数学离散型随机变量的期望与方差
解:(Ⅰ)求该运动员两次都命中7环的概率为P(7)=0.2×0.2=0.04;(Ⅱ)ξ的可能取值为7、8、9、10P(ξ=7)=0.04P(ξ=8)=2×0.2×0.3+0.32=0.21P(ξ=9)=2×0.2×0.3+2×0.3×0.3+0.32=0.39P(ξ=10)2×0.2×0.2+2×0.3×0.2+2×0.3×0.2+0.22=0.36ξ分布列为(Ⅲ)ξ的数学希望是Eξ=7×0.04+8×0.21+9×0.39+10×0.36=9.0719.陶小凡2023-06-13 07:36:521
随机变量的期望与方差有着怎样的含义
期望就是随机变量分布的中心位置,方差就是随机变量的分散程度,即数据的稳定性。gitcloud2023-06-13 07:25:322
如何用概率论计算离散型随机变量的期望值?
首先弄清XY的分布列,然后按离散型随机变量的均值计算公式做,估计XY的分布计算要难点。在X与Y不独立的情况下,用条件概率计算,P(AB)=P(A)P(B/A)。高中公式大全:高中数学公式大全: 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角拌三丝2023-06-13 07:25:021
随机变量的期望与方差有着怎样的含义
期望可以理解为这个变量的平均值,是对随机变量本身“客观价值”的一种表现。因为随机无法确定,大家心里需要有个数,这个随机的因素到底围绕的哪条线变化,期望就是那条线。方差则是另一种特征,他描述的是随机变量的波动性(围绕着期望波动)的大小。方差越大,说明这个事变数越大,容易偏离平均值很远。铁血嘟嘟2023-06-13 07:25:011
离散型随机变量的期望怎么求?
因为,(X,Y)是二维离散型随机变量所以,xy也是离散型随机变量先求出xy的概率分布列再求xy的期望比如P(x=0)=1/2,P(x=1)=1/2P(y=0)=1/2,P(y=1)=1/2则,P(xy=0)=3/4P(xy=1)=1/4所以,E(XY)=0×(3/4)+1×(1/4)=1/4如果随机变量X的所有可能的取值是有限或者可列无穷多个,那么它分布函数的值域是离散的,对应的分布为离散分布。常用的离散分布有二项分布、泊松分布、几何分布、负二项分布等。扩展资料:离散型随机变量在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。参考资料来源:百度百科——随机变量左迁2023-06-13 07:25:001
随机变量的期望,是否 E(XE(Y))=EXEY
E(Y)为常数 故 E(XE(Y))=E(Y)E(X) 如有意见,欢迎讨论,共同学习;如有帮助,bikbok2023-06-13 07:24:591
离散型随机变量的期望和方差是什么?
在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。D(X) = E{[X - E(X)]^2}.(1)=E(X^2) - (EX)^2.(2)。(1)式是方差的离差表示法。(2)式表示:方差 = X^2的期望 - X的期望的平方。相关内容:当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。用概率论的知识,不难得知,甲获胜的可能性大,乙获胜的可能性小。因为甲输掉后两局的可能性只有(1/2)×(1/2)=1/4,也就是说甲赢得后两局或后两局中任意赢一局的概率为1-(1/4)=3/4,甲有75%的期望获得100法郎。而乙期望赢得100法郎就得在后两局均击败甲,乙连续赢得后两局的概率为(1/2)*(1/2)=1/4,即乙有25%的期望获得100法郎奖金。mlhxueli 2023-06-13 07:24:561
随机变量的期望与方差有着怎样的含义
期望可以理解为这个变量的平均值,是对随机变量本身“客观价值”的一种表现。因为随机无法确定,大家心里需要有个数,这个随机的因素到底围绕的哪条线变化,期望就是那条线。方差则是另一种特征,他描述的是随机变量的波动性(围绕着期望波动)的大小。方差越大,说明这个事变数越大,容易偏离平均值很远。bikbok2023-06-13 07:24:491
怎么求二维随机变量的期望
因为,(X,Y)是二维离散型随机变量所以,xy也是离散型随机变量先求出xy的概率分布列再求xy的期望比如P(x=0)=1/2,P(x=1)=1/2P(y=0)=1/2,P(y=1)=1/2则,P(xy=0)=3/4P(xy=1)=1/4所以,E(XY)=0×(3/4)+1×(1/4)=1/4这个例子比较简单,但方法是一样的如果还有问题,可以把原题发给我墨然殇2023-06-13 07:24:491
怎么求一个随机变量的期望和方差?
已知概率密度函数,它的期望:已知概率密度函数,它的方差:扩展资料:连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。bikbok2023-06-13 07:24:451
概率里是不是如果随机变量的期望存在,则方差必存在?
