三角形面积公式高中三角函数
三角形的面积=底×高÷2;S=ah÷2三角形四线中线连接三角形的一个顶点及其对边中点的线段叫做三角形的中线。高从一个顶点向它的对边所在的直线画垂线,顶点和垂足之间的线段叫做三角形的高。角平分线三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。中位线三角形的三边中任意两边中点的连线叫中位线。它平行于第三边且等于第三边的一半。高中三角函数公式主要有tanα·cotα=1sinα·cscα=1cosα·secα=1,sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα等。倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)三角函数常用公式正弦函数 sinθ=y/r余弦函数 cosθ=x/r正切函数 tanθ=y/x余切函数 cotθ=x/y正割函数 secθ=r/x余割函数 cscθ=r/y三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cos此后故乡只2023-08-02 10:29:491
高中数学三角函数 万能公式
万能公式 (1) (sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC三角函数万能公式为什么万能 万能公式为: 设tan(A/2)=t sinA=2t/(1+t^2) (A≠2kπ+π,k∈Z) tanA=2t/(1-t^2) (A≠2kπ+π,k∈Z) cosA=(1-t^2)/(1+t^2) (A≠2kπ+π,且A≠kπ+(π/2) k≤Z) 就是说sinA.tanA.cosA都可以用tan(A/2)来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了.kikcik2023-08-02 10:29:491
求高中要求的全部三角函数公式(公41个)
0.基础的cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβtαn(α+β)=(tαnα+tαnβ)/(1-tαnαtαnβ)tαn(α-β)=(tαnα+tαnβ)/(1+tαnαtαnβ)1.万能公式令tan(a/2)=tsina=2t/(1+t^2)cosa=(1-t^2)/(1+t^2)tana=2t/(1-t^2)2.辅助角公式asint+bcost=(a^2+b^2)^(1/2)sin(t+r)cosr=a/[(a^2+b^2)^(1/2)]sinr=b/[(a^2+b^2)^(1/2)]tanr=b/a3.三倍角公式sin(3a)=3sina-4(sina)^3cos(3a)=4(cosa)^3-3cosatan(3a)=[3tana-(tana)^3]/[1-3(tana^2)]4.积化和差sina*cosb=[sin(a+b)+sin(a-b)]/2cosa*sinb=[sin(a+b)-sin(a-b)]/2cosa*cosb=[cos(a+b)+cos(a-b)]/2sina*sinb=-[cos(a+b)-cos(a-b)]/25.积化和差sina+sinb=2sin[(a+b)/2]cos[(a-b)/2]sina-sinb=2sin[(a-b)/2]cos[(a+b)/2]cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2]cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]水元素sl2023-08-02 10:29:484
高中数学三角函数过程公式
NerveM 2023-08-02 10:29:474
三角函数公式高一
高一三角函数公式:两角和公式sin(A+B) = sinAcosB+cosAsinB.sin(A-B) = sinAcosB-cosAsinB.三角函数内容在高中,被誉为是公式最多的章节。的确,公式再多,但万变不离其宗,接下来的内容,将由基础公式,图解记忆,章节汇总+思维导图构成,一同学习三角函数!三角和的三角函数公式有:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα).两角和与差的三角函数公式是:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ).三角函数的定义:三角函数(Trigonometric Functions)是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。bikbok2023-08-02 10:29:461
求高中数学三角函数公式总结。
对数的性质及推导用^表示乘方,用log(a)(b)表示以a为底,b的对数*表示乘号,/表示除号定义式:若a^n=b(a>0且a≠1)则n=log(a)(b)基本性质:1.a^(log(a)(b))=b2.log(a)(MN)=log(a)(M)+log(a)(N);3.log(a)(M/N)=log(a)(M)-log(a)(N);4.log(a)(M^n)=nlog(a)(M)推导1.这个就不用推了吧,直接由定义式可得(把定义式中的[n=log(a)(b)]带入a^n=b)2.MN=M*N由基本性质1(换掉M和N)a^[log(a)(MN)]=a^[log(a)(M)]*a^[log(a)(N)]由指数的性质a^[log(a)(MN)]=a^{[log(a)(M)]+[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(MN)=log(a)(M)+log(a)(N)3.与2类似处理MN=M/N由基本性质1(换掉M和N)a^[log(a)(M/N)]=a^[log(a)(M)]/a^[log(a)(N)]由指数的性质a^[log(a)(M/N)]=a^{[log(a)(M)]-[log(a)(N)]}又因为指数函数是单调函数,所以log(a)(M/N)=log(a)(M)-log(a)(N)4.与2类似处理M^n=M^n由基本性质1(换掉M)a^[log(a)(M^n)]={a^[log(a)(M)]}^n由指数的性质a^[log(a)(M^n)]=a^{[log(a)(M)]*n}又因为指数函数是单调函数,所以log(a)(M^n)=nlog(a)(M)其他性质:性质一:换底公式log(a)(N)=log(b)(N)/log(b)(a)推导如下N=a^[log(a)(N)]a=b^[log(b)(a)]综合两式可得N={b^[log(b)(a)]}^[log(a)(N)]=b^{[log(a)(N)]*[log(b)(a)]}又因为N=b^[log(b)(N)]所以b^[log(b)(N)]=b^{[log(a)(N)]*[log(b)(a)]}所以log(b)(N)=[log(a)(N)]*[log(b)(a)]{这步不明白或有疑问看上面的}所以log(a)(N)=log(b)(N)/log(b)(a)性质二:(不知道什么名字)log(a^n)(b^m)=m/n*[log(a)(b)]推导如下由换底公式[lnx是log(e)(x),e称作自然对数的底]log(a^n)(b^m)=ln(a^n)/ln(b^n)由基本性质4可得log(a^n)(b^m)=[n*ln(a)]/[m*ln(b)]=(m/n)*{[ln(a)]/[ln(b)]}再由换底公式log(a^n)(b^m)=m/n*[log(a)(b)]--------------------------------------------(性质及推导完)公式三:log(a)(b)=1/log(b)(a)证明如下:由换底公式log(a)(b)=log(b)(b)/log(b)(a)----取以b为底的对数,log(b)(b)=1=1/log(b)(a)还可变形得:log(a)(b)*log(b)(a)=1三角函数的和差化积公式sinα+sinβ=2sin(α+β)/2·cos(α-β)/2sinα-sinβ=2cos(α+β)/2·sin(α-β)/2cosα+cosβ=2cos(α+β)/2·cos(α-β)/2cosα-cosβ=-2sin(α+β)/2·sin(α-β)/2三角函数的积化和差公式sinα·cosβ=1/2[sin(α+β)+sin(α-β)]cosα·sinβ=1/2[sin(α+β)-sin(α-β)]cosα·cosβ=1/2[cos(α+β)+cos(α-β)]sinα·sinβ=-1/2[cos(α+β)-cos(α-β)]gitcloud2023-08-02 10:29:441
三角函数诱导公式
高数课本上很详细,可以自己去查查。wpBeta2023-08-02 10:29:4413
高中三角函数的公式?
