初中数学

初中数学题王力骑自行车从A地到B

设AB相距x千米 (x-36)/(10-8)=(x+36)/(12-8) (x-36)/2=(x+36)/4 2(x-36)=x+36 2x-72=x+36 x=108 答:AB相距108千米
小白2023-07-02 09:16:291

初中数学《角的度量》课件【三篇】

【 #课件# 导语】课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。它与课程内容有着直接联系。使用课件能够吸引学生注意力,提高学习情绪,从而诱发学生学习的兴趣。下面是 考 网课件频道。    初中数学《角的度量》课件篇一   [教学目标]   1、体会引入量角器的必要性,认识量角器。   2、会用量角器测量各种角的度数。   [教学重、难点]   1、认识量角器。   2、会用量角器测量各种角的度数。   [教学准备]每人准备量角器。   [教学过程]   一、体会引入量角器的必要性   1、动手操作活动   四人小组活动:(1)用∠1测量∠a和∠b的大小。   (2)都是3倍多一点,讨论怎么办:用更小的角去测。   (3)对折∠1得到∠2,用∠1测量∠a和∠b的大小。   2、讨论、总结   讨论:要测量一个角有多大,可以用规定的角去测,为了统一测量单位便于交流,规定了1度角,并使用量角器来量角。   二、认识量角器   自己读书26页中的认一认,思考下面问题,再小组交流。   1、测量角所用的单位。   2、量角器的特点。   三、使用量角器测量角的大小   1、先自己试一试:怎样用量角器测∠a和∠b的大小。   2、与同学交流测量的方法   3、总结测量方法:强调“点与点的重合,边与边的重合”的测量方法。    初中数学《角的度量》课件篇二   教学内容:   九年制义务教育课本数学四年级第七册P83-85   教学目标:   认知目标   1、认识、熟悉量角器,会用量角器量角。   2、熟练使用量角器量角。   能力目标   让学生经历观察、操作的主动探索过程,灵活使用工具。   情感目标   通过主动操作,使学生感受到量角器的作用,体会“工欲善其事,必先利其器”的含义,引导学生在学习生活中善于使用工具,善于找到趁手的工具。   教学重点:   熟悉量角器,会用量角器画角。   教学难点:   量角器上有两组“零刻度线及其读数”,学生应正确寻找与使用。   教学准备:   多媒体课件及量角器   教学过程:   一、创设情景,引入新课   1.同学们,今天开始我们要学习“角的度量”,我们先来聊聊两句成语:“磨刀不误砍柴工”、“工欲善其事,必先利其器”。   2.磨刀花费时间,但不耽误砍柴。比喻事先充分做好准备,就能使工作加快。   3.要做好工作,先要使工具锋利。比喻要做好一件事,准备工作非常重要。   4.就我们即将学习的内容“角的度量”来说,我们也必须准备好合适的工具——量角器。   说明:通过成语的情景,引入量角器,激发学生的学习兴趣。   二、自主探究,学习新知   1.请你仔细地观察量角器,然后做一个介绍。   2.罗列量角器的相关知识:(请学生介绍)   (1)量角器是一个半圆,这个半圆被分成180等份;   (2)量角器上有一个中心点,叫做“中心”;   (3)从“中心”向左右两边,分别有两条直线,都叫做“零刻度线”;   (4)两条零刻度线分别对应两组读数;   (5)读一读量角器上的刻度   说明:通过对量角器的认识,让学生熟知量角器每部分的构成,为下部分的量角做好必要准备,并且由学生自主观察,获得新知,这样对于学生正确使用量角器度量会有所帮助。   三、自学课本,尝试操作   1、请先独自思考,再看书自学如何正确使用量角器量角   (1)自学   (2)汇报交流:量角器上最小的读数是0°,的是180°,说明使用量角器可以测量出从0°—180°的角。   2、完成书上第84页的量角,并总结出量角三要点。   3、请用量角器测量三角尺的角,并记录下来。   4、交流评议。   说明:通过学生自学,初步了解如何用量角器量角,再通过课件的演示和教师的口述相结合,让学生进一步掌握量角的正确过程,最后请学生自己通过操作,总结出量角的三要点,这样学生对使用权用量角器量角的过程从感性认识到理性认识,又经历了自主尝试,亲历学习过程,老师又能够及时巡视,点评纠正,这样学生就能少走弯路。   四、分层练习,及时巩固   1、填空   量角器是一个,从中心向左右两边各有一条。   量角器被分成180等份,每一份所对应角的大小是,记作。   2、独立完成书p71的第1、2、3、4、5题。   (1)小组合作交流。   (2)小结。   说明:通过这部分的练习,帮助学生梳理本节课的知识要点,让学生更明确量角的方法。   五、课堂总结,收获评价   师:说说今天我们学习了什么知识,发现了什么,对我们有何帮助?你对你今天的学习评价如何?   说明:二期课改强调对学生的评价,学生能够通过自我的评价,相互的评价和教师的评价有机结合,能够全面的反映学生的学习情况和状态。    初中数学《角的度量》课件篇三   教学目标1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。   2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣。   3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。   教学重点度、分、秒间单位互化及角的和、差、倍、分计算。   知识难点度、分、秒间单位互化及角的和、差、倍、分计算。   教学准备量角器、三角尺。   教学过程(师生活动)设计理念   复习   任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。复习角的概念,角的表示及量角器的使用,为学习角度制作准备。
西柚不是西游2023-07-02 09:05:331