随机变量的期望存在,则方差不一定存在. 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 ... 取n的概率为1/2^n . 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 ... 取n的概率为1/2^n .小白2023-06-13 07:24:381
随机变量的期望和方差怎么求?
设总体x~u[a,b],样本均值的期望和方差如下:如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。离散型随机变量的一切可能的取值乘积之和称为该离散型随机变量的数学期望(若该求和绝对收敛),它是简单算术平均的一种推广,类似加权平均。随机变量概念在做实验时,常常是相对于试验结果本身而言,我们主要还是对结果的某些函数感兴趣。例如,在掷骰子时,我们常常关心的是两颗骰子的点和数,而并不真正关心其实际结果。就是说,我们关心的也许是其点和数为7,而并不关心其实际结果是否是(1,6)或(2,5)或(3,4)或(4,3)或(5,2)或(6,1)。我们关注的这些量,或者更形式的说,这些定义在样本空间上的实值函数,称为随机变量。因为随机变量的值是由试验结果决定的,所以我们可以给随机变量的可能值指定概率。小菜G的建站之路2023-06-13 07:24:351
什么是随机变量的期望
若随机变量X数学期望存在,则E(E(EX)EX为常数设,EX=C则,D(EX)=D(C)=0E[D(EX)]=E(0)=0需要注意的是,期望值并不一定等同于常识中的“期望”——“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。扩展资料:随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。参考资料来源;百度百科-随机变量余辉2023-06-13 07:24:341
随机变量的期望为什么是均值
不太好理解,可以用黎曼积分试着理解.离散随机变量的期望是用随机变量的每个值乘以对应的概率.连续随机变量也是这样.大鱼炖火锅2023-06-13 07:20:531
标准化随机变量的期望为什么是零
标准化变量是按某一标准构成,对指标进行校正的一种方法,当两个或者几个列进行比较时,如果各组资料的内部构成明显不同。标准变量,也称效标变量,是一种效度标准,是指连测验消毒研究中与其他变量相比较的变量。 标准化是将不同变量,至于同一规格的过程。陶小凡2023-06-13 07:16:561
如何使用特征函数求随机变量的期望与方差
在特征函数等于0处,求特征函数的一阶与二阶倒数就可以求随机变量的期望与方差。如果两个随机变量具有相同的特征函数,那么它们具有相同的概率分布; 反之, 如果两个随机变量具有相同的概率分布, 它们的特征函数也相同。方差数学期望给出了随机变量的平均大小,现实生活中我们还经常关心随机变量的取值在均值周围的散布程度,而方差就是这样的一个数字特征。方差的作用:在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。一般来说,乘积的期望不等于期望的乘积,除非变量相互独立。因此,如果x和y相互独立,则E(xy)=E(x)E(y)E(xy)=E(x)E(y)。期望的运算构成了统计量的运算基础,因为方差、协方差等统计量本质上是一种特殊的期望。小菜G的建站之路2023-06-09 08:03:571
怎样求离散型随机变量的期望?
如图所示:因为,(X,Y)是二维离散型随机变量。所以,xy也是离散型随机变量。先求出xy的概率分布列。再求xy的期望:比如 P(x=0)=1/2,P(x=1)=1/2 P(y=0)=1/2,P(y=1)=1/2 则,P(xy=0)=3/4 P(xy=1)=1/4 所以,E(XY)=0×(3/4)+1×(1/4)=1/4。当随机变量的可取值全体为一离散集时称其为离散型随机变量,否则称其为非离散型随机变量,这是很大的一个类,其中有一类是极其常见的,随机变量的取值为一(n)维连续空间。计算方法:随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。Jm-R2023-06-06 07:54:511
连续性随机变量的期望
定义:设连续型随机变量 [公式] 的概率密度函数为 [公式] ,如果 [公式] ,则称: [公式] 为 [公式] 的数学期望,简称期望。如果 [公式] 是实变量的实值函数,并且 [公式] ,则可以证明(需要较深的数学知识): [公式] .笔者感到疑惑,到底需要什么较深的数学知识?先自己尝试一下证明,看会遇到哪些困难吧。令: [公式] , [公式] 的概率密度函数为 [公式] .则根据定义: [公式] ,因此只需证明 :[公式]。但是这是困难的,因此寻找 [公式]并非易事。这时候老师提示,可以先考虑一些特殊情况来做一些形式推导。比如说,先考虑 [公式] 单调递增且可导的情况:设 [公式] 的分布函数为 [公式] ,则根据定义 :[公式](利用单调增可逆成功将 [公式] 转化为 [公式] 此时: [公式] )因此: [公式] 根据复合函数求导的链式法则上式即: [公式] .证毕。然而,这仅仅是一小类函数,对于一般的可导函数,在老师的提示下,我发现也可以通过划分区间的方法,将函数分成若干个单调区域来处理,划分区间,自然和积分的定义联系上了。[公式] 其中: [公式][公式][公式] [公式][公式][公式][公式][公式]至此,在 [公式] 可导的情况下我们证明了 [公式] 成立。陶小凡2023-06-06 07:54:481
离散型随机变量的期望和方差是多少?