高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三此后故乡只2023-08-02 10:29:432
高中数学必修4三角函数公式大全
如果有邮箱 我可以把三角函数的专门资料发给你!人类地板流精华2023-08-02 10:29:431
三角函数诱导公式大全
三角函数是比较困难的一个章节,对于同学们来说不是很好掌握。下面是我整理的三角函数诱导公式大全,欢迎大家阅读分享借鉴,希望对大家有所帮助。 更多三角函数相关内容推荐↓↓↓ 什么是三角函数 高中三角函数学习方法 高一数学三角函数公式归纳 高三数学三角函数专题知识点 常用的三角函数诱导公式 三角函数诱导公式一: 任意角α与-α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 三角函数诱导公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 三角函数诱导公式三: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 三角函数诱导公式四: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα(k∈Z) cos(2kπ+α)=cosα(k∈Z) tan(2kπ+α)=tanα(k∈Z) cot(2kπ+α)=cotα(k∈Z) 三角函数诱导公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 三角函数诱导公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z) 注意:在做题时,将a看成锐角来做会比较好做。 规律 总结 上面这些诱导公式可以概括为: 对于π/2_k±α(k∈Z)的三角函数值, ①当k是偶数时,得到α的同名函数值,即函数名不改变; ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变) 然后在前面加上把α看成锐角时原函数值的符号。 上述的记忆口诀是: 奇变偶不变,符号看象限。 公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α 所在象限的原三角函数值的符号可记忆 水平诱导名不变;符号看象限。 各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”. 这十二字口诀的意思就是说: 第一象限内任何一个角的四种三角函数值都是“+”; 第二象限内只有正弦是“+”,其余全部是“-”; 第三象限内切函数是“+”,弦函数是“-”; 第四象限内只有余弦是“+”,其余全部是“-”. 上述记忆口诀,一全正,二正弦,三内切,四余弦 同角三角函数的基本关系式 倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin2(α)+cos2(α)=1 1+tan2(α)=sec2(α) 1+cot2(α)=csc2(α) 同角三角函数关系六角形记忆法 六角形记忆法: 构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。 (1)倒数关系:对角线上两个函数互为倒数; (2)商数关系:六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。 (主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。 (3)平方关系:在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。 两角和差公式 两角和与差的三角函数公式 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tan(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 二倍角公式 二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosα cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α) tan2α=2tanα/[1-tan2(α)] 半角公式 半角的正弦、余弦和正切公式(降幂扩角公式) sin2(α/2)=(1-cosα)/2 cos2(α/2)=(1+cosα)/2 tan2(α/2)=(1-cosα)/(1+cosα) 另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα) 万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan2(α/2)]/[1+tan2(α/2)] tanα=2tan(α/2)/[1-tan2(α/2)] 三倍角公式 三倍角的正弦、余弦和正切公式 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα tan3α=[3tanα-tan^3(α)]/[1-3tan^2(α)] 和差化积公式 三角函数的和差化积公式 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2] 积化和差公式 三角函数的积化和差公式 sinα·cosβ=0.5[sin(α+β)+sin(α-β)] cosα·sinβ=0.5[sin(α+β)-sin(α-β)] cosα·cosβ=0.5[cos(α+β)+cos(α-β)] sinα·sinβ=-0.5[cos(α+β)-cos(α-β)] 三角函数诱导公式大全相关 文章 : ★ 三角函数诱导公式的记忆口诀 ★ 高中数学必修四三角函数诱导公式归纳 ★ 高中三角函数诱导公式知识点 ★ 数学必修四三角函数诱导公式 ★ 高二必修四数学三角函数诱导公式复习重点 ★ 三角函数诱导公式记忆方法 ★ 高一数学诱导公式汇总(2) ★ 高一数学必修4三角函数诱导公式 var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "https://hm.baidu.com/hm.js?6732713c8049618d4dd9c9b08bf57682"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();NerveM 2023-08-02 10:29:421
高中三角函数公式大全
sinA=2tanA/2/(tan2A/2+1)cosA=(1-tan2A/2)/(tan2A/2+1)CarieVinne 2023-08-02 10:29:423
三角函数和差化积公式【完整版】
数学三角函数部分是比较难的,下面我就为大家整理一下三角函数和差化积公式: 和差化积公式 和差化积口诀 正加正,正在前,余加余,余并肩 正减正,余在前,余减余,负正弦 反之亦然 三角函数的和差化积公式 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2 如何学好三角函数 (1)立足课本、抓好基础 现在高考非常重视三角函数图像与性质等基础知识的考查,所以在学习中首先要打好基础。 (2)三角函数的定义一定要清楚 我们在学习三角函数时,老师就会强调我们要把角放在平面直角坐标系中去讨论。角的顶点放在坐标原点,始边放在X 的轴的正半轴上,这样再强调六种三角函数只与三个量有关:即角的终边上任一点的横坐标x、纵坐标y 以及这一点到原点的距离r 中取两个量组成的比值,这里得强调一下,对于任意一个α一经确定,它所对的每一个比值是唯一确定的,也就说是它们之间满足函数关系。并且三者的关系是,x2+y2=r2,x,y 可以任意取值,r 只能取正数。 (3)同角的三角函数关系 同角的三角函数关系可以分为平方关系:sin2α+cos2α=1、tan2α+1= sec2α、cotα2+1= csc2α,倒数关系:tanαcotα=1,商的关系:tanα=sinα/cosα等等,对于同角的三角函数,直接用三角函数的定义证明比较容易,记忆也比较方便,相关角的三角函数的关系可以分为终边相同的角、终边关于x 轴对称的角、终边关于直线y=x 对称的角、终边关于y 轴对称的角、终边关于原点对称的角五种关系。 以上就是我为大家整理的三角函数和差化积公式,仅供参考。CarieVinne 2023-08-02 10:29:421
高中数学 三角函数合二为一公式
Asinx+Bcosx=√(A^2+B^2)sin(x+φ)【tanφ=B/A】可桃可挑2023-08-02 10:29:393
高中数学竞赛用得到的三角函数公式,越多越好,越详细越好,如果有证明更好
fiojc909u投在线2023-08-02 10:29:389
高中三角函数的所有公式是什么啊?
