共线向量定理为什么要同一个公共点
因为在向量中,“两个向量共线”有两个含义:1.两个向量在一条直线上,2.两个向量平行(不在同一条直线上),故证明三点共线,必须要证1.三点构成的两个向量共线,2.两个共线向量有公共点。余辉2023-05-15 13:53:201
共线向量定理的证明(多种方法)
如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。 证明: 1)充分性,对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由 实数与向量的积的定义 知,向量a与b共线。 2)必要性,已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=-λa。如果b=0,那么λ=0。 3)唯一性,如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。 证毕。[编辑本段]推论推论1 两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。 证明: 1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。 2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。 证毕。推论2 两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。 证明: 1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。 2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。 证毕。推论3 如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。 证明:(反证法) 不妨假设μ≠0,则由 推论1 知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。 证毕。推论4 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得 向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。 证明: ∵三点P、A、B不共线,∴向量AB≠0, 由 共线向量基本定理 得, 点C在直线AB上 <=> 向量AC 与 向量AB 共线 <=> 存在唯一实数λ,使 向量AC=λ·向量AB ∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线, ∴向量AC=λ·向量AB <=> 向量PC-向量PA=λ·(向量PB-向量PA) <=> 向量PC=(1-λ)向量PA+λ·向量PB。 证毕。推论5 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得 向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1) 证明: 在推论4 中,令 1-λ=μ ,则λ+μ=1,知: 三点P、A、B不共线 <=> 点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1) 下面证唯一性,若 向量PC=m向量PA+n向量PB,则 m向量PA+n向量PB=λ向量PA+μ向量PB, 即,(m-λ)向量PA+(n-μ)向量PB=0, ∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线, 由 推论3 知,m=λ,n=μ。 证毕。推论6 如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得 λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。 证明: 1)充分性,由推论5 知,若三点P、A、B不共线,则 点C在直线AB上 <=> 存在实数λ、μ,使得 向量PC=λ向量PA+μ向量PB(其中,λ+μ=1)。 取ν=-1,则有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,且实数λ、μ、ν不全为零。 2)必要性,不妨设ν≠0,且有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,则 向量PC=(λ/ν)·向量PA+(μ/ν)·向量PB,(-λ/ν)+(-μ/ν)=1。由推论5 即知,点C在直线AB上。 证毕。推论7 点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得 λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。 证明:(反证法) ∵点P是直线AB外任意一点,∴向量PA≠0,向量PB≠0,向量PC≠0,且 向量PA、向量PB、向量PC两两不共线。 由推论6 知,实数λ、μ、ν不全为零, 1)假设实数λ、μ、ν中有两个为零,不妨设λ≠0,μ=0,ν=0。则 λ向量PA=0,∴向量PA=0。这与向量PA≠0。 2)假设实数λ、μ、ν中有一个为零,不妨设λ≠0,μ≠0,ν=0。则 λ向量PA+μ向量PB=0,∴向量PA=(μ/λ)·向量PB,∴向量PA 与 向量PB共线,这与向量PA 与 向量PB不共线矛盾。 证毕。[编辑本段]共线向量定理定理1 ⊿ABC中,点D在直线BC上的充要条件是 其中 都是其对应向量的数量。 证明:有推论5 即可证得。定理2 ⊿ABC中,点D在直线BC上的充要条件是 其中 都是有向面积。通常约定,顶点按逆时针方向排列的三角形面积为正,顶点按顺时针方向排列的三角形面积为负。 证明:由定理1 即可得证。CarieVinne 2023-05-14 17:28:291
三点共线向量定理
三点共线定理:若OC=λOA+uOB,且入+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为alb,任意一组平行向量都可移到同一直线上,所以称为共线向量。证明方法方法一:取两点确立一条直线,计算该直线的解析式,代入第三点坐标看是否满足该解析式(直线与方程)。方法二:设三点为A、B、C ,利用向量证明:λAB=AC(其中λ为非零实数)。方法三:利用点差法求出AB斜率和AC斜率,相等即三点共线。方法四:用梅涅劳斯定理。方法五:利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线”,可知:如果三点同属于两个相交的平面则三点共线。方法六:运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”,其实就是同一法。方法七:证明其夹角为180°。方法八:设A、B、C,证明△ABC面积为0。方法九:帕普斯定理。方法十:利用坐标证明,即证明x1y2=x2y1。方法十一:位似图形性质。方法十二:向量法,即向量PB=λ向量PA+μ向量PC,且λ+μ=1,则ABC三点共线。方法十三:张角定理。此后故乡只2023-05-14 17:28:211
利用共线向量定理证明三点共线 通俗易懂
A(a,b),B(x,y),C(m,n) AB(x-a,y-b) AC(m-a,n-a) 证向量AB、AC平行即可可桃可挑2023-05-14 13:59:181
共线向量定理b=λa中,当a=0时,则实数λ不唯一为何这句话是错的?
