法向量是什么意思
法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。根据查询大学微积分得知,由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。法向量适用于解析几何。大鱼炖火锅2023-07-14 07:14:371
法向量是什么意思
法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量.由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但是这些法向量之间相互平行.从理论上述,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息.一般不选择零向量为平面的法向量. 如果已知直线与平面垂直,可以取已知直线的两点构成的向量作为法向量;如果不存在这样的直线,可用设元法求一个平面的法向量;步骤如下:首先设平面的法向量m(x,y,z),然后寻找平面内任意两个不共线的向量AB(x1,y1,z1)和CD(x2,y2,z2).由于平面法向量垂直于平面内所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0. 由于上面解法存在三个未知数两个方程(不能通过增加新的向量和方程求解,因为其它方程和上述两个方程是等价的),无法得到唯一的法向量(因为法向量不是唯一的).为了得到确定法向量,可采用固定z=1(也可以固定x=1或y=1)或者模等于1的方法(单位法向量),但是这步并不是必须的.因为确定法向量和不确定法向量的作用是一样的.mlhxueli 2023-07-14 07:14:341
法向量是什么
法向量是什么:是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。一、详细释义1、由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但相互平行。从理论上说,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。2、在平面几何中,如果一个向量垂直于一条直线,那么它就叫做直线的法向量。在立体几何中,如果一个向量垂直于一个平面,那么它就叫做平面的法向量。在立体几何中,如果一个向量同时垂直于两条或多条异面直线,那么向量叫做这些异面直线的公共法向量。二、法向量的主要应用1、求斜线与平面所成的角:求出平面法向量和斜线的一边,然后联立方程组,可以得到角度的余弦值,根据公式Sinα=|Cosα|。利用这个原理也可以证明线面平行。2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补。3、求点到面的距离:求任一斜线(平面上一点与平面内的连线在)法向量方向的射影,利用这个原理也可以求异面直线的距离。三、法向量公式法向量公式是设a=(x,y),b=(x",y")。平面的法向量确定平面位置的重要向量,指与平面垂直的非零向量,一个平面的法向量可有无限多个,但单位法向量有且仅有两个。例如在空间直角坐标系中平面Ax+By+Cz+D=0的法向量为n=(A,B,C),而它的单位法向量即法向量除以法向量的长度,正负代表方向。拌三丝2023-07-14 07:14:312
高数中,平面x 平面y 平面z的法向量是什么
i,j,k?余辉2023-05-25 07:25:093
平面的法向量是什么啊?出道题解解
垂直于平面的方向向量,有正负,如果平面的方程式3x+y+7z-5=0,则平面的法向量是(3,1,7)此后故乡只2023-05-25 07:25:081
平面的法向量是什么?
是一个平面。法向量是(1,1,1),用点法式方程表示就是1*(x-0)+1*(y-0)+1*(z-0)=0,所以是一个通过原点的平面。水平的平面可以画成一个平行四边形;当平面水平放置时,把平行四边形的锐角画成45°,钝角画成135°,横边画成邻边的2倍长;看不见的线段画成虚线或不画。扩展资料:三角形切割平面是指用三角形将平面划分成多个部分。n个三角形最多将平面分割成3n(n-1)+2个部分,最少将平面分割成2n个部分。如果一条直线上的两点在一个平面内,那么这条直线在此平面内。过不在一条直线上的三点,有且只有一个平面。如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。北有云溪2023-05-25 07:25:051
平面法向量是什么?
平面的法向量(normal vector of a plane)确定平面位置的重要向量.指与平面垂直的非零向量。一个平面的法向量可有无限多个,但单位法向量有且仅有两个。例如:在空间直角坐标系中,平面Ax+By+Cz+D=0的法向量为n=(A,B,C),而它的单位法向量即法向量除以法向量的长度,正负代表方向。扩展资料曲线法向量曲面(surface)上的法线向量场(vector field of normals)。曲面法线的法向不具有唯一性(uniqueness),在相反方向的法线也是曲面法线。曲面在三维的边界(topological boundary)内可以分区出inward-pointing normal与outer-pointing normal,有助于定义出法线唯一方法(unique way)。定向曲面的法线通常按照右手定则来确定。九万里风9 2023-05-25 07:25:051
平面的法向量是什么?
平面的法向量(normal vector of a plane)确定平面位置的重要向量.指与平面垂直的非零向量。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。几何向量的概念在线性代数中经由抽象化,得到更一般的向量概念。此处向量定义为向量空间的元素,要注意这些抽象意义上的向量不一定以数对表示,大小和方向的概念亦不一定适用。因此,平日阅读时需按照语境来区分文中所说的"向量"是哪一种概念。不过,依然可以找出一个向量空间的基来设置坐标系,也可以透过选取恰当的定义,在向量空间上介定范数和内积,这允许我们把抽象意义上的向量类比为具体的几何向量。陶小凡2023-05-25 07:25:051
叉积法秒杀法向量是什么?