初中数学角的度量

角的度量单位,一有运来的角度,质变来了弧度制一周360。不同于二派角的度量,同时也有单位角变成了任意角。
凡尘2023-07-02 09:05:282

初中数学4cos60度是什么意思?

4*cos60uff1d4uff0aluff0f2uff1d2
kikcik2023-07-01 13:09:511

初中数学试题及答案

  初中数学试题及答案   选择题   (1)有写着数字2、5、8的卡片各10张,现在从中任意抽出7张,这7张卡片的和可能等于( )。   A、21 B、25 C、29 D、58   答案:C   (2)某开发商按照分期付款的形式售房。张明家购买了一套,现价为12万元的新房,购房时需首付(第一年)款3万元,从第二年起,以后每年应付房款5000元,与上一年剩余欠款的利息之和。已知剩余欠款的年利率为0.4%,第( )年张明家需要交房款5200元。   A、7 B、8 C、9 D、10   答案D   (3)若干名战士排成8列长方形的队列,若增加120人或减少120人都能组成一个新的正方形队列,那么,原有战士( )人。   A、904 B、136 C、240 D、360   解:A、B   此题反推一下即可。所以选择A、B   (4)一个三位数,它的反序数也是一个三位数,用这个三位数减去它的反序数得到的差不为0,而且是4的倍数。那么,这样的三位数有( )个。   A、2 B、30 C、60 D、50   答案:D   这个三位数与它的反序数除以四的余数应该相等,   不妨设这个三位数是ABC,则它的反序数为CBA。于是有ABC-CBA=4的倍数,即100A+10B+C-(100C+10B+C)=4的倍数,整理得99(A-C)=4的倍数,即可知A-C是4的倍数即可,但是不能使这两个三位数的差为0,所以分别有5,1;6,2;7,3;8,4;9,5四组。每组中分别有10个,那么共有50个。   (5)有若干条长短、粗细相同的绳子,如果从一端点火,每根绳子都正好8分钟燃尽。现在用这些绳子计量时间,比如:在一根绳子的两端同时点火,绳子4分钟燃尽;在一根绳子的一端点火,燃尽的同时点第二根绳子的一端,两根绳子燃尽可计时16分钟。   规则:①计量一个时间最多只能使用3条绳子。   ②只能在绳子的端部点火。   ③可以同时在几个端部点火。   ④点着的火中途不灭。   ⑤不许剪断绳子,或将绳子折起。   根据上面的5条规则下列时间能够计量的有( )。   A、6分钟 B、7分钟 C、9分钟   D、10分钟 E、11分钟、 F、12分钟   答案:A,B,C,D,F。只有11分钟计量不出来。   通过上面对数学选择题试题的知识练习学习,希望同学们对上面的题目知识都能很好的掌握,相信同学们会从中学习的更好的哦。   因式分解同步练习(解答题)   关于因式分解同步练习知识学习,下面的题目需要同学们认真完成哦。   因式分解同步练习(解答题)   解答题   9.把下列各式分解因式:   ①a2+10a+25 ②m2-12mn+36n2   ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2   10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.   11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.   答案:   9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(填空题)   同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。   因式分解同步练习(填空题)   填空题   5.已知9x2-6xy+k是完全平方式,则k的值是________.   6.9a2+(________)+25b2=(3a-5b)2   7.-4x2+4xy+(_______)=-(_______).   8.已知a2+14a+49=25,则a的值是_________.   答案:   5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(选择题)   同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。   因式分解同步练习(选择题)   选择题   1.已知y2+my+16是完全平方式,则m的值是( )   A.8 B.4 C.±8 D.±4   2.下列多项式能用完全平方公式分解因式的是( )   A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1   3.下列各式属于正确分解因式的是( )   A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2   C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2   4.把x4-2x2y2+y4分解因式,结果是( )   A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2   答案:   1.C 2.D 3.B 4.D   以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。   整式的乘除与因式分解单元测试卷(填空题)   下面是对整式的乘除与因式分解单元测试卷中填空题的练习,希望同学们很好的完成。   填空题(每小题4分,共28分)   7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________   8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .   9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)   10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为 _________ .   11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.   (a+b)1=a+b;   (a+b)2=a2+2ab+b2;   (a+b)3=a3+3a2b+3ab2+b3;   (a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.   12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)   第n年12345…   老芽率aa2a3a5a…   新芽率0aa2a3a…   总芽率a2a3a5a8a…   照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).   13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .   答案:   7.   考点:零指数幂;有理数的乘方。1923992   专题:计算题。   分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;   (2)根据乘方运算法则和有理数运算顺序计算即可.   解答:解:(1)根据零指数的意义可知x﹣4≠0,   即x≠4;   (2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)2002×1.5÷1=1.5.   