高中三角函数用到的公式其实并不多。主要分为以下这几类:一、诱导公式,他的作用就是将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 主要有四组,利用的是三角函数图像的周期性和(点)对称性。(1)终边相同的角三角函数值相同终边相同的角三角函数值相同(2)相差单倍的π的角三角函数值关系相差单倍π的角,三角函数值关系(3)负角的三角函数值关系负角的三角函数值关系(4)相差π/2的角之间的三角函数关系已经高中毕业很多年的人都能记住但是不知道啥意思的那个十字箴言,就是诱导公式的口诀:奇变偶不变,符号看象限。注意口诀里面的意思:1、奇偶指的是带π的那个数字,是π/2的奇数倍还是偶数倍;2、变得不是正负号,而是sin变cos,cos变sin(不适用于tan)3、我们是把α看做第一象限角,加减那个多少倍的π,根据变号之前sin/cos来判断是正的还是负的。如果实在不理解这个口诀,建议找学校老师记忆。如果还不理解,就别理解了,也不用记忆,直接记住下面的公式即可(高考仅仅考1道最多2道这种题目,所以我们记忆下面的公式,通过推导浪费5分钟,并不影响整体考试成绩)二、和差角公式我们发现,直接用和差角公式中β换成诱导公式中的对应数值,就得到诱导公式的结果了。三、倍角半角公式(也有叫升角降幂,降角升幂等等名称)倍角公式倍角公式就是把和角公式中的β等于α得出的。半角公式就是倍角公式反推出来的综上所述,只要记住和差角公式就可以得出上述所有公式。如果记忆不下来,可以继续沟通,教你更好的记忆方法和解题技巧。最后还有一个更常用的公式,叫做提斜公式:acosA+bsinA=√(a^2+b^2)sin(A+M)PS: (tanM=a/b)希望我的回答对你有帮助。左迁2023-08-02 10:29:381
高中三角函数的所有公式是什么啊?
同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1 cos^2a=(1+cos2a)/2 tan^2(α)+1=sec^2(α) sin^2a=(1-cos2a)/2 cot^2(α)+1=csc^2(α) ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边 正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) ·三角和的三角函数: sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) ·辅助角公式: Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B ·倍角公式: sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·三倍角公式: sin(3α)=3sinα-4sin^3(α) cos(3α)=4cos^3(α)-3cosα ·半角公式: sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=covers(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] ·推导公式 tanα+cotα=2/sin2α tanα-cotα=-2cot2α 1+cos2α=2cos^2α 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα/2)^2 ·其他: sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 cosx+cos2x+...+cosnx= [sin(n+1)x+sinnx-sinx]/2sinx 证明: 左边=2sinx(cosx+cos2x+...+cosnx)/2sinx =[sin2x-0+sin3x-sinx+sin4x-sin2x+...+ sinnx-sin(n-2)x+sin(n+1)x-sin(n-1)x]/2sinx (积化和差) =[sin(n+1)x+sinnx-sinx]/2sinx=右边 等式得证 sinx+sin2x+...+sinnx= - [cos(n+1)x+cosnx-cosx-1]/2sinx 证明: 左边=-2sinx[sinx+sin2x+...+sinnx]/(-2sinx) =[cos2x-cos0+cos3x-cosx+...+cosnx-cos(n-2)x+cos(n+1)x-cos(n-1)x]/(-2sinx) =- [cos(n+1)x+cosnx-cosx-1]/2sinx=右边 等式得证编辑本段三角函数的角度换算 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈Z)编辑本段正余弦定理 正弦定理是指在一个三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R . 余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA编辑本段部分高等内容 ·高等代数中三角函数的指数表示(由泰勒级数易得): sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)] 泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+… 此时三角函数定义域已推广至整个复数集。 ·三角函数作为微分方程的解: 对于微分方程组 y=-y"";y=y"""",有通解Q,可证明 Q=Asinx+Bcosx,因此也可以从此出发定义三角函数。 补充:由相应的指数表示我们可以定义一种类似的函数——双曲函数,其拥有很多与三角函数的类似的性质,二者相映成趣。编辑本段特殊三角函数值 a 0` 30` 45` 60` 90` sina 0 1/2 √2/2 √3/2 1 cosa 1 √3/2 √2/2 1/2 0 tana 0 √3/3 1 √3 None cota None √3 1 √3/3 0编辑本段三角函数的计算 幂级数 c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞) 它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...cn...及a都是常数, 这种级数称为幂级数. 泰勒展开式(幂级数展开法): f(x)=f(a)+f"(a)/1!*(x-a)+f""(a)/2!*(x-a)2+...f(n)(a)/n!*(x-a)n+... 实用幂级数: ex = 1+x+x2/2!+x3/3!+...+xn/n!+... ln(1+x)= x-x2/3+x3/3-...(-1)k-1*xk/k+... (|x|<1) sin x = x-x3/3!+x5/5!-...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞) cos x = 1-x2/2!+x4/4!-...(-1)k*x2k/(2k)!+... (-∞<x<∞) arcsin x = x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... (|x|<1) arccos x = π - ( x + 1/2*x3/3 + 1*3/(2*4)*x5/5 + ... ) (|x|<1) arctan x = x - x^3/3 + x^5/5 - ... (x≤1) sinh x = x+x3/3!+x5/5!+...(-1)k-1*x2k-1/(2k-1)!+... (-∞<x<∞) cosh x = 1+x2/2!+x4/4!+...(-1)k*x2k/(2k)!+... (-∞<x<∞) arcsinh x = x - 1/2*x3/3 + 1*3/(2*4)*x5/5 - ... (|x|<1) arctanh x = x + x^3/3 + x^5/5 + ... (|x|<1) 在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。 -------------------------------------------------------------------------------- 傅立叶级数(三角级数) f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx) a0=1/π∫(π..-π) (f(x))dx an=1/π∫(π..-π) (f(x)cosnx)dx bn=1/π∫(π..-π) (f(x)sinnx)dx 三角函数的数值符号 正弦 一,二为正, 三,四为负 余弦 一,四为正 二,三为负 正切 一,三为正 二,四为负编辑本段三角函数定义域和值域 sin(x),cos(x)的定义域为R,值域为〔-1,1〕 tan(x)的定义域为x不等于π/2+kπ,值域为R cot(x)的定义域为x不等于kπ,值域为RChen2023-08-02 10:29:372
高中必背三角函数公式sin
两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a备战 2021 高考设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα (k∈Z)cos(2kπ+α)=cosα (k∈Z)tan(2kπ+α)=tanα (k∈Z)cot(2kπ+α)=cotα (k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα北境漫步2023-08-02 10:29:341
高中数学三角函数必背公式
高中数学三角函数必背公式如下:1、高中三角函数公式大全:两角和公式、倍角公式、三倍角公式、半角公式2、高中三角函数公式大全:和差化积、积化和差3、高中三角函数公式大全:诱导公式、万能公式4、高中三角函数公式大全:其他公式、其他非重点三角函数、双曲函数5、6、7、8、9、10、11、12、三角函数包括两个部分:三角与三角函数、解三角形分析。重点的知识点包括:任意角的三角函数;同角三角函数的基本关系式;诱导公式;三角函数的图象及其变换;三角函数的性质及其应用;三角函数的求值与化简;正弦、余弦定理;解三角形及其综。三角与三角函数包括任意角及其三角函数、同角关系式和诱导公式、正弦及正弦型函数、余与正切函数、三角恒等变换和三角综合。重点考查基础知识和基本技能,突出角与代数、几何、向量等知识点的联系,题型难度属于容易或中等。解三角形正弦定理和余弦定理是解三角形的两个重要定理,应用这两个定理,发现并掌握三角形中边长与角度之间的数量关系,并有能力解。墨然殇2023-08-02 10:29:331
高中数学三角函数公式
根号(a的平方+b的平方)sin(x+¥)tan¥=b除以a北境漫步2023-08-02 10:29:326
高中必背三角函数公式表
