随机变量及其分布

选修2-3第二章随机变量及其分布的核心是什么

核心内容是求分布列及均值(期望),服从二次分布,服从超几何分布,服从两点分布!
无尘剑 2023-06-13 08:11:271

随机变量及其分布

1.P(x=k)=C(k,n)*p^k*(1-p)^(n-k)2.????分布函数呢?3.X=0 C(0,3)*(1/2)^1*(1/2)^2=1/8X=1 C(1,3)*(1/2)^1*(1/2)^2=3/8X=2 C(2,3)*(1/2)^1*(1/2)^2=3/8X=3 C(3,3)*(1/2)^1*(1/2)^2=1/84.????分布函数呢?5.P{10<X<13}=Φ((13-10)/√22)-Φ((10-10)/√22)P{X>13}=1-Φ((13-10)/√22)P{|X-10|<2}=P{-2<X-10<2}=P{8<X-10<12}=Φ((12-10)/√22)-Φ((8-10)/√22)P{X<-28}=Φ((-28-10)/√22)P{X>-15}=1-Φ((-15-10)/√22)
tt白2023-06-06 07:55:421

随机变量及其分布,帮忙,急啊U0001f64f

一个积分而已,后面两个自己想想。写写才能真正会。望采纳,谢谢
黑桃花2023-06-06 07:55:423

离散型随机变量及其分布列的性质概率为什么可以等于0

瑞瑞爱吃桃2023-06-06 07:54:371

离散型随机变量及其分布 当X为0或者负数时数学期望和方差怎么算

a=1-0.2-0.1-0.3=0.4EX=0*0.2+1*0.1+2*0.3+3*0.4=1.9x^2对应的概率分布为0、1、4、9P=0.2,0.1,0.3,0.4EX^2=0*0.2+1*0.1+4*0.3+9*0.4=4.9DX=EX^2-(EX)^2=4.9-1.9*1.9=1.29
西柚不是西游2023-06-06 07:54:331

高中数学随机变量及其分布,我认为不能用二项分布来做,理由写出,请老师解释一下,谢谢!

FinCloud2023-06-06 07:54:301

概率论与数理统计,随机变量及其分布中,已知二维概率密度,如何求分布函数?

解:于二维连续变量布函数F(x,y)般应用其概率密度函数f(x,y)定积求解;于非连续变量需要别累加求【与维随机变量求相仿】∴本题x∈(0,∞)、y∈(0,∞)布函数F(x,y)=∫(-∞,x)du∫(-∞,y)f(u,v)dv=∫(0,x)du∫(-0,y)2e^(-2u-v)dv=∫(0,x)2e^(-2u)du∫(-0,y)e^(-v)dv=[1-e^(-2x)][1-e^(-y)]x?(0,∞)、y?(0,∞)布函数F(x,y)=∫(-∞,0)du∫(-∞,0)f(u,v)dv=0供参考
余辉2023-06-06 07:54:291

[紧急求助]高中数学随机变量及其分布。在算概率时,有放回跟没放回分别有什么不同?分别用什么不同方法...

盒中有10球,6白,4红,每次取一球(1)不放回取两次,第二次取红的概率为C(1,6)/C(1,10)* C(1,4)/C(1,9)+C(1,4)/C(1,10)* C(1,3)/C(1,9)=4/15+2/15=2/5(2) 放回取两次,第二次取红球的概率C(1,4)/C(1,10)=2/5
黑桃花2023-06-06 07:54:285

随机变量及其分布高考占多少分

10%~20%之间。高考数学中关于随机变量及其分布的考查,通常占据整个数学试卷的比重较小,一般在10%~20%之间,具体分值还需参考各地高考数学试卷的考题分布情况而定。
余辉2023-06-06 07:54:271

概率论与数理统计——多维随机变量及其分布

阿啵呲嘚2023-06-06 07:54:262

概率论随机变量及其分布

1、第一次调整后 废品率已经为p=0.1正品为0.9 设想两个箱子一个放正品的A箱,一个放废品的B箱容量无限先拿第1个,如果放入A 0.9 一个正品再拿第2个,放入A (0.9)^2 二个正品3,(0.9)^3 三个正品…… (0.9)^k k个正品一直到废品的出现才终止 (0.9)^k×0.1一共k个正品3、第三题等待高手解答。。。俺不会
真颛2023-06-06 07:54:252