点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数为正指数的倒数,任何非0数的0次幂等于1.   8.   考点:因式分解-分组分解法。1923992   分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组.   解答:解:a2﹣1+b2﹣2ab   =(a2+b2﹣2ab)﹣1   =(a﹣b)2﹣1   =(a﹣b+1)(a﹣b﹣1).   故答案为:(a﹣b+1)(a﹣b﹣1).   点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是三一分组,要考虑分组后还能进行下一步分解.   9.   考点:列代数式。1923992   分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的有6段,表示为6z,所以总长时这三部分的和.   解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z.   点评:解决问题的关键是读懂题意,找到所求的量的等量关系.   10.   考点:平方差公式。1923992   分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步求出(a+b)的值.   解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,   (2a+2b)2﹣12=63,   (2a+2b)2=64,   2a+2b=±8,   两边同时除以2得,a+b=±4.   点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学们细心解答,把(2a+2b)看作一个整体.   11   考点:完全平方公式。1923992   专题:规律型。   分析:观察本题的`规律,下一行的数据是上一行相邻两个数的和,根据规律填入即可.   解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.   点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.   12   考点:规律型:数字的变化类。1923992   专题:图表型 。   分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律计算出第8年的老芽数是21a,新芽数是13a,总芽数是34a,则比值为   21/34≈0.618.   解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和,   所以第8年的老芽数是21a,新芽数是13a,总芽数是34a,   则比值为21/34≈0.618.   点评:根据表格中的数据发现新芽数和老芽数的规律,然后进行求解.本题的关键规律为:老芽数总是前面两个数的和,新芽数是对应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.   13.   考点:整式的混合运算。1923992   分析:运用完全平方公式计算等式右边,再根据常数项相等列出等式,求解即可.   解答:解:∵(x+2)2﹣1=x2+4x+4﹣1,   a=4﹣1,   解得a=3.   故本题答案为:3.   点评:本题考查了完全平方公式,熟记公式,根据常数项相等列式是解题的关键.   以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工作。   整式的乘除与因式分解单元测试卷(选择题)   下面是对整式的乘除与因式分解单元测试卷中选择题的练习,希望同学们很好的完成。   整式的乘除与因式分解单元测试卷   选择题(每小题4分,共24分)   1.(4分)下列计算正确的是( )   A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6   2.(4分)(x﹣a)(x2+ax+a2)的计算结果是( )   A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a3   3.(4分)下面是某同学在一次检测中的计算摘录:   ①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2   其中正确的个数有( )   A.1个B.2个C.3个D.4个   4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是( )   A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+1   5.(4分)下列分解因式正确的是( )   A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)   6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为( )   A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab   答案:   1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。1923992   分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.   解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;   B、应为a4÷a=a3,故本选项错误;   C、应为a3a2=a5,故本选项错误;   D、(﹣a2)3=﹣a6,正确.   故选D.   点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.   2.   考点:多项式乘多项式。1923992   分析:根据多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加,计算即可.   解答:解:(x﹣a)(x2+ax+a2),   =x3+ax2+a2x﹣ax2﹣a2x﹣a3,   =x3﹣a3.   故选B.   点评:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.   3.   考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法;整式的除法。1923992   分析:根据单项式乘单项式的法则,单项式除单项式的法则,幂的乘方的性质,同底数幂的除法的性质,对各选项计算后利用排除法求解.   解答:解:①3x3(﹣2x2)=﹣6x5,正确;   ②4a3b÷(﹣2a2b)=﹣2a,正确;   ③应为(a3)2=a6,故本选项错误;   ④应为(﹣a)3÷(﹣a)=(﹣a)2=a2,故本选项错误.   所以①②两项正确.   故选B.   点评:本题考查了单项式乘单项式,单项式除单项式,幂的乘方,同底数幂的除法,注意掌握各运算法则.   4   考点:完全平方公式。1923992   专题:计算题。   分析:首先找到它后面那个整数x+1,然后根据完全平方公式解答.   解答:解:x2是一个正整数的平方,它后面一个整数是x+1,   它后面一个整数的平方是:(x+1)2=x2+2x+1.   