1 共线知识点 定比分点 定比分点公式(向量P1P=λ 向量PP2) 设P1、P2是直线上的两点,P是l上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ 向量PP2,λ叫做点P分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有 OP=(OP1+λOP2)(1+λ);(定比分点向量公式) x=(x1+λx2)/(1+λ), y=(y1+λy2)/(1+λ)。(定比分点坐标公式) 我们把上面的式子叫做有向线段P1P2的定比分点公式 三点共线定理 若OC=λOA +μOB ,且λ+μ=1 ,则A、B、C三点共线 三角形重心判断式 在△ABC中,若GA +GB +GC=O,则G为△ABC的重心 向量共线的重要条件 设a=(x,y),b=(x",y")。 若b≠0,则a//b的重要条件是存在唯一实数λ,使a=λb。 a//b的重要条件是 xy"-x"y=0。 零向量0平行于任何向量。 向量垂直的充要条件 a⊥b的充要条件是 a b=0。 a⊥b的充要条件是 xx"+yy"=0。 零向量0垂直于任何向量. 2、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣ ∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa) b=λ(a b)=(a λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a b。若a、b不共线,则a b=|a| |b| cos〈a,b〉;若a、b共线,则a b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a b=x x"+y y"。 向量的数量积的运算律 a b=b a(交换律); (λa) b=λ(a b)(关于数乘法的结合律); (a+b) c=a c+b c(分配律); 向量的数量积的性质 a a=|a|的平方。 a⊥b 〈=〉a b=0。 |a b|≤|a| |b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a b) c≠a (b c);例如:(a b)^2≠a^2 b^2。 2、向量的数量积不满足消去律,即:由 a b=a c (a≠0),推不出 b=c。 3、|a b|≠|a| |b| 4、由 |a|=|b| ,推不出 a=b或a=-b。
北有云溪2023-05-14 13:59:161