1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα3、公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα6、公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanαgitcloud2023-08-02 10:29:311
求高中数学三角函数公式
有很多呢善士六合2023-08-02 10:29:313
三角函数高中公式
三角函数高中公式如下:三角形与三角函数:正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R 。(其中R为外接圆的半径)。第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC;第二余弦定理:三角形中任何一边的`平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2—2bc·cosA。正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a—b)/(a+b)=tan[(A—B)/2]/tan[(A+B)/2]=tan[(A—B)/2]/cot(C/2);三角形中的恒等式:对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC证明:已知(A+B)=(π—C)所以tan(A+B)=tan(π—C)则(tanA+tanB)/(1—tanAtanB)=(tanπ—tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC。类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ。韦斯特兰2023-08-02 10:29:301
高中数学三角函数公式
积化和差 sina*cosb=[sin(a+b)+sin(a-b)]/2 cosa*sinb=[sin(a+b)-sin(a-b)]/2 cosa*cosb=[cos(a+b)+cos(a-b)]/2 sina*sinb=-[cos(a+b)-cos(a-b)]/2 和差化积sina+sinb=2sin[(a+b)/2]cos[(a-b)/2] sina-sinb=2sin[(a-b)/2]cos[(a+b)/2] cosa+cosb=2cos[(a+b)/2]cos[(a-b)/2] cosa-cosb=-2sin[(a+b)/2]sin[(a-b)/2]肖振2023-08-02 10:29:304
高中数学三角函数公式大全
高中数学三角函数是比较难的一个模块,那同学们总结过高中数学的三角函数吗?下面是由我为大家整理的“高中数学三角函数公式大全”,仅供参考,欢迎大家阅读。 高中数学三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA tan3a = tan a ? tan(π/3+a)? tan(π/3-a) 半角公式 sin(A/2) = √{(1--cosA)/2} cos(A/2) = √{(1+cosA)/2} tan(A/2) = √{(1--cosA)/(1+cosA)} cot(A/2) = √{(1+cosA)/(1-cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA) 03 和差化积 sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB 积化和差 sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sin(a) cos(-a) = cos(a) sin(π/2-a) = cos(a) cos(π/2-a) = sin(a) sin(π/2+a) = cos(a) cos(π/2+a) = -sin(a) sin(π-a) = sin(a) cos(π-a) = -cos(a) sin(π+a) = -sin(a) cos(π+a) = -cos(a) tgA=tanA = sinA/cosA 万能公式 sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2} cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2} tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2} 04 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a) 双曲函数 sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tg h(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα 05 三角函数口诀 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。 同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割。 中心记上数字1,连结顶点三角形。向下三角平方和,倒数关系是对角。 顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小。 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变。 将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。 计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。 万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用。 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范。 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围。 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。 拓展阅读:等差数列等比数列的一些常用公式 等差数列通项公式 an=a1+(n-1)d 等差数列前n项和公式 Sn=n×a1+n(n-1)d/2 或 Sn=n(a1+an)/2 等差数列其他公式定理 ①a(n-k)+a(n+k)=2an (如同a3 + a5=2a4或a5 + a10=2a7,并且k可以为小于n的任何正整数) ②若m+n=p+q 则am+an=ap+aq ③(am-an)/(m-n)=d ④若{an}和{bn}均为等差数列,那么{a(bn)}和{b(an)}也为等差数列 是否为等差数列判定方法 ①a(n+1)-an=常数 ②a(n-1)+a(n+1)=2an 等差数列前n项和其他公式 S(9n)-S(8n)=S(8n)-S(7n)=S(7n)-S(6n)=...=n^2d 等比数列通项公式 an=a1×q^(n-1) 等比数列前n项和公式 an=a1[1-q^(n-1)]/(1-q) (当q≠1时) an=n×a1 (当q =1时) 等比数列其他公式定理 ①a(n-k)×a(n+k)=an^2 ②若m×n=p×q 则am×an=ap×aq ③(m-n)√(am-an)=q (注意这里的m-n是指开m-n次方) 是否为等比数列判定方法 ①a(n+1)/an=常数 ②a(n-1)×a(n+1)=an^2小白2023-08-02 10:29:291
高中三角函数最全的公式
高中三角函数最全的公式如下:1+sin(a) = [sin(a/2)+cos(a/2)]^2; 1-sin(a) = [sin(a/2)-cos(a/2)]^2;三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。可桃可挑2023-08-02 10:29:291
高中数学三角函数公式是什么?
高中数学三角函数公式如下:1、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)2、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a3、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))三角函数简介:三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。豆豆staR2023-08-02 10:29:282
高中三角函数公式有哪些?
高中提到的三角函数公式考生还记得吗,有多少种呢?尚不了解的考生看过来,下面由我为你精心准备了“高中三角函数公式有哪些?”,持续关注本站将可以持续获取更多的考试资讯! 高中三角函数公式有哪些? 高中三角函数公式主要有tanα·cotα=1sinα·cscα=1cosα·secα=1,sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα等。 一、倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) ) 二、半角公式 sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα 三、降幂公式 sin^2(α)=(1-cos(2α))/2=versin(2α)/2 cos^2(α)=(1+cos(2α))/2=vercos(2α)/2 tan^2(α)=(1-cos(2α))/(1+cos(2α)) 四、辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) 五、三角函数常用公式 正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y 六、三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 七、三角和 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 八、两角和差 cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 九、和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦. 十、积化和差 sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2 十一、同角三角函数关系 倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α) 十二、诱导公式 sin(-α) = -sinα cos(-α) = cosα tan (—a)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα北有云溪2023-08-02 10:29:281
高中数学三角函数公式是什么?