故选C.   点评:本题主要考查完全平方公式,熟记公式结构是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.   5,   考点:因式分解-十字相乘法等;因式分解的意义。1923992   分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.   解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;   B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;   C、是整式的乘法,不是分解因式,故本选项错误;   D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.   故选B.   点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.   6   考点:因式分解-十字相乘法等;因式分解的意义。1923992   分析:根据因式分解的定义,把一个多项式化为几个整式的积的形式,这样的式子变形叫做把这个单项式因式分解,注意分解的结果要正确.   解答:解:A、x3﹣x=x(x2﹣1)=x(x+1)(x﹣1),分解不彻底,故本选项错误;   B、运用十字相乘法分解m2+m﹣6=(m+3)(m﹣2),正确;   C、是整式的乘法,不是分解因式,故本选项错误;   D、没有平方和的公式,x2+y2不能分解因式,故本选项错误.   故选B.   点评:本题考查了因式分解定义,十字相乘法分解因式,注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.   6.   考点:列代数式。1923992   专题:应用题。   分析:可绿化部分的面积为=S长方形ABCD﹣S矩形LMPQ﹣S?RSTK+S重合部分.   解答:解:∵长方形的面积为ab,矩形道路LMPQ面积为bc,平行四边形道路RSTK面积为ac,矩形和平行四边形重合部分面积为c2.   可绿化部分的面积为ab﹣bc﹣ac+c2.   故选C.   点评:此题要注意的是路面重合的部分是面积为c2的平行四边形.   用字母表示数时,要注意写法:   ①在代数式中出现的乘号,通常简写做“”或者省略不写,数字与数字相乘一般仍用“×”号;   ②在代数式中出现除法运算时,一般按照分数的写法来写;   ③数字通常写在字母的前面;   ④带分数的要写成假分数的形式.   以上对整式的乘除与因式分解单元测试卷的练习学习,同学们都能很好的掌握了吧,希望同学们都能很好的参考,迎接考试工   初中数学试题总汇   解答题   1.把下列各式分解因式:   ①a2+10a+25 ②m2-12mn+36n2   ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2   10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.   11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.   答案:   1.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(填空题)   同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。   填空题   2.已知9x2-6xy+k是完全平方式,则k的值是________.   3.9a2+(________)+25b2=(3a-5b)2   4.-4x2+4xy+(_______)=-(_______).   5.已知a2+14a+49=25,则a的值是_________.   答案:   2.y23.-30ab 4.-y2;2x-y 5.-2或-12   选择题   6.已知y2+my+16是完全平方式,则m的值是( )   A.8 B.4 C.±8 D.±4   7.下列多项式能用完全平方公式分解因式的是( )   A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1   8.下列各式属于正确分解因式的是( )   A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2   C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2   9.把x4-2x2y2+y4分解因式,结果是( )   A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2   答案:   6.C 7.D8.B9.D   初中数学试题精选之圆   因式分解同步练习(解答题)   解答题   9.把下列各式分解因式:   ①a2+10a+25 ②m2-12mn+36n2   ③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2   10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.   11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.   答案:   9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(填空题)   同学们对因式分解的内容还熟悉吧,下面需要同学们很好的完成下面的题目练习。   因式分解同步练习(填空题)   填空题   5.已知9x2-6xy+k是完全平方式,则k的值是________.   6.9a2+(________)+25b2=(3a-5b)2   7.-4x2+4xy+(_______)=-(_______).   8.已知a2+14a+49=25,则a的值是_________.   答案:   5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12   通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。   因式分解同步练习(选择题)   同学们认真学习,下面是老师提供的关于因式分解同步练习题目学习哦。   因式分解同步练习(选择题)   选择题   1.已知y2+my+16是完全平方式,则m的值是( )   A.8 B.4 C.±8 D.±4   2.下列多项式能用完全平方公式分解因式的是( )   A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1   3.下列各式属于正确分解因式的是( )   A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2   C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2   4.把x4-2x2y2+y4分解因式,结果是( )   A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2   答案:   1.C 2.D 3.B 4.D   以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。
NerveM 2023-07-01 13:08:111