概率论里多维随机变量及其分布。。第(2)题,积分的范围怎么看。。

求P(Y≤X),首先Y≤X在平面中就是直线y=x下面的部分,比如(2,1)满足Y≤X,并且在直线y=x下面。此时求积分就是求在直线y=x下面部分的积分,其实就是满足Y≤X。因为原来密度函数的定义域是x>0,y>0,所以约束条件就是一个三角形区域,x>0,y>0,y≤x.所以如果先对y积分时的上下限就是0到x,再对x积分的上下限是0到正无穷,如果先对x积分时的上下限就是y到正无穷(因为y≤x),再对y积分的上下限是0到正无穷,
无尘剑 2023-06-06 07:54:251

概率论里多维随机变量及其分布。。第(2)题,积分的范围怎么看。。

求 P(Y≤X) ,首先Y≤X 在平面中就是直线y=x 下面的部分,比如 (2,1) 满足Y≤X,并且在直线y=x 下面。此时求积分就是求在直线y=x下面部分的积分,其实就是满足Y≤X。因为原来密度函数的定义域是x>0,y>0,所以约束条件就是一个三角形区域,x>0,y>0,y≤x.所以如果先对y积分时的上下限就是0到x, 再对x积分的上下限是0到正无穷, 如果先对x积分时的上下限就是y到正无穷(因为y≤x), 再对y积分的上下限是0到正无穷,
黑桃花2023-06-06 07:54:251

概率统计随机变量及其分布1-(1-p)^n

能详细点吗
肖振2023-06-06 07:54:252

在随机变量及其分布中大h代表什么?

随机变量包括离散型与连续型两种,如果事件的结果能够列出来就就是离散型,反之就是连续型,比如一天的温度变化[12度,25度]是一个连续变化的过程,不能一一列举出来,就是一个连续型的随机变量。相应的例子还有人一生的身高等等。而射击中标次数则是一个离散型的。
拌三丝2023-06-06 07:54:241

概率论与数理统计问题,随机变量及其分布,满意必采纳,谢谢大神。

1)f(x,y)在x>0,y>0区域上的二重积分等于1,即可求出A;2)联合分布分数就是f(x,y)在二重积分(变上限积分);3)f(x,y)在相应区域上的二重积分即为所求概率。这个输入框无法输入数学符号,只能用语言描述,见谅。
Chen2023-06-06 07:54:231

随机变量及其分布作业,求高手,求答案

这是 概率论 的习题吧
mlhxueli 2023-06-06 07:54:231

概率统计随机变量及其分布1-(1-p)^n 1-(1-p)^n是定理吗?还是根据什么推出来的?

我猜你想问这个: 随机事件A服从B(n,p),要求n次试验事件A发生的概率 利用对立事件的关系,P(n次试验事件A发生的概率)=1-P(n次试验事件A都不发生的概率) P(n次试验事件A都不发生的概率)=每次事件A都不发生=(事件A不发生)^n 结果就是 1-(1-p)^n 就是这么推出来的,
小白2023-06-06 07:54:221

二维随机变量及其分布函数

定义3.1.1 设 是二维随机向量,对于任意实数x,y,称二元函数 为 的分布函数 性质 二维离散型随机向量 定义3.2.1 设二维离散型随机向量 所有可能的取值为 显然有: 二维连续型随机向量 定义3.3.1 对于二维随机向量 为其分布函数,若存在非负函数 使得对任意实数x,y总有 则称(X,Y)是二维连续型随机向量,称 为二维随机向量(X,Y)的概率密度函数,简称概率密度 性质 记 有 由上可得:
人类地板流精华2023-06-06 07:54:221

数学中随机变量及其分布的符号都叫啥

X表示随机变量,在这里可以取0、1、2、3、...、n意思是在n次试验中某一结果出现了X次,B表示二项分布。n表示一共做了n次重复的二项实验(只有两种结果的实验)。P表示在一次二项试验中某一结果出现的概率。0—1分布,数学期望p 方差p(1-p);二项分布(贝努里概型),数学期望np 方差np(1-p);泊松分布,数学期望λ 方差λ;均匀分布,数学期望(a+b)/2 方差[(b-a)^2]/12;指数分布,数学期望1/λ 方差1/λ^2;正态分布,数学期望μ 方差σ^2;标准正态分布,数学期望0 方差1。
小菜G的建站之路2023-06-06 07:54:211