高中数学三角函数必背公式如下:1、高中三角函数公式大全:两角和公式、倍角公式、三倍角公式、半角公式2、高中三角函数公式大全:和差化积、积化和差3、高中三角函数公式大全:诱导公式、万能公式4、高中三角函数公式大全:其他公式、其他非重点三角函数、双曲函数5、6、7、8、9、10、11、12、三角函数包括两个部扰芦分:三角与三角函数、解三角形分析。重点的知识点包括:任意角的三角函数;同角三角函数的基本关系式;诱导公式;三角函数的图象及其变换;三角函数的性质及其应用;三角函数的求值与化简;正弦、余弦定理;解三角形及其综。三角与三角函数包括任意角及其三角函数、同角关系式和诱导公式、正弦及正弦型函数、余与正切函数、三角恒等变换和三角综合。重点考查基础知识和基本技能,突出角与代数、几何、向量等知识点的联缓昌带系,题型难度属于容易或中等。解三角形正弦定理和余弦定理是解三角形的两个重要定理,应用这两个定理,凡尘2023-08-02 10:29:281
高中三角函数所有公式
你可以到这里诱导公式(口诀:奇变偶不变,符号看象限。)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)你可以到这里去看看...那里除了六组诱导公式没有外其他的都有http://www.shuxueclub.com/Article/wytg/200701/106.htmlmlhxueli 2023-08-02 10:29:282
三角函数中 为什么1弧度等于(180/圆周率)度 1度等于圆周率/180
人为规定余辉2023-07-28 12:31:504
三角函数的奇偶性是什么?
三角函数的奇偶性是:一、y=sinx1、奇偶性:奇函数2、图像性质:中心对称:关于点(kπ,0)对称轴对称:关于x=kπ+π/2对称二、y=cosx1、奇偶性:偶函数2、图像性质:中心对称:关于点(kπ+π/2,0)对称轴对称:关于x=kπ对称三、y=tanx1、奇偶性:奇函数2、图像性质:中心对称:关于点(kπ/2,0)对称利用函数运算法判断函数奇偶性奇函数±奇函数=奇函数偶函数±偶函数=偶函数奇函数×奇函数=偶函数偶函数×偶函数=偶函数偶函数÷奇函数=奇函数CarieVinne 2023-07-28 12:26:381
三角函数(正弦、余弦、正切、余切、正割、余割)的定义域、值域、
正弦:y=sinx定义域:实数值域:[-1,1]余弦:y=cosx定义域:实数值域:[-1,1]正切:y=tanx定义域:x为实数,且x不等于k兀+兀/2 (k为整数)值域:实数余切:y=cotx定义域:x为实数,且x不等于k兀 (k为整数)正割:y=secx定义域:x为实数,且x不等于k兀+兀/2 (k为整数)值域:实数余割:y=cscx定义域:x为实数,且x不等于k兀 (k为整数)值域:实数“兀”代表圆周率真颛2023-07-28 11:41:303
45度用反三角函数怎么表示
sin45°=√2/2 45° =arcsin√2/2 或者45° =arccos√2/2 =arctan1左迁2023-07-28 11:08:521
幂函数,指数函数,对数函数,三角函数,反三角函数各自的定义域?
http://zhidao.baidu.com/question/117256612.htmlChen2023-07-28 11:01:573
幂函数,指数函数,对数函数,三角函数,反三角函数各自的定义域?
幂函数的定义域是最复杂的,y=x^a中,a若为无理数,涉及到实数连续统的极为深刻的知识.这里就不说了. 对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性: 如果a为任意实数,则函数的定义域为大于0的所有实数; 如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数. 指数函f(x)=a^x,定义域数是全体实数. 对数函数f(x)=lgx,定义域是所有正数.即(0,-∞) 三角函数,f(x)=sinx,定义域全体实数,他的反函数arcsinx,定义域[-1,1] f(x)=cos一样, f(x)=tanx,定义域,x≠kπ/2,他的反函数是根据f(x)=tanx的定义域确定的.所以定义域也不同.hi投2023-07-28 11:01:411
三角函数奇偶性判断 有哪些方法
奇偶性的判定:(1)定义法用定义来判断函数奇偶性,是主要方法.首先求出函数的定义域,观察验证是否关于原点对称.其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。f(-x)=-f(x)奇函数,如:sin(-x)=-sinx。f(-x)=f(x)偶函数,如:cos(-x)=cosx。(2)用必要条件具有奇偶性函数的定义域必关于原点对称,这是函数具有奇偶性的必要条件。(3)用对称性若f(x)的图象关于原点对称,则f(x)是奇函数。若f(x)的图象关于y轴对称,则f(x)是偶函数。(4)用函数运算如果f(x)、g(x)是定义在D上的奇函数,那么在D上,f(x)+g(x)是奇函数,f(x)u2022g(x)是偶函数.简单地,“奇+奇=奇,奇×奇=偶”。类似地,“偶±偶=偶,偶×偶=偶,奇×偶=奇”。扩展资料:90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。三角函数定号法则:将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。也就是“象限定号,符号看象限”(或为“奇变偶不变,符号看象限”)。在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。或简写为“ASTC”,即“all”“sin”“tan+cot”“cos”依次为正。还可简记为:sin上cos右tan/cot对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan/cot的正值斜着。小菜G的建站之路2023-07-26 10:43:363
cotx的反三角函数公式
在三角形ABC中,角A的对边是a,角B的对边是b,角C的对边是c,sinA=a/ccosA=b/ctanA=a/bcotA=b/a(特殊的:tanA*cotA=1tanA=1/cotA cotA=1/tanAsinA=tanA/cotAcosA=cotA/tanA)人类地板流精华2023-07-24 10:42:501
三角函数中,cotx是什么意思
cosx/sinx人类地板流精华2023-07-24 10:42:454
在三角形的角中,反三角函数是什么样的数学公式?
公式:(arcsinx)"=1/√(1-x^2)(arccosx)"=-1/√(1-x^2)(arctanx)"=1/(1+x^2)(arccotx)"=-1/(1+x^2)反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。扩展资料:为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。参考资料来源:百度百科——反三角函数kikcik2023-07-24 10:42:161
30度60度90度的三角函数值分别是多少
你自己查询一下三角函数表就知道了陶小凡2023-07-23 18:47:076
三角函数中,30℃的余弦值是多少
30度、45度、60度的三角函数值:1、正弦值:30度等于1/2,45度等于√2/2 ,60度等于√3/2 。2、余弦值:30度等于√3/2,45度等于√2/2,60度等于1/2。3、正切值:30度等于√3/3,45度等于1,60度等于√3。扩展资料基本三角函数关系的速记方法六边形的六个角分别代表六种三角函数,存在如下关系:1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...康康map2023-07-23 18:47:021
三角函数COS30度等于多少?