初中数学课本有提到幂函数了吗?

mlhxueli 2023-07-01 13:06:439

初中数学题3道,必须用方程解,写过程,题目看补充。

苏州马小云2023-07-01 13:03:551

初中数学知识点:长方形有几条对称轴?

  长方形有几条对称轴?下面由我为你精心准备了“初中数学知识点:长方形有几条对称轴?”,持续关注本站将可以持续获取更多的考试资讯! 初中数学知识点:长方形有几条对称轴?   长方形有两条对称轴,长方形的特殊形式正方形有4条对称轴。长方形是轴对称图形,轴对称图形即为一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,沿着的直线就是对称轴。   长方形性质   1、两条对角线互相平分且相等   2、两组对边分别平行且相等   3、4个角都是直角   4、有2条对称轴(正方形有4条)   5、具有不稳定性(易变形)   6、长方形对角线长的平方为两边长平方的和   7、顺次连接长发形各边中点得到的四边形是菱形   长方形判定   1、有一个角是直角的平行四边形是长方形   2、对角线相等的平行四边形是长方形   3、邻边互相垂直的平行四边形是长方形   4、有三个角是直角的四边形是长方形   5、对角线相等且互相平分的四边形是长方形   长方形公式   周长:C=2(a+b)   面积:S=ab
Chen2023-07-01 12:57:101

初中数学:什么是加权平均数?

举个例子,一个小组有5个学生,他们在一次考试中的成绩是80,80,100,100,100,即2人80,3人100.他们的平均成绩时有两种算法:1.将每人的成绩加起来再除以学生数:(80+80+100+100+100)/5=922.有成绩相同时,将该成绩乘以该成绩学生的个数,然后再加起来,结果再除以学生数:(80*2+100*3)/(2+3)=92这里2和3是权重.使用权重可以使计算过程简化.
肖振2023-06-30 09:17:513

初中数学:什么是加权平均数?

举个例子,一个小组有5个学生,他们在一次考试中的成绩是80,80,100,100,100,即2人80,3人100.他们的平均成绩时有两种算法:1.将每人的成绩加起来再除以学生数:(80+80+100+100+100)/5=922.有成绩相同时,将该成绩乘以该成绩学生的个数,然后再加起来,结果再除以学生数:(80*2+100*3)/(2+3)=92这里2和3是权重.使用权重可以使计算过程简化.
bikbok2023-06-30 09:17:502

初中数学、物理题

T1=(2S)/(V1+V2) T2=[S*(V1+V2)] / (V1*V2) B我在网吧,空算很难的算。题简单,但是我没草稿本的,难的酸。
北境漫步2023-06-30 08:46:401

初中数学单项式概念?