关于随机变量及其分布:对于哪些分布来说,同属于这种分布的两个随机变量加起来还属于这一分布,例如AB

你说的这种现象也称为再生性,即相互独立的两个同类型随机变量之和仍服从同一类型的分布。在常用的的分布中满足再生性的如下(均设X,Y独立),注意有些只对一个参数满足再生性:二项分布:X~B(m, p),Y~B(n, p),则X+Y~B(m+n, p)泊松分布:X~P(λ1),Y~P(λ2),则X+Y~P(λ1+λ2)正态分布:X~N(μ1, (σ1)^2),Y~N(μ2, (σ2)^2),则X+Y~N(μ1+μ2, (σ1)^2+(σ2)^2)Γ分布:X~Γ(λ, r1),Y~Γ(λ, r2),则X+Y~Γ(λ, r1+r2)(卡方分布是特殊的Γ分布,也满足再生性)请采纳,谢谢!
再也不做站长了2023-06-06 07:54:211

概率论(三):多维随机变量及其分布

设 是一个随机试验,它的样本空间是 ,设 和 是定义在 上的随机变量,它们构成的向量 称为 二维随机向量 或 二维随机变量 假如 是二维随机变量,对于任意实数 二元函数: 称为 二维随机变量 的 分布函数 ,或称为随机变量 和 的 联合分布函数 随机点 落在矩形区域 的概率为 类似地,如果二维随机变量 所有可能取值是 有限对 或 无限可列对 ,则称 是 离散型的随机变量 ,假如 所有可能取的值为 ,我们称之为随机变量 和 的 联合分布律 ,此时 ,又由概率定义知: 假如对于随机变量 的分布函数 ,存在非负函数 使对于任意 有 ,那么 是 连续型的二维随机变量 ,函数 则是其 概率密度 ,或说是随机变量 的 联合概率密度 ,根据有关定义,有: 对于二维随机变量 来说, 都有各自的分布函数,记作 ,并将之称为分别关于 的 边缘分布函数 : ,对于 ,同理。 易知对于 离散型随机变量 : 可求得 的分布律: , 即关于随机变量 的 边缘分布 对于连续型随机变量 : ,可求概率密度: , ,此概率密度称为 边缘概率密度 设 是 二维离散型随机变量 ,对于固定的 ,若 ,则说: 为在 条件下随机变量 的 条件分布律 设 是 二维连续型随机变量 ,概率密度为 ,关于 的边缘概率密度为 ,对于固定的 , ,则称: 为在 条件下 的 条件概率密度 ,进一步: 为 条件分布函数 若二维随机变量 概率密度为 ,其中· 为是平面上的有界区域,其面积为 ,则称随机变量在 上服从 均匀分布 。 对于任意 ,假如有以下式子成立: ,即 ,则说随机变量 与 是 相互独立 的,或者连续型随机变量对应等式 成立时,离散型随机变量对应等式: 成立时。 若 是二维连续型随机变量且其概率密度为 ,则 仍为连续型随机变量,概率密度为: 或 如果 相互独立,那么 ,此公式亦称 卷积公式 若 是二维连续型随机变量且其概率密度为 ,则 仍为连续型随机变量,概率密度分别为: 如果 相互独立,那么 相互独立,则: 推广到 个相互独立的随机变量:
北境漫步2023-06-06 07:54:211

怎样学习高中的随机变量及其分布

随机变量及其分布这一部分在高中数学内容里虽是重点但不是难点。我上了大学现在还在学它。高中的随机变量及其分布在很多省市的高考卷中有一道大题。我觉得最好的方法就是背公式然后做题,离散型随机变量有规律可循。如果硬要说有难点的话就是在算每个离散值的概率上,可能要用到一些公式,什么C啊A啊的,这些很容易出错。至于后面求期望什么的,关键点在于计算正确。想要踏实的学习它,我觉得最速成的方法就是做题,直接做高考题,做多了就有规律了,公式也能熟练应用了。
九万里风9 2023-06-06 07:54:211