21北有云溪2023-07-23 18:46:542
30度的三角函数值是多少
我们请教学习题都是去精锐问老师的。康康map2023-07-23 18:46:256
cos30°的三角函数值是多少?
cos30°等于2分之根号3。该问题为三角函数的范畴,其属于初等函数中的超越函数的一类函数,本质是任意角的集合与一个比值的集合的变量之间的映射,通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。cos是余弦值,即余弦值=邻边÷斜边。因为在三角形中,30°所对的直角边是斜边的一半,所以cos30°三角形的三边之比为上述的数值。cos公式的其他资料:它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1,余弦函数是偶函数,其图像关于y轴对称。利用余弦定理,可以解决以下两类有关三角形的问题:(1)已知三边,求三个角。(2)已知两边和它们的夹角,求第三边和其他两个角。水元素sl2023-07-23 18:46:201
一道数学题,,,三角函数
解答如图所示无尘剑 2023-07-23 17:26:111
三角函数tanx=1/cotx, 那么cotx=1/tanx吗?为什么?
是的,因为a=1/b,则b=1/a,把a看成tanx,b看成cotx,一样的道理。望采纳ardim2023-07-23 13:56:345
高一数学三角函数,cosx=4/5,x属于(0,π),则cotx的值等于......
cosx=4/5,且x属于(0,π)可知x属于(0,π/2)由(sinx)的平方+(cosx)的平方=1得sinx=3/5cot(x)=cos(x)/sin(x)=4/3铁血嘟嘟2023-07-23 13:56:321
cotx等于什么 解析三角函数cotx的定义和性质?
因为cotx=1/tanx所以:cotx与tanx互为倒数。所以当cotx=0时,tanx不存在反之当tanx=0时,cotx不存在详情如图所示:供参考,请笑纳。wpBeta2023-07-23 13:55:312
三角函数等量代换
定义域x属于R且x不等于k*派+二分指派f(x)=(1-sinx/cosx)*{1+√2sin(2x)cos45+√2sin(2x)sin45} =(1-sinx/cosx)*{1+2sin(x)cosx+cos^2(x)-sin^2(x)} =(1-sinx/cosx)*(2sinxcosx+2(cosx)^2) =2cos(2x)值域:[-2 0) (0 2]单增区间: [k*pai-pai/2 k*pai-pai/4) 与(k*pai-pai/4 k*pai]苏州马小云2023-07-21 09:16:421
三角函数中sin30度对应是什么?怎么推导?
tan30°=√3/3;tan45°=1;tan60°=√3;tan90°不存在。sin30°=0.5;sin45°=√2/2;sin60°=√3/2;sin90°=1;cos30°=√3/2;cos45°=√2/2;cos60°=0.5;cos90°=0;其他一些特殊角的三角函数值如下表所示:三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。扩展资料:三角函数记忆口诀:三角函数是函数,象限符号坐标注。函数图像单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字一,连结顶点三角形。向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成锐角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;一加余弦想余弦,一减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。定义域和值域:sin(x),cos(x)的定义域为R,值域为[-1,1]。tan(x)的定义域为x不等于π/2+kπ(k∈Z),值域为R。cot(x)的定义域为x不等于kπ(k∈Z),值域为R。y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²;+b²;) , c+√(a²;+b²;)] 周期T=2π/ω。三角函数的反函数:三角函数的反函数,是多值函数。它们是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2<y<π/2;反余切函数y=arccot x的主值限在0<y<π。反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).反三角函数主要是三个:y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条;y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条;y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条;sinarcsin(x)=x,定义域[-1,1],值域 [-π/2,π/2]证明方法如下:设arcsin(x)=y,则sin(y)=x ,将这两个式子代入上式即可得。其他几个用类似方法可得。参考资料:百度百科-三角函数北营2023-07-21 08:57:361
30度的三角函数值是多少呢?
30度、45度、60度的三角函数值:1、正弦值:30度等于1/2,45度等于√2/2 ,60度等于√3/2 。2、余弦值:30度等于√3/2,45度等于√2/2,60度等于1/2。3、正切值:30度等于√3/3,45度等于1,60度等于√3。扩展资料基本三角函数关系的速记方法六边形的六个角分别代表六种三角函数,存在如下关系:1)对角相乘乘积为1,即sinθ·cscθ=1; cosθ·secθ=1; tanθ·cotθ=1。2)六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ...meira2023-07-21 08:57:331
三角函数图像的斜率怎么求?
切线与X轴夹角的正切值Ntou1232023-07-20 11:06:112
初中三角函数公式表
COS30度=0.866 tan45度=1 cot我就不会wpBeta2023-07-20 10:03:539
三角函数积分公式大全
三角函数最简单的概念是什么?显然,就是sin、cos、tg、ctg这四个概念。这是三角函数的基本元素。可惜有很多人学了很长时间的三角函数,这四个符号倒是认识了,却没有能够真正理解它们的内涵。所谓三角函数,简单来说,就是直角三角形的几条边的比例关系。假设有直角△abc,∠c=90°,对应斜边c,∠a和∠b分别对应直角边a和b。?那么,sina=a/c,cosa=b/c,tga=a/b,ctga=b/a。实际上,这四个函数就是为了把直角三角形的比例线段简单化,为了避免每次都要写一大堆线段的比例式,而发明出来的。sina就代表∠a所对的直角边与斜边的比例,cosa就代表∠a的邻边与斜边的比例,tga就代表∠a的对边与邻边的比例,ctga就代表∠a的邻边与对边的比例。把这些最简单的概念弄清楚了,有很多基础的三角函数公式就不用记了 这是我在我空间里复制的一段 我就是看了这个才明白的 希望能帮到你北有云溪2023-07-20 10:03:271
三角函数积分公式是什么?
三角函数积分公式如下:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ。cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ。tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)。不定积分:是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。注:∫f(x)dx+c1=∫f(x)dx+c2,不能推出c1=c2。墨然殇2023-07-20 10:03:241
三角函数积分的公式有哪些?