数字与字母的乘积叫单项式,单独一个数或一个字母也是单项式。
FinCloud2023-06-29 09:08:312

初中数学知识点:正比例和反比例的概念

  正比例和反比例怎么理解?复习到这里的考生可以来学习一下,下面由我为你精心准备了“初中数学知识点:正比例和反比例的概念”,持续关注本站将可以持续获取更多的考试资讯! 初中数学知识点:正比例和反比例的概念   正比例和反比例是数学中的一个知识点,本文整理了正比例和反比例的定义,欢迎阅读。   正比例和反比例   两种相关联的量,有的成比例,有的不成比例。如果两种相关联的量,一种量变化,另一种量也随着变化,当这两种量中相对应的两个数的比值一定时,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。当这两种量中相对应的两个数的积一定时,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。   正比例和反比例相同之处   1、事物关系中都有两个变量,一个定量。   2、在两个变量中,当一个变量发生变化时,则另一个变量也随之发生变化。   3、相对应的两个变数的积或商都是一定的。   正比例例子   (1)正方形的周长与边长 (比值:4)。   (2)同圆的周长与直径 (比值:π)。   (3)购买的总价与购买的数量(比值:单价)。   反比例例子   1、百米赛跑,路程100米不变,速度和时间是反比例。   2、排队做操,总人数不变,排队的行数和每行的人数是反比例。   3、做纸盒子,总个数一定,每人做的个数和人数。
墨然殇2023-06-29 09:01:191

初中数学不等式中的不小于,不大于,至少,不多于怎么区分

初中数学不等式中:不小于(不比···小)即是大于等于(≥),不大于(不比···大)即是小于等于(≤),至少(最小的也不比···小)即是大于等于(≥)不多于(最大的也不比···大)即是小于等于(≤)
豆豆staR2023-06-28 09:45:281

在初中数学里,“0”是不是自然数???

0不是自然数
u投在线2023-06-27 09:46:3613

初中数学开方公式

在这上面没法写初中第二册至第四册是数学书上有。对升学没用的
小白2023-06-27 09:24:115

初中数学平方根的计算公式 怎么算更简洁

数学 是很多人都头疼的科目,下面我就大家整理一下初中数学平方根的计算公式,仅供参考。初中数学平方根的计算公式 这些简单的常用的平方根估算值可以自己按按计算器然后记住,记不住或者懒得记,还是有方法可以自己计算的.比如没有计算器的古代人,他们是这么计算的: 假设要求a的平方根,先假设为x,然后计算 (a/x+x)/2,把得到的数当成x,同样计算 (a/x+x)/2,直到两个数差不多相等就可以了. 比如 计算√3,我假设是1.5 , 代入上面公式,(3/1.5+1.5)/2=1.75, 我再计算一遍 (3/1.75+1.75)/2=1.732, 我继续计算 (3/1.732+1.732)/2=1.732, 两个一样了,那保留三位小数就是1.732, 你按计算器得到的是1.732050807568. 什么是平方根 平方根,又叫二次方根,表示为〔±√ ̄〕,其中属于非负数的平方根称之为算术平方根(arithmetic square root)。一个正数有两个实平方根,它们互为相反数;0只有一个平方根,就是0本身;负数有两个共轭的纯虚平方根。 [1] 一般地,“√ ̄”仅用来表示算术平方根,即非负数的非负平方根。如:数学语言为:√ ̄16=4。语言描述为:根号16=4(也可叫根号16=4)。 平方根计算步骤 1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11"56),分成几段,表示所求平方根是几位数; 2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3); 3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256); 4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除 256,所得的最大整数是 4,即试商是4); 5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数); 6.用同样的方法,继续求平方根的其他各位上的数. 徒手开n次方根的方法: 原理:设被开方数为X,开n次方,设前一步的根的结果为a,现在要试根的下一位,设为b, 则有:(10*a+b)^n-(10*a)^n 以上就是我为大家整理的,初中数学平方根的计算公式,希望能帮助到大家!!
北境漫步2023-06-27 09:24:101

