n维向量的几何意义是什么
很简单。只是因为我们处于三维空间,大于三维的度量不容易感知。 先从三维谈起,如向量{x1,x2,x3}在三维空间上必然可以分解为 {x1,x2,x3}=x1{1,0,0}+x2{0,1,0}+x3{0,0,1} 这三个分量{1,0,0}{0,1,0}{0,0,1}是线性无关的。而且是正交的。这样空间直角坐标系就有了基。这三个分量可以将任何三维向量线性表出。所以三维向量组成的几何空间其实可以用这三个基表达出任何三维向量。当然,向量和点对应,三维向量其实也是对应三维直角坐标系的一个点。 这样对于n维向量{x1,x2,...,xn}=x1{1,0,..,0}+...+xn{0,0,...,1} 其实在n维空间上就是由n个基构成的一个线性组合。换句话说,它也是其在n维直角坐标系中的一个点。当然,这里的直角的含义是,n个基两两正交。按照你的要求我再说明白一点,一个n维向量其实就是一个n维欧式空间的一个点。只不过是有n个向量的。大鱼炖火锅2023-07-30 20:54:361
n维向量的几何意义是什么
很简单。只是因为我们处于三维空间,大于三维的度量不容易感知。先从三维谈起,如向量{x1,x2,x3}在三维空间上必然可以分解为{x1,x2,x3}=x1{1,0,0}+x2{0,1,0}+x3{0,0,1}这三个分量{1,0,0}{0,1,0}{0,0,1}是线性无关的。而且是正交的。这样空间直角坐标系就有了基。这三个分量可以将任何三维向量线性表出。所以三维向量组成的几何空间其实可以用这三个基表达出任何三维向量。当然,向量和点对应,三维向量其实也是对应三维直角坐标系的一个点。这样对于n维向量{x1,x2,...,xn}=x1{1,0,..,0}+...+xn{0,0,...,1}其实在n维空间上就是由n个基构成的一个线性组合。换句话说,它也是其在n维直角坐标系中的一个点。当然,这里的直角的含义是,n个基两两正交。按照你的要求我再说明白一点,一个n维向量其实就是一个n维欧式空间的一个点。只不过是有n个向量的。墨然殇2023-07-30 20:53:581
n维向量的几何意义是什么
很简单。只是因为我们处于三维空间,大于三维的度量不容易感知。先从三维谈起,如向量{x1,x2,x3}在三维空间上必然可以分解为{x1,x2,x3}=x1{1,0,0}+x2{0,1,0}+x3{0,0,1}这三个分量{1,0,0}{0,1,0}{0,0,1}是线性无关的。而且是正交的。这样空间直角坐标系就有了基。这三个分量可以将任何三维向量线性表出。所以三维向量组成的几何空间其实可以用这三个基表达出任何三维向量。当然,向量和点对应,三维向量其实也是对应三维直角坐标系的一个点。这样对于n维向量{x1,x2,...,xn}=x1{1,0,..,0}+...+xn{0,0,...,1}其实在n维空间上就是由n个基构成的一个线性组合。换句话说,它也是其在n维直角坐标系中的一个点。当然,这里的直角的含义是,n个基两两正交。按照你的要求我再说明白一点,一个n维向量其实就是一个n维欧式空间的一个点。只不过是有n个向量的。韦斯特兰2023-07-23 18:51:411
特征值和特征向量的几何意义是什么?
只说定义吧[意义,太重要。用途,太多。几句话说不清,不说了!]n阶方阵a,行列式|λe-a|[e是n阶单位矩阵,λ是变量。这是λ的n次多项式,首项系数是1]叫做a的特征多项式,[f(λ)=|λe-a|].f(λ)=0的根(n个),都叫a的特征值。如果λ0是a的一个特征值,|λ0e-a|=0,(λ0e-a)为降秩矩阵,线性方程组(λ0e-a)x=0[x=(x1,x2,……xn)′是未知的n维列向量]必有非零解,每个非零解就叫矩阵a的关于特征值λ0的一个特征向量。[特征方法是线性代数的核心内容之一,也是其他很多数学分支的重要内容,可要认真对待了!]凡尘2023-05-14 15:36:064
数学向量内积单位向量与外积单位向量的几何意义分别是什么?
向量内积a.b代表两个向量对应坐标值相乘后相加,得到的是一个数,数值上等于两向量长度积乘以夹角的余弦几何上的应用:可以求两向量夹角;如果两向量内积为零,说明两向量垂直;一个向量对自己内积开方后是该向量长度向量外积a×b得到的是一个向量,一个行列式,以三维向量为例,等于|ijk||a1a2a3||b1b2b3|长度数值上等于两向量长度积乘以夹角的正弦,方向用右手螺旋定则确定,物理上经常应用于求电磁力几何上的应用:两向量外积等于以两向量为邻边的平行四边形面积,方向为两向量所在平面的法线方向;外积为0,说明两向量平行苏萦2023-05-14 13:59:282