三角函数积分公式如下:1、∫sinxdx=-cosx+C2、∫cosxdx=sinx+C3、∫tanxdx=ln|secx|+C4、∫cotxdx=ln|sinx|+C5、∫secxdx=ln|secx+tanx|+C6、∫cscxdx=ln|cscx–cotx|+C7、∫sin2xdx=1/2x-1/4sin2x+C8、∫cos2xdx=1/2+1/4sin2x+C9、∫tan2xdx=tanx-x+C10、∫cot2xdx=-cotx-x+C11、∫sec2xdx=tanx+C12、∫csc2xdx=-cotx+C13、∫arcsinxdx=xarcsinx+√(1-x2)+C14、∫arccosxdx=xarccosx-√(1-x2)+C15、∫arctanxdx=xarctanx-1/2ln(1+x2)+C16、∫arccotxdx=xarccotx+1/2ln(1+x2)+C17、∫arcsecxdx=xarcsecx-ln│x+√(x2-1)│+C18、∫arccscxdx=xarccscx+ln│x+√(x2-1)│+CNerveM 2023-07-20 10:03:241
高次三角函数积分公式大全
高次三角函数积分公式有哪些?下面就由我为大家解答一下,供大家参考。 什么是积分公式 积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。 设f(x)是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。 高次三角函数积分公式 1.基本积分公式 2.三角函数的有理式积分公式北境漫步2023-07-20 10:03:221
三角函数积分的公式?
三角函数积分的公式?三角函数积分的公式由下面的式子表示:∫sin(x)dx= -cos(x) C; ∫cos(x)dx= sin(x) C; ∫tan(x)dx= -ln|cos(x)| C; ∫sec(x)dx= ln|sec(x) tan(x)| C; ∫csc(x)dx= u2212ln|csc(x) cot(x)| C; ∫cot(x)dx= ln|sin(x)| C九万里风9 2023-07-20 10:03:212
三角函数积分公式
三角函数积分公式如下:1、∫sinxdx=-cosx+C2、∫cosxdx=sinx+C3、∫tanxdx=ln|secx|+C4、∫cotxdx=ln|sinx|+C5、∫secxdx=ln|secx+tanx|+C6、∫cscxdx=ln|cscx–cotx|+C7、∫sin2xdx=1/2x-1/4sin2x+C8、∫cos2xdx=1/2+1/4sin2x+C9、∫tan2xdx=tanx-x+C10、∫cot2xdx=-cotx-x+C11、∫sec2xdx=tanx+C12、∫csc2xdx=-cotx+C13、∫arcsinxdx=xarcsinx+√(1-x2)+C14、∫arccosxdx=xarccosx-√(1-x2)+C15、∫arctanxdx=xarctanx-1/2ln(1+x2)+C16、∫arccotxdx=xarccotx+1/2ln(1+x2)+C17、∫arcsecxdx=xarcsecx-ln│x+√(x2-1)│+C18、∫arccscxdx=xarccscx+ln│x+√(x2-1)│+C小菜G的建站之路2023-07-20 10:03:211
三角函数的定积分公式
(sin x的n次幂)在0~2分之派上的积分=(cos x的n次幂)在0~2分之派上的积分=若n为偶数:(n-1)/n ×(n-3)/(n-2)×```× 3/4 × 1/2 × 派/2若n为奇数:(n-1)/n ×(n-3)/(n-2)×```× 4/5 × 2/3tt白2023-07-20 10:03:192
三角函数积分公式大全 三角函数都有哪些公式?
三角函数应该是高中数学中比较难的一个部分了,我整理了一些关于高中三角函数的相关消息,供大家参考,希望对大家有所帮助。 三角函数积分公式大全(一) 无论α是多大的角,都将α看成锐角. 以诱导公式为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 三角函数积分公式大全(二) 以诱导公式为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。 三角函数积分公式大全(三) 三角形中的三角函数 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) sin3a =3sina-4sin^3a =4sina(3/4-sin^2a) =4sina[(√3/2)-sina][(√3/2)+sina] =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[60°+a)/2] =4sinasin(60°+a)sin(60°-a) 三角函数积分公式大全(三) cos3a =4cos^3a-3cosa =4cosa(cos^2a-3/4) =4cosa[cos^2a-(√3/2)^2] =4cosa(cosa-cos30°)(cosa+cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a)NerveM 2023-07-20 10:03:161
三角函数积分公式大全
三角函数最简单的概念是什么?显然,就是sin、cos、tg、ctg这四个概念。这是三角函数的基本元素。可惜有很多人学了很长时间的三角函数,这四个符号倒是认识了,却没有能够真正理解它们的内涵。所谓三角函数,简单来说,就是直角三角形的几条边的比例关系。假设有直角△abc,∠c=90°,对应斜边c,∠a和∠b分别对应直角边a和b。?那么,sina=a/c,cosa=b/c,tga=a/b,ctga=b/a。实际上,这四个函数就是为了把直角三角形的比例线段简单化,为了避免每次都要写一大堆线段的比例式,而发明出来的。sina就代表∠a所对的直角边与斜边的比例,cosa就代表∠a的邻边与斜边的比例,tga就代表∠a的对边与邻边的比例,ctga就代表∠a的邻边与对边的比例。把这些最简单的概念弄清楚了,有很多基础的三角函数公式就不用记了 这是我在我空间里复制的一段 我就是看了这个才明白的 希望能帮到你无尘剑 2023-07-20 10:03:131
情侣说三角函数是啥意思
.lim me→∞=you是比较熟知的一种表白梗,含义是你是我的整个世界三角函数是考试中经常出现的身影,如果我是sin,你是cos,那么我们只求tan! 2.根据sin和cos之间的关系,我们可以知道sin、cos的平方和是1,而sin除以cos得到tan,tan的范围是正无穷到负无穷,那么,就可以理解为“两人的感情是无限延伸,不可估量的。” 3. 128根号e980。 I Love You的数学公式最早来源于韩国歌手K.will的一首MV,叫《I need you》。女孩在黑板上写了一个数学公式“128根号e980”,让男主角解答,男主角冥思苦想都算不出来,于是女孩拿起刷子擦掉公式的上半部分,就变成了英文的 I Love You。 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域.西柚不是西游2023-07-20 09:33:342
三角函数的导数记忆口诀
正弦求导是余弦,余弦求导是负正弦,括号内x前若有倍数求导后要乘在三角函数之前(sin2x求导为2cos2x)有加常数直接照抄(sin(2x+6)求导2cos(2x+6)) 高考对三角函数求导基本要求是这Chen2023-07-20 08:41:531
三角函数及其导数
是幂的意思,意思就是secx的平方再也不做站长了2023-07-20 08:41:533
135度角的三角函数值求导公式
解:sin135°=sin45°=√2/2cos135°=-cos45°=-√2/2tan135°=-tan45°=-1积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]墨然殇2023-07-20 08:41:521
反三角函数求导公式?