初中数学中开方怎么计算

对于开方的问题让大家很苦恼,我在下面为大家讲解了如何进行开方计算,快跟我一起来学习吧。 手动开平方 1,将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开,分成几段,表示所求平方根是几位数,小数部分从最高位向后两位一段隔开,段数以需要的精度+1为准。 2,根据左边第一段里的数,求得平方根的最高位上的数。 3,从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数。 4,把求得的最高位的数乘以20去试除第一个余数,所得的最大整数作为试商。 5,用商的最高位数的20倍加上这个试商再乘以试商。如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试,得到的第一个小于余数的试商作为平方根的第二个数。 6,用同样的方法,继续求平方根的其他各位上的数。用上一个余数减去上法中所求的积,与第三段数组成新的余数。这时再求试商,要用前面所得到的平方根的前两位数乘以20去试除新的余数,所得的最大整数为新的试商。 7,对新试商的检验如前法。 逆用公式平方 逆用公式平方运算,即(a+b)*(a+b)=a*a+2ab+b*b=a*a+b(2a+b),我们手运算时把a当成前一步上的值。如2开根号,首先,上1,这个1就是a,得2-1*1=1,剩余1。第二步,这个1就要大于等于b(2a+b)即1≥b(2*1+b)。所以我们求的小数点后第一位0.4{0.4(2*1+0.4)=0.96},剩余1-0.96=0.04,此时开的数值为1.4。第三步,(类似于第二步,只是运算数值比较小。)此时a=1.4。所以0.04≥b(2*1.4+b)。 小数点后第二位是0.01{0.01(2*1.4+0.01)=0.0281},剩余0.0119.在运算中为了简单,开到第二步后,一般你可以直接用,剩余数值≥2ab来估算b的值。如第一步,剩余1那么,1≯2*1b(此时不可以等于,由于省去b*b,这个值是小数时很小。所以只能大于)则b=0.4。运算时最好用短除法那样竖着列表。每步算剩余值时b*b是不可以省去的。 计算器开平方 平方一般复杂的计算器会有大概是^这个符号之后再2就是2次方太简单的计算器没有,只能再乘一次了开平方的符号是sqrt或者是根号,也可能是1/x。 以上是我总结的关于开方的知识,希望对大家的学习有所帮助。
西柚不是西游2023-06-27 09:24:011

初中数学乘法交换律和结合律

乘法交换律公式为a×b=b×a,乘法结合律公式为(a×b)×c=a×(b×c),我为大家整理了一些乘法公式,赶快来看看吧。 乘法运算律 乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成“·”。 乘法结合律::(ab)c=a(bc)。 乘法分配律:(a+b)c=ac+bc。 乘法公式 1、a2-b2=(a+b)(a-b) 2、a2+2ab+b2=(a+b)2 3、a2-2ab+b2=(a-b)2 4、a3+b3=(a+b)(a2-ab+b2) 5、a3-b3=(a-b)(a2+ab+b2) 6、a3+3a2b+3ab2+b3=(a+b)3 7、a3-3a2b+3ab2-b3=(a-b)3 8、a2+b2+c2+2ab+2bc+2ca=(a+b+c)2 数学版乘法口诀表 1×1=1 1×2=2 2×2=4 1×3=3 2×3=6 3×3=9 1×4=4 2×4=8 3×4=12 4×4=16 1×5=5 2×5=10 3×5=15 4×5=20 5×5=25 1×6=6 2×6=12 3×6=18 4×6=24 5×6=30 6×6=36 1×7=7 2×7=14 3×7=21 4×7=28 5×7=35 6×7=42 7×7=49 1×8=8 2×8=16 3×8=24 4×8=32 5×8=40 6×8=48 7×8=56 8×8=64 1×9=9 2×9=18 3×9=27 4×9=36 5×9=45 6×9=54 7×9=63 8×9=72 9×9=81
瑞瑞爱吃桃2023-06-27 09:20:311