简单点说就是叉积表示平行四边形面积,而平四有方向,方向就是法向量。简单点说就是叉积表示平行四边形面积,而平四有方向,方向就是法向量。透彻点就是为了满足向量交换律的使用,这个学了线代估计你能理解。参考c=a×b的定义。易知,假如a与b不共线。则c垂直于a与b所在的平面。示的直线是两个平面的交线,所以分别得到两个平面的法向后,二者叉乘即为交线的方向向量,结果为(0,-1,-2)。注意,是直线的方向向量,而不是你说的法向量。相乘应该是叉乘。 向量的乘积有两种:一种是点积(又叫内积、数量积),结果是一个实数, 定义是:a=(a1,a2,a3) ,b=(b1,b2,b3) , 则 a*b=a1*b1+a2*b2+a3*b3 。 还有一种是叉积(又叫外积、向量积),结果是一个向量, a×b 是这样定义的:大小等于以 a、b 为邻边的平行四边形的面积。方向与 a、b 都垂直。 如果 a=(a1,a2,a3),b=(b1,b2,b3) , 则 a×b=(a2b3-a3b2,-(a1b3-a3b1),a1b2-a2b1) 。 如果直线的方程是交线式,那么,那两个平面的法向量的叉积正好是直线的方向向量。Ntou1232023-05-24 18:37:231
法向量是什么意思
法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但相互平行。从理论上说,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。在平面几何中,如果一个向量垂直于一条直线,那么它就叫做直线的法向量。在立体几何中,如果一个向量垂直于一个平面,那么它就叫做平面的法向量。在立体几何中,如果一个向量同时垂直于两条或多条异面直线,那么向量叫做这些异面直线的公共法向量。法向量的主要应用如下:一、求斜线与平面所成的角:求出平面法向量和斜线的一边,然后联立方程组,可以得到角度的余弦值,根据公式Sinα=|Cosα|。利用这个原理也可以证明线面平行。二、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补。三、求点到面的距离:求任一斜线(平面上一点与平面内的连线在)法向量方向的射影,利用这个原理也可以求异面直线的距离。Chen2023-05-15 13:53:261
直线方程的方向向量和法向量是什么。
方向向量(1,-a/b)法向量(1,b/a) 化简下就可以了韦斯特兰2023-05-15 13:53:264
高等数学 这条直线的法向量是什么?
图中表示的直线是两个平面的交线,所以分别得到两个平面的法向后,二者叉乘即为交线的方向向量,结果为(0,-1,-2)。注意,是直线的方向向量,而不是你说的法向量。具体过程参考下图:可桃可挑2023-05-15 13:53:251
直线的法向量是什么?
点法向式就是由直线上一点的坐标和与这条直线的法向量确定的------((x0,y0)为直线上一点,{u,v}为直线的法向向量)。(x-x0)·u=(y-y0)·v,且u,v不全为零的方程,称为点法向式方程。该方程可以表示所有直线。注意直线一般方程可理解为两个平面方程的交线,可以分别写出两平面的法向量n1、n2,根据法向量的定义,n1和n2垂直于本平面的所有直线。待求直线为两平面交线,所以必然垂直于n1和n2;根据向量叉乘的几何意义,直线的方向向量L必然平行于n1×n2,可直接令L=n1×n2。再从方程中求出直线上的任意一点(例如可令z=0,直线方程变成二元一次方程组,解出x和y,就得到一个点坐标)。余辉2023-05-15 13:53:241
曲面z=xy 在(1,2,2)的法向量是什么 切平面方程是什么?
p=dz/dx=y,q=dz/dy=x,p0=dz/dx|(1,2,2)=2,q0=dz/dy|(1,2,2)=1,曲面z=xy 在(1,2,2)的法向量为(p0,q0,-1)=(2,1,-1),切平面方程是z-2=p0(x-1)+q0(y-2)即z-2=2(x-1)+1(y-2)拌三丝2023-05-15 13:53:001
曲面的法向量是什么?
曲面的法向量:曲面由方程F(x,y,z)=0决定,相应的某一点M的法向量,只需要对应的求偏导数就可以了。如果曲面S用隐函数表示,点集合(x,y,z)满足F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为▽F(x,y,z)。如果曲面在某点没有切平面,那么在该点就没有法线。求曲面上一点的法向量方法1、曲面由方程F(x,y,z)=0决定,相应的某一点M的法向量你只需要对应的求偏导数就可以了。2、由于法向量所在的是一条直线,所以方向来讲有两个,如果没有特别要求一般是可以随便选择的,如果是坐标的曲面积分什么的,需要注意一下和xyz正方向之间的夹角,因为这关系到面积投影的正负。3、至于法向量的角度这个教材上有写明的,就是对F分别求出x,y,z的偏导数之后,Fx",Fy",Fz",利用各自的分量除以对应的长度就可以了。4、比如说和x轴的角度cosα=Fx"/(Fx"²+Fy"²+Fz"²)^1/2。kikcik2023-05-15 13:52:581
法向量是什么?