反三角函数求导是设arccotx=y,则coty=x两边求导,(-cscy)·y′=1,即y′=-1/cscy=-1/(1+coty),因此,y′=f′(x)=-1/(1+x)。1、反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。2、反三角函数是一种基本初等函数。它并不能狭义的理解为三角函数的反函数,是个多值函数。 三角函数,正常情况下是y=sinx,也就是说我们知道一个角度,可以查表或者计算出所对应的值。3、反正弦函求导公式,设×=siny为直接函数,则y=arcsinx是它的反函数,我们知道,函数×=siny在区间-π/2<y<π/2内单调、可导,而且(siny)"=cosy>0瑞瑞爱吃桃2023-07-20 08:41:521
三角函数求导 f(x)=cos(根号下3*x+a)
令√(3x+a)=t 则原式为f(x)=cost 导数为(-sint)*(√(3x+a))"=-3sint/2√(3x+a)mlhxueli 2023-07-20 08:41:491
反三角函数中又有复合函数怎样求导
先对反三角函数利用反三角函数的规则求导,再乘以对复合函数求导的值如Arctanx2的值为2x/(1+x2),式中的第一个和第三个2是指数幂gitcloud2023-07-20 08:41:481
数学三角函数求导公式
tanα 61cotα=1sinα 61cscα=1cosα 61secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2αsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=—————— 1-tanα 61tanβ tanα-tanβtan(α-β)=—————— 1+tanα 61tanβ 2tan(α/2)sinα=—————— 1+tan2(α/2) 1-tan2(α/2)cosα=—————— 1+tan2(α/2) 2tan(α/2)tanα=—————— 1-tan2(α/2)sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α 2tanαtan2α=————— 1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα 3tanα-tan3αtan3α=—————— 1-3tan2αardim2023-07-20 08:41:481
请问三角函数sin(a)对时间t求导该怎样求
不就是复合函数求导么?直接套公式就得到了dsin(a)/dt = cos(a) da/dt不知道a和t的实际函数关系,只能算到这点LuckySXyd2023-07-20 08:41:482
请问三角函数怎么求导函数 比如说y=cosx
倒数关系:商的关系:平方关系:tanα·cotα=1sinα·cscα=1cosα·secα=1sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secαsin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α诱导公式sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=——————1-tanα·tanβtanα-tanβtan(α-β)=——————1+tanα·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+βα-βsinα+sinβ=2sin—--·cos—-—22α+βα-βsinα-sinβ=2cos—--·sin—-—22α+βα-βcosα+cosβ=2cos—--·cos—-—22α+βα-βcosα-cosβ=-2sin—--·sin—-—221sinα·cosβ=-[sin(α+β)+sin(α-β)]21cosα·sinβ=-[sin(α+β)-sin(α-β)]21cosα·cosβ=-[cos(α+β)+cos(α-β)]21sinα·sinβ=--[cos(α+β)-cos(α-β)]2化asinα±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)这是公式塞!其实其他公式都是前3个公式推的!CarieVinne 2023-07-20 08:41:471
三角函数sint怎样求导?
sin(arcsinx)=x解题:sin(arcsinx)可以化简,化简后的结果是x设sin(arcsinx)=k,并设arcsinx=t,则有:sint=x。同时,将arcsinx代入题目条件有:sint=k因此有k=x。所以sin(arcsinx)=x.arcsinx是sinx的反函数,一个函数的反函数,再经过一次反函数操作就是它本身。三角函数是数学中属于初等函数中的超越函数的一类函数:它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。墨然殇2023-07-20 08:41:451
三角函数求导
三角函数求导公式,如图所示善士六合2023-07-20 08:41:451
反三角函数怎样求导?
反三角函数求导是设arccotx=y,则coty=x两边求导,(-cscy)·y′=1,即y′=-1/cscy=-1/(1+coty),因此,y′=f′(x)=-1/(1+x)。1、反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。2、反三角函数是一种基本初等函数。它并不能狭义的理解为三角函数的反函数,是个多值函数。 三角函数,正常情况下是y=sinx,也就是说我们知道一个角度,可以查表或者计算出所对应的值。3、反正弦函求导公式,设×=siny为直接函数,则y=arcsinx是它的反函数,我们知道,函数×=siny在区间-π/2<y<π/2内单调、可导,而且(siny)"=cosy>0ardim2023-07-20 08:41:441
三角函数的求导 请问一下三角函数,如sin2α和sin3α的求导怎么求?
如果 α是常数 则 sin2α和sin3α的导数都为0 如果 α是变量 (sin2α)"=cos(2α)*(2α)"=cos(2α)*2=2cos(2α) (sin3α)"=cos(3α)*(3α)"=cos(3α)*3=3cos(3α)西柚不是西游2023-07-20 08:41:441
三角函数的n阶导数公式
长这样。根据一阶导二阶导的推导,还有基本三角函数左正右负的平移法则凡尘2023-07-20 08:41:431
三角函数sin+cos+ cos怎样求导?
对于三角函数,如果要求其导数,可以使用三角函数的导数公式进行求导。对于三角函数的和,例如 sin(x) + cos(x) + cos(x),可以将它们分别求导,然后相加得到最终的结果。三角函数的导数公式如下:sin(x)的导数是cos(x)cos(x)的导数是-sin(x)tan(x)的导数是sec^2(x)所以,对于上面的函数 sin(x) + cos(x) + cos(x),它的导数是:cos(x) - sin(x) + cos(x) = 2cos(x) - sin(x)无尘剑 2023-07-20 08:41:431
三角函数求导结果是什么,求导结果怎么算?
题目结果:这个求导结果可以记住,也可以将tanx化成sinx和cosx的商,用函数商的求导方法来计算。关于三角函数的求导,(sinx)"=conx,(cosx)"=-sinx,这两个是一定要记住的,然后根据这两个,再结合函数的和差积商以及复合函数的求导方法,就可以推导出所有的三角函数的求导结果了。函数和差就不说了,很简单。函数的积的求导:(uv)"=u"v+uv"函数的商的求导:复合函数求导:有u=g(x),则对f(u)求导得:f"(x)=f"(u)*g"(x)无尘剑 2023-07-20 08:41:411
三角函数导数的定义是什么呢?
三角函数的反函数,是多值函数。它们是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsinx;相应地,反余弦函数y=arccosx的主值限在0≤y≤π;反正切函数y=arctanx的主值限在-π/2<y<π/2;反余切函数y=arccotx的主值限在0<y<π。反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x).就数学历史来看,两种理论都有一定的道理,实无限就使用了150年。光是电磁波还是粒子是一个物理学长期争论的问题,后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论,都不是最好的方法。meira2023-07-20 08:41:403