若a≠0向量,那么向量a与向量共线的条件是存在唯一的实数λ.使得b=λa若没有a≠0向量前提,倘若a=0向量(1)对于平面内的任意一个非零向量b不会存在实数λ使得b=λa因为λa是零向量,b不是零向量,因此b=λa不成立(2)若b=0向量,0=λ*0此时λ为任意实数,λ无穷多.再也不做站长了2023-05-14 13:59:181
共线向量定理谁是几分之一
基本定理2.3.2平面。给定平面内的两个不共线的非零向量。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。wpBeta2023-05-14 13:59:171
共线向量定理
可设X(2m,m),则XA=(1-2m,7-m),XB=(5-2m,1-m),所以,XA*XB=5m^2-20m+12,所以当m=2时有最小值-8;此时X(4,2),A(1,7),B(5,1),XA=(-3,5),XB=(1,-1),cosa=-4/根号17韦斯特兰2023-05-14 13:59:173
共线向量定理中,为什么向量a不能为零向量
浥:(yì):湿润,沾湿。北境漫步2023-05-14 13:59:173
平面共线向量定理与空间共线向量定理一样吗?为什么平面向量定理中b=λa的λ是唯一的,而空间的却不是?
因为空间中向量平行但是属于不同方向的向量很多。比如说空间中某一个向量平行于xoy平面,那么在xoy平面中,会有一排向量都是与它平行的,你只要找到1个λ就可以说明平行,但实际上平行的向量非常多。平面上就不一样,平面上的向量可以平移,平移后的向量是同一个向量,所以λ是唯一的。空间向量的平移必须在某一个平面内gitcloud2023-05-14 13:59:171
共线向量定理若为0表示什么意思
两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,不妨设μ≠0,则由 λa+μb=0 得 -b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。左迁2023-05-14 13:59:161
共线向量定理有何作用
共线向量定理可用于:1、判定两个向量是否平行;2、建立方程解出未知数; 3、判定三点共线NerveM 2023-05-14 13:59:161
三点共线向量定理
三点共线向量定理是:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。证明方法:1、取两点确立一条直线,计算该直线的解析式 。代入第三点坐标看是否满足该解析式。2、设三点为A、B、C。利用向量证明:a倍AB向量=AC向量(其中a为非零实数)。3、利用 点差法求出AB斜率和AC斜率,相等即三点共线。4、证三次两点一线。(误,两点必然共线)。5、用梅涅劳斯定理。6、利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。”可知如果三点同属于两个相交的平面则三点共线。7、运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”。其实就是同一法。8、证明其夹角为180°。向量概念:是数学、物理学和工程科学等多个自然科学中的基本概念。指一个同时具有大小和方向,且满足平行四边形法则的几何对象。向量的记法:印刷体记作粗体的字母,书写时在字母顶上加一小箭头。如果给定向量的起点A和终点B,可将向量记作AB。在空间直角坐标系中,也能把向量以数对形式表示。在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。Jm-R2023-05-14 13:59:161
共线向量定理的证明(多种方法)
如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。 证明: 1)充分性,对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由 实数与向量的积的定义 知,向量a与b共线。 2)必要性,已...大鱼炖火锅2023-05-14 13:59:161
共线向量定理
共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b ,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果 a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得 b=λa。它的七个推论:推论1两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。推论2两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。推论3如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。推论4如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。推论5如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中推论6如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。,λ+μ=1)。推论7点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。大鱼炖火锅2023-05-14 13:59:151
谁能解释一下共线向量定理的原理是什么
向量共线的原理是在平行基础上推出的。 当两个向量平行时,这两个向量所在的直线就是平行的,然后根据这两个向量有公共点,它们所在直线就必定有公共点,平行直线有公共点就必定重合了,所以这两个向量就仅在一条直线上。也就有所谓的向量共“线”了。豆豆staR2023-05-14 13:59:151