就是垂直向量.比如在空间直角坐标系中,xoy平面(既z=0)的法向量就是z轴以及与z轴平行的所有向量.苏州马小云2023-05-15 13:52:561
正侧法向量是什么
法向量应该指与一个平面正交的向量此后故乡只2023-05-15 13:52:563
平面的法向量是什么意思?
与平面垂直的向量此后故乡只2023-05-15 13:52:562
直线的法向量是什么?
直线的法向量是与方向向量相垂直的向量。垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。法向量快速算法:1、建立恰当的直角坐标系。2、设平面法向量n=(x,y,z)。3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3)。4、根据法向量的定义建立方程组n·a=0;n·b=0。FinCloud2023-05-15 13:52:561
高中数学问题。法向量是什么意思?
法相当于垂直意思法向量垂直于原直线(或向量或平面等)向量法平面垂直于原直线(或向量或平面等)平面kikcik2023-05-15 13:52:562
怎么证明曲面的法向量是什么向量?
1)首先从简单开始,如果是平面F(x,y)=0一般形式是Ax+By+C=0法向量是(A,B).因为任意一点(x0,y0)在平面上,A*x0+B*y0+C=0那么A*(x-x0)+B*(y-y0)=0,即向量(A,B)*(x-x0,y-y0)=02)对于一般曲面 F(x,y,z,……)=0两边微分(偏导用大写D),有dF=DF/DX*dx + DF/DY*dy + DF/DZ*dz + ……= d0 = 0那么向量(DF/DX ,DF/DY ,DF/DZ ,……) * (dx ,dy ,dz,……)=0其中向量(dx ,dy ,dz,……)必定在平面上(d是微分嘛,曲面的微小变化量)所以向量(DF/DX ,DF/DY ,DF/DZ ,……) 是曲面的法向量ardim2023-05-15 13:52:561
曲面的法向量是什么?
曲面由方程F(x,y,z)=0决定,相应的某一点M的法向量,只需要对应的求偏导数就可以了。如果曲面S用隐函数表示,点集合(x,y,z)满足F(x,y,z)=0,那么在点(x,y,z)处的曲面法线用梯度表示为▽F(x,y,z)。如果曲面在某点没有切平面,那么在该点就没有法线。详细介绍:曲面方程F(x,y,z)=0的一个法向量可以为n={∂F/∂x,∂F/∂y,∂F/∂z},特别的,若曲面方程能表示成F(x,y,z)=z-z(x,y)=0,那么法向量可以为n=±{∂z/∂x,∂z/∂y,1},+表示法向量向上,-表示法向量向下。法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。Jm-R2023-05-15 13:52:561
平面的法向量是什么
平面的法向量确定平面位置的重要向量,指与平面垂直的非零向量,一个平面的法向量可有无限多个,但单位法向量有且仅有两个。例如在空间直角坐标系中平面Ax+By+Cz+D=0的法向量为n=(A,B,C),而它的单位法向量即法向量除以法向量的长度,正负代表方向。 扩展资料 定义: 三维平面的法线是垂直于该平面的三维向量。曲面在某点P处的法线为垂直于该点切平面的向量。 法线是与多边形的曲面垂直的理论线,一个平面存在无限个法向量。在电脑图学的领域里,法线决定着曲面与光源的.浓淡处理,对于每个点光源位置,其亮度取决于曲面法线的方向。 如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。苏州马小云2023-05-15 13:52:551
平面的法向量是什么意思?
空间中平面方程的一般形式为: Ax+By+Cz=0.其中x,y,z的系数A,B,C是平面的法向量的一组方向数,平行于x轴的平面方程的一般形式为: By+Cz+D=0. (0,B,C)是它的一个法向量。因为X轴垂直于YOZ平面,则YOZ平面内的任何一条过原点的直线L,它的方向向量为(0,B,C),都有一个平面α与之垂直,而这个平面α就平行于X轴。(0,B,C)是α的一个法向量。mlhxueli 2023-05-15 13:52:551
平面的法向量是什么意思?