期望:X服从泊松分布,因而它的数学期望就是λ,那么根据数学定理可知,随机变量的函数的数学期望就是F(EX),所以COS(πX)的数学期望就是COS(πλ)。离散型随机变量的方差:D(X) = E{[X - E(X)]^2};(1)=E(X^2) - (EX)^2;(2),(1)式是方差的离差表示,,如果不懂,可以记忆(2)式,(2)式表示:方差 = X^2的期望 - X的期望的平方。X和X^2都是随机变量,针对于某次随机变量的取值, 方差在统计描述和概率分布中各有不同的定义,并有不同的公式。在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。wpBeta2023-06-06 07:54:471
概率里是不是如果随机变量的期望存在,则方差必存在?
随机变量的期望存在,则方差不一定存在. 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 ... 取n的概率为1/2^n . 比如一个随机变量X 取1的概率为 1/2 取2的概率为 1/4 ... 取n的概率为1/2^n .小菜G的建站之路2023-06-06 07:54:461
二维随机变量的期望与方差公式是什么?
P(X/Y<0)=0.5本题使用正态分布与独立性分析:(x,y)~N(0,0,1,1,0)说明X~N(0,1),Y~N(0,1)且X与Y独立X/Y<0,即X与Y反号所以 P(X/Y<0)=P(X>0,Y<0)+P(X<0,Y>0)=P(X>0)P(Y<0)+P(X<0)P(Y>0)=0.5×0.5+0.5×0.5=0.5二维随机变量( X,Y)的性质不仅与X 、Y 有关,而且还依赖于这两个随机变量的相互关系。因此,逐个地来研究X或Y的性质是不够的,还需将(X,Y)作为一个整体来研究。扩展资料:在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。参考资料来源:百度百科——二维随机变量Ntou1232023-06-06 07:54:451
离散型随机变量的期望和方差是什么?
离散型随机变量的方差:D(X) = E{[X - E(X)]^2}=E(X^2) - (EX)^2.(2)。X和X^2都是随机变量,针对于某次随机变量的取值, 例如: 随机变量X服从“0 - 1”:取0概率为q,取1概率为p,p+q=1 则: 对于随即变量X的期望 E(X) = 0*q + 1*p = p 同样对于随即变量X^2的期望 E(X^2) = 0^2 * q + 1^2 * p = p。离散型随机变量的概率分布基本性质:对于集合{xn,n=1,2,……}中的任何一个子集A,事件“X在A中取值”即“X∈A”的概率为:P{X∈A}=∑Pn特别的,如果一个试验所包含的事件只有两个,其概率分布为:P{X=x1}=p(0<p<1),P{X=x2}=1-p=q。这种分布称为两点分布。 如果x1=1,x2=0,有P{X=1}=p,P{X=0}=q。这时称X服从参数为p的0-1分布,它是离散型随机变量分布中最简单的一种。由于是数学家伯努利最先研究发现的,为了纪念他,我们也把服从这种分布的试验叫伯努利试验。习惯上,把伯努利的一种结果称为“成功”,另一种称为“失败”。韦斯特兰2023-06-06 07:54:451
离散型随机变量的期望和方差是什么?
离散型随机变量的方差:D(X) = E{[X - E(X)]^2}.(1)=E(X^2) - (EX)^2.(2)(1)式是方差的离差表示法。(2)式表示:方差 = X^2的期望 - X的期望的平方。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。方差统计方差在统计描述和概率分布中各有不同的定义,并有不同的公式,在统计描述中,方差用来计算每一个变量(观察值)与总体均数之间的差异。为避免出现离均差总和为零,离均差平方和受样本含量的影响,统计学采用平均离均差平方和来描述变量的变异程度。FinCloud2023-06-06 07:54:451
离散型随机变量的期望和方差是什么?
离散型随机变量的的期望也就是离散型随机变量的均值的是为了表达一个随机变量取值的中间水平,随机变量的方差刻画了随机变量取值的离散程度。由于它们反映了随机变量取值的平均水平及稳定性,所以随机变量的均值和方差在市场预测等其他方面有着重要的应用。离散型随机变量的期望公式:离散型随机变量X的取值为X1、X2、X3……Xn,p(X1)、p(X2)、p(X3)……p(Xn)、为X对应取值的概率,可理解为数据X1、X2、X3……Xn出现的频率高f(Xi)。则E(X)=X1*p(X1)+X2**p(X2)+……+Xn**p(Xn)= X1*f1(X1)+X2*f2(X2)+……+Xn*fn(Xn)。离散型随机变量的方差公式:D(X)=E{[X-E(X)]^2}=E(X^2)-(EX)^2。常见的分布的方差和期望:1、均匀分布:期望是(a+b)/2,方差是(b-a)的平方/12。2、二项分布:期望是np,方差是npq。3、泊松分布:期望是p,方差是p。4、指数分布:期望是1/p,方差是1/(p的平方)。5、正态分布:期望是u,方差是&的平方。6、X服从参数为p的0-1分布,则E(X)=p,d(X)=p(1-p)。韦斯特兰2023-06-06 07:54:441
随机变量的期望和方差是什么?