概率论-论随机变量及其分布的题 求解

1、设离散型随机变量x的分布律如下,求a的值。阿P{Xx}(k1.2,,n,)kk! a解:由性质2,我们有,而 1k1k! a1 1 a a 1 a(e1)k1k!k1k! k0k!则有等式a(e-1)1,解得a 1/(e-1)例2设一辆汽车在开往目地的的道路上需经过两组信号灯,每组信号灯以1/2的概率允许或禁止汽车通过.以X表示汽车首次停下时,它已通过的信号灯的组数(设各组信号灯的工作是相互独立的)求X的分布律与分布函数解以p表示每组信号灯禁止汽车通过的概率易知X的分布律为X012概率p(1 p)p(1 p)2将p1/2代入表格,我们有X012概率0.5 0.25 0.25下面求X的分布函数F(x)当0<x<2时,{X<x}等同于{X0或X1},因此F(x)P{X0}+P{X1}0.5+0.25 0.75当2<x时{X<x}是必然事件,因此F(x)1。综合起来,F(x)的表达式为:0,x 0,0.5,0 x 1,F(x)0.75,1 x 2,1,x 2例3如上图所示.电子线路中装有两个并联的 继电器.假设这两个继电器是否接通具有随机 性,且彼此独立.已知每个电器接通的概率为0.8,记X为线路中接通的继电器的个数.
ardim2023-06-06 07:54:211

概率论与数理统计 第三章 二维随机变量及其分布

在许多实际问题中,需要使用多个随机变量来描述随机现象,如天气预报包括:空气质量、天气实况、温度、降水等,需要多个随机变量。 多维随机变量的研究方法和二维随机变量的研究思想及方法相同,为简便起见,着重介绍二维随机变量。 二维随机变量的定义 : 可以说二维随机变量 是一个特殊的二元函数,其定义域为样本空间 ,值域 。很重要的一点是首先确定其值域。 n维随机变量的定义 : 联合分布函数 : n维分布函数 : 定理1 联合分布函数的性质: 二维随机变量也分为离散型和非离散型,如果它取值于平面上的一些离散的点,就称为二维离散型随机变量。下面两图分别给出二维离散型和连续型随机变量的概率分布。 二维离散型随机变量 的定义:二维随机变量 仅可能取有限个或可列无限个值。 联合分布律 的定义: 二维连续型随机变量及其联合密度函数 定义: n维连续型随机变量及其联合密度函数 : 联合密度函数具有非负性和规范性。 二维均匀分布 的定义: 如果已知二维随机变量 的联合分布,那么 其中一个随机变量的分布 肯定能够得到,其分布我们称为 边缘分布 。 边缘分布函数的定义 : 边缘分布律 : 由定义知,求 的边缘分布律即为求 联合分布律表格中的行和;求 的边缘分布律即为求 联合分布律表格中的列和。 因为边缘分布律位于 联合分布表格的边缘 ,所以称其为边缘分布律。 边缘密度函数的定义 : 若已知联合密度函数,边缘密度函数可以直接由定义公式计算得到;若已知联合分布函数,首先计算边缘分布函数,再对边缘分布函数求导得到边缘密度函数。 无论使用哪种方法,首先要确定随机变量的值域,值域之外密度函数都为0。 二维正态分布的边缘仍是正态分布 定理: 将相互独立性的概念推广至随机变量: 随机变量相互独立 的定义: 二维离散随机变量相互独立 定理: 二维连续随机变量相互独立 定理: 二维正态分布随机变量相互独立 :相关系数为0 推广到n维的相互独立 : 实际工作中我们需要考虑这样的问题:当一个随机变量的取值确定时,另外一个随机变量的取值规律如何。如新生男婴的身高和体重分别用 和 表示。讨论当男婴身高为50cm时,男婴体重的分布规律。这需要引入条件分布才能计算。 在给定条件 下随机变量 的条件分布律定义: 二维连续型随机变量的密度函数 的定义与二维离散型随机变量的条件分布律类似。 条件密度函数的直观解释: 条件分布函数的定义 : 将条件密度函数积分即可。 和离散型情形相类似,知道X的边缘密度函数及X取任一个固定值时Y的条件密度函数,则可唯一地确定联合密度函数。 如计算Z=X+Y的分布。 结论: 特别地有以下结论: 由该结论可知,相互独立的成功概率相同的二项分布之和仍服从二项分布,相互独立的泊松分布之和仍服从泊松分布。这称为:该分布具有可加性。这里要求随机变量相互独立。 和一维连续型随机变量函数的分布计算方法类似,可采用分布函数法计算二维连续型随机变量函数的分布。这种计算方法称为 分布函数法 。 定理法 : 二维正态分布 : 最大值、最小值分布函数 定理(可由分布函数的定义、相互独立型得到): 指数分布的最小值不变性 :指数分布的最小值仍服从指数分布。
此后故乡只2023-06-06 07:54:211

