㄛ_ㄆㄨ。结构是:拓(左右结构)扑(左右结构)。拼音是:tuòpū。拓扑的具体解释是什么呢,我们通过以下几个方面为您介绍:一、词语解释【点此查看计划详细内容】拓扑tuòpū。1. 涉及从严格定量测量中抽象出来的各种对象之间的关系的。2. 在同胚下不变性质的或在包含于同胚下不变性质的。二、网络解释拓扑拓扑是研究几何图形或空间在连续改变形状后还能保持不变的一些性质的一个学科。它只考虑物体间的位置关系而不考虑它们的形状和大小。拓扑英文名是Topology,直译是地志学,最早指研究地形、地貌相类似的有关学科。几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现的一些孤立的问题,在后来的拓扑学的形成中占着重要的地位。关于拓扑的成语拓落不羁扑地掀天垂头拓翼落拓不羁望风扑影开疆拓土开疆拓宇扑满之败颠扑不破开疆拓境关于拓扑的词语扑地掀天拓土开疆开疆拓境猛虎扑食落拓不羁望风扑影拓落不羁异香扑鼻扑满之败开疆拓土关于拓扑的造句1、用知识分化论域的观点,提出和研究了知识论域、知识拓扑。2、介绍了现场总线光纤网络的简单可行的方法,就光纤媒介实现的可行拓扑方案进行了讨论。3、将一种三相四桥臂逆变器的拓扑结构应用于动态电压恢复器主电路。4、例如,您可以创建一个复杂的部署拓扑图,在不同的层上管理复杂的关系,或者您可以使用层来显示一种设计方案随着时间的变化。5、其拓扑结构显示海洋喇叭虫属于异毛纲纤毛虫,但并不隶属喇叭虫科,应予以新的分类地位。点此查看更多关于拓扑的详细信息Jm-R2023-05-20 17:38:411
什么是拓扑图形,欧氏图形
儿童开始认识几何图形的研究——与皮亚杰“从拓扑到欧氏几何”论点的商榷吕静 麦虹 沈晓红 【摘要】:本研究乃是对皮亚杰关于儿童开始认识几何图形是“从拓扑到欧氏几何”论点的反证。其根据有二:1.儿童认识各种拓扑和欧氏几何图形有难易先后,而非如皮亚杰所说的“儿童认识拓扑关系远早于欧氏几何图形”。2.实验证明,幼儿开始对圆、正方形和三角形都画成不规则的圆形,这是由于其绘画技能不够完善。不能以此作为“儿童认识几何图形是从拓扑开始”的论据。【作者单位】: 杭州大学心理学系 杭州大学心理学系 杭州大学心理学系 【关键词】: 儿童 欧氏几何 皮亚杰 三角形 几何图形 拓扑关系 正方形 复合图形 显著差异 封闭图形 【正文快照】:问题 对JL童开始认识儿何图形的研究,其意义不亚于研究儿童数概念的形成。几何学是数学中一门研究空间位置或定位的学科。儿何学有多种,与儿童的经验最密切相关的是拓扑、欧氏儿何和投影儿何。真颛2023-05-20 17:38:411
谁创立了拓扑学
中国的一个科学家很有名的豆豆staR2023-05-20 17:38:403