随机变量的期望是度量一个随机变量取值的集中位置或平均水平的最基本的数字特征,方差是表示随机变量取值的分散性的一个数字特征。 方差越大,说明随机变量的取值分布越不均匀,变化性越强,方差越小,说明随机变量的取值越趋近于均值,即期望值。期望值是随机试验在同样的机会下重复多次的结果计算出的等同期望的平均值,需要注意的是,期望值并不一定等同于常识中的期望,期望值,也许与每一个结果都不相等。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量,概率论中方差用来度量随机变量和其数学期望,即均值之间的偏离程度,统计中的方差,样本方差是各个数据分别与其平均数之差的平方的和的平均数,在许多实际问题中,研究方差即偏离程度有着重要意义。随机变量的内容随机变量X 是一个映射,把随机试验的结果与实数建立起了一一对应的关系,而期望与方差是随机变量的两个重要的数字特征。随机变量表示随机现象,在一定条件下,并不总是出现相同结果的现象称为随机现象中各种结果的实值函数,一切可能的样本点,例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等,都是随机变量的实例。随机变量与模糊变量的不确定性的本质差别在于,后者的测定结果仍具有不确定性,即模糊性,随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达,随机事件数量化的好处是可以用数学分析的方法来研究随机现象,例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。拌三丝2023-06-06 07:54:431
随机变量的期望和方差是什么?
一、随机变量的期望分为离散情形和连续情形:1、离散型(discrete)随机变量即在一定区间内变量取值为有限个或可数个。例如某地区某年人口的出生数、死亡数,某药治疗某病病人的有效数、无效数等。离散型随机变量通常依据概率质量函数分类,主要分为:伯努利随机变量、二项随机变量、几何随机变量和泊松随机变量。2、连续型(continuous)随机变量即在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。二、离散型随机变量的方差:D(X) = E{[X - E(X)]^2}.(1)=E(X^2) - (EX)^2.(2)。(1)式是方差的离差表示法。(2)式表示:方差 = X^2的期望 - X的期望的平方。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。随机变量(random variable)表示随机试验各种结果的实值单值函数。随机事件不论与数量是否直接有关,都可以数量化,即都能用数量化的方式表达。随机事件数量化的好处是可以用数学分析的方法来研究随机现象。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数,灯泡的寿命等等,都是随机变量的实例。善士六合2023-06-06 07:54:431
随机变量的期望和方差是什么?
期望可以理解为这个变量的平均值。是对随机变量本身客观价值的一种表现,因为随机无法确定,大家心里需要有个数,这个随机的因素到底围绕的哪条线变化,期望就是那条线方差则是另一种特征,他描述的是随机变量的波动性围绕着期望波动的大小,方差越大,说明这个事变数越大,容易偏离平均值很远。随机变量的期望假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值每周只进一次货若供大于求,则削价处理若供不应求,可从其他超市调拨假设某一超市出售的某种商品,每周的需求量X在10至30范围内等可能取值,该商品的进货量也在10至30范围内等可能取值。九万里风9 2023-06-06 07:54:431
怎样求二维随机变量的期望值和方差?
对于二维连续变量的分布函数F(x,y),一般应用其概率密度函数f(x,y)的定积分求解;对于非连续变量,需要分别累加求得【与一维随机变量的求法相仿】。∴本题中,当x∈(0,∞)、y∈(0,∞)时,分布函数F(x,y)=∫(-∞,x)du∫(-∞,y)f(u,v)dv=∫(0,x)du∫(-0,y)2e^(-2u-v)dv=∫(0,x)2e^(-2u)du∫(-0,y)e^(-v)dv=[1-e^(-2x)][1-e^(-y)]。当xu2209(0,∞)、yu2209(0,∞)时,分布函数F(x,y)=∫(-∞,0)du∫(-∞,0)f(u,v)dv=0。扩展资料:随机变量在不同的条件下由于偶然因素影响,可能取各种不同的值,故其具有不确定性和随机性,但这些取值落在某个范围的概率是一定的,此种变量称为随机变量。随机变量可以是离散型的,也可以是连续型的。事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律(概率函数)而不是分布函数来描述离散型随机变量。参考资料来源:百度百科——二维随机变量可桃可挑2023-06-06 07:53:361