与该平面垂直的向量为平面的法向量,它和该平面上任意向量的乘积都是0北有云溪2023-05-15 13:52:541
几何向量中的法向量是什么
对于直线的法向量:就是和已知的直线垂直的一个直线的方向向量. 对于平面的法向量:就是和已知的平面垂直的一个直线的方向向量.无尘剑 2023-05-15 13:52:541
坐标平面的法向量怎么设 比如说空间坐标系xyz,xOy平面的法向量是什么(应该有两个是0吧)
只有一个oNerveM 2023-05-15 13:52:543
法向量是什么?
垂直于平面/曲面的向量叫法向量wpBeta2023-05-15 13:52:543
法向量是什么
直线(3,8)他的斜率为8/3就是(1,8/3)一切直线的斜率(1,k)bikbok2023-05-15 13:52:545
法向量是什么意思 法向量具体是什么意思
1、法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。 2、垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。真颛2023-05-15 13:52:541
法向量是什么
法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。一般不选择零向量为平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。tt白2023-05-15 13:52:541
直线的法向量是什么意思?
直线的法向量是与方向向量相垂直的向量。法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。水元素sl2023-05-15 13:52:541
数学里面的法向量是什么
法向量是空间几何的一个概念,它是垂直于一个平面上的一条直线,因为平面是无限延伸的,所以一个平面拥有无限的法向量。法向量经常被人们用来计算空间几何中的余弦值或正弦值。为了让大家更好地了解法向量,为此拿一个例题试试:(求法向量的)(2)已知底面ABCD为正方形∴∠ADC=90º分别作AD中点O,BC中点M,连接OM,OP分别以ON,OA,OP为X,Y,Z轴建立空间直角坐标系A(0,1,0)wpBeta2023-05-15 13:52:533
法向量是什么向量?
1)首先从简单开始,如果是平面F(x,y)=0一般形式是Ax+By+C=0法向量是(A,B).因为任意一点(x0,y0)在平面上,A*x0+B*y0+C=0那么A*(x-x0)+B*(y-y0)=0,即向量(A,B)*(x-x0,y-y0)=02)对于一般曲面 F(x,y,z,……)=0两边微分(偏导用大写D),有dF=DF/DX*dx + DF/DY*dy + DF/DZ*dz + ……= d0 = 0那么向量(DF/DX ,DF/DY ,DF/DZ ,……) * (dx ,dy ,dz,……)=0其中向量(dx ,dy ,dz,……)必定在平面上(d是微分嘛,曲面的微小变化量)所以向量(DF/DX ,DF/DY ,DF/DZ ,……) 是曲面的法向量hi投2023-05-15 13:52:531
几何向量中的法向量是什么
设法向量为n=(x,y,z)然后利用这个向量与目标平面内的两条直线上的向量(方向向量)垂直,每一个垂直可以获得一个关于x,y,z的方程,这样你就获得了两个方程组成的方程组,这个方程组有无数组解(事实上,平面的法向量是不确定的,就其方向来说,也有两大类,再加上模不确定),那么这些,你可以由上面的方程组里,目测一下,哪个量的绝对值较小,便取这个量为1(当然2等等也可以,这样就可以确定出所有的坐标了)如:得到2x+3y-z=0,x-2y=0这样的方程组后,可以发现x是y的两倍,便设y=1,这样x=2,则z=9,于是便可取法向量n=(2,1,9),事实上,所有与这个向量共线的向量均为法向量,如(1,1/2,9/2)等北营2023-05-15 13:52:531
曲面的法向量是什么?
曲面的法向量是空间解析几何的一个概念。垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。法向量定义三维平面的法线是垂直于该平面的三维向量,曲面在某点P处的法线为垂直于该点切平面(tangentplane)的向量,法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normalvector)。在电脑图学(computergraphics)的领域里,法线决定着曲面与光源(lightsource)的浓淡处理(FlatShading),对于每个点光源位置,其亮度取决于曲面法线的方向,如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。人类地板流精华2023-05-15 13:52:531
空间法向量是什么?详细点,谢谢!
法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量,因此一个平面存在无数个法向量,这些法向量相互平行。墨然殇2023-05-15 13:52:531
等值线的单位法向量是什么意思
单位法向量是法向量的一种,是长度为单位1的法向量所以任何曲线在任何点的法向量可以有无数个,但是其中是单位法向量的只有两个,这两个单位法向量方向相反,长度都是1;至于法向量,就只要求方向,长度只要不是0就可以了,不限定必须是单位1。法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。瑞瑞爱吃桃2023-05-15 13:52:531
法向量是什么
法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。一般不选择零向量为平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。ardim2023-05-15 13:52:531
单位法向量是什么?
单位向量中的一种,垂直于某个面的单位向量就是单位法向量。在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的量叫做数量(物理学中称标量),数量(或标量)只有大小,没有方向。向量的记法:印刷体记作黑体(粗体)的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如xOy平面中(2,3)是一向量。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。善士六合2023-05-14 13:59:231