(概率论基础3)随机变量及其分布律-总结

对于随机变量而言,每一个值都对应着试验中发生的一个概率,记为 ,离散型随机变量的取值范围是有限可列的,因此,随机变量的 个取值就有 种概率。那么,好事者需要知道这个随机变量所有的取值,就诞生了 分布律 的概念。 在进行随机试验的结果中,第一次试验的结果可能不尽人意,因此你想要尝试再试一次,直到。。。10次投掷之后,你仍然在大本营里转悠,回头看看这10次试验的所有结果,你发现,在这10次结果中,你的点数是这样的: 看了这10次的结果,你需要尽快出门,于是修改了规则: 不需要扔到6点,只要扔到点数小于 4即可,这样的话,小于 任意一个实数 的所有可能性之和,称作为 分布函数 。通俗的说,就是研究的目标从一个点变成了一个 范围 。那么,用数学公示表达就是: ,在你的提议中, 。你能够大本营离开的几率从原来的 ;提升到了 。 这个标题应该划分成:随机变量 / 的函数 / 的分布函数。 依旧是飞行棋,你的对手一听,小于4点你就能走了?为了尽可能保证自己的优势,又防止你放弃游戏,就说,这样吧,你 投的点数的平方小于6,你才能走 ,这样的话,"投的点数的平方" 就是一个随机变量的函数,即 ,那么这样的话: 你朋友的内心OS:1/2太大了,整小点,我可能会多走几步。于是乎就有了 你终于出门了,但是发现对手已经跑完半圈了,这个时候,他提议要不然玩点刺激的:在掷骰子之前,先掷硬币,正面向上,你掷骰子的点数翻倍,若是硬币反面朝上,你掷骰子的点数是多少,你后退多少步。 同样的 那么,在二维连续型随机变量中,两个随机变量共同决定的概率密度,叫做 联合概率密度 。我要 求边缘概率密度 怎么办?以 为例,随机变量 的概率密度和 没有关系,那就把令关于 部分的和为1就好了,也就是求 联合概率密度对 求积分。 更进一步地想, 联合分布函数(二维) 是对随机变量 和 在内的积分,也就是说,其实就是两个实数: 在 平面上圈了一块地,现在要在这块地上建一个房子。 这个房子有两个要求: 那么两个随机变量的函数的分布又是一个什么鬼? 两人按照要求盖好了房子,准备入住,另一个随机变量 过来说,我也要盖房子,给我一点建议吧。我呢,你们俩凑合凑合就可以伪装成我,即: 说白了, 就是在 原有 基础上 ,加了一点点限制,比如若 ,限制为 ;若限制关系为: ,则有 。 既然多了限制, 的取值范围就要做出相应的调整。 需要注意的点有:
wpBeta2023-06-06 07:54:201

离散型随机变量及其分布列是什么?

离散型随机变量:所有取值可以一一列出的随机变量;离散型随机变量的分布列:如果离散型随机变量ξ可能取的值为x1,x2,x3,…,xn,…,而ξ取每一个值xi(i=1,2,3,…)的概率P(ξ=xi)=pi。求离散型随机变量分布列:(1)先判断一个变量是否为离散型随机变量,主要看变量的值能否按一定的顺序一一列举出来。(2)明确随机变量X可取哪些值。(3)求x取每一个值的概率。(4)列成分布列表。
再也不做站长了2023-06-06 07:52:481