初中数学有多少知识点

阅读与思考用正负数表示加工允许误差数学教师教学用书有理数的加减法。《初中数学》内容简介:作为一名具有丰富心理学、教育学、课程与教学理论知识的研究人员,李亦菲博士在本次基础教育课程改革中,参与了课程标准编制、实验教材编写、教学资源开发、评价与考试制度改革、学科教师培训、学校制度建设和管理等多方面的研究和实践工作,并长时期关注“三维目标统整”这一核心理念的理论基础以及操作落实问题。2007年9月以来,李亦菲进入中央教育科学研究所博士后工作站,与我合作攻克这一重要的理论与实践难题。代数是研究数字和文字的代数运算理论和方法,更确切的说,是研究实数和复数,以及以它们为系数的多项式的代数运算理论。解分式方程的基本思路是将分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,这也是解分式方程。
拌三丝2023-06-27 09:12:194

初中数学有理数知识梳理思维导图

很多同学都学习了有理数,我整理了有理数的思维导图,大家一起来看看吧。 有理数知识导图 有理数的运算知识点 有理数的加减法 (1)有理数的加法法则: ①同号的两数相反,取相同符号,并把绝对值相加; ②绝对值不相等的两数相加,取绝对值大的符号,并用绝对值大的减去绝对值 小的。互为相反数的两个数相加为0; ③一个数与0相加仍得这个数; (2)有理数加法的运算律:①加法交换律:a+b=b+a; ②加法结合律:(a+b)+c=a+(b+c) (3)有理数的减法法则:减去一个数,等于加上这个数的相反数;即:a-b=a+(-b); 有理数的乘除法 (1)有理数的乘法法则: ①两数相乘,同号得正,异号得负,并把绝对值相乘; ②任何数与0相乘均为0; (2)倒数:在有理数中仍然成立,即乘积是1的两个数互为倒数; (3)积的符号与负因数个数之间的关系:几个不是0的数相乘,当负因数的个数为偶数时,积是正数;当负因数的个数为奇数时,积是负数;几个数相乘时,当有因数是0时,积为0; (4)有理数的乘法运算律: ①乘法交换律:ab=ba; ②乘法结合律:(ab)c=a(bc); ③乘法分配律: a(b+c)=ab+ac; (5)有理数的除法法则:除以一个不为0的数,等于乘以其倒数;即: (6)两数相除,同号得正,异号得负,并把绝对值相除;0除以任一不为0的数,都得0; (7)在有理数的加减乘除混合运算中,若无括号,则按照先“先乘除后加减”的顺序进行运算; 有理数的乘方 (1)乘方:相同因数的积的运算叫做乘方,乘方的结果叫做幂;(在a^n中,a是底数,n是指数) (2)有理数的乘方运算法则: ①负数的奇次幂是负数,负数的偶次幂是正数; ②正数的任何次幂是正数; ③0的任何正次幂是0; (3)有理数的混合运算顺序: ①先乘方,再乘除,最后加减; ② 同级运算,从左到右; ③如有括号,先做括号内的运算,按小括号,中括号,大括号的顺序进行; (4)科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法; (5)近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到哪一位。 (6)有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字。 以上就是七年级有理数所有知识点也是考点大合集,这种总结知识点的模式:知识大纲+知识点。下期分享整数的加减法知识点合集。 有理数知识点 1有理数 有理数的定义:正整数0负整数统称为整数:正分数、负分数统称为分数.整数和分数统称为有理数. 2数轴 (1)数轴的定义 在数学中,可以用一条直线上的点表示数,这条直线叫做数轴,它满足以下要求: 1.在直线上任取一个点表示数0,这个点叫做原点; 2.通常规定直线上从原点向右为正方向,从原点向左为负方向; 3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表1,2,3,……从原点向左,用类似方法依次表示-1,-2,-3,…… (2)数轴上的点和有理数 一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度. 3相反数 (1)相反数的概念 像3和-3,4和-4这样,只有符号不同的两个数叫做互为相反数. 一般地,a和-a互为相反数,特别地,0的相反数是0.这里,a表示任意一个数,可以是正数、负数,也可以是0. (2)几何意义 互为相反数的两个数在数轴上对应的两个点位于原点的两侧且到原点的距离相等;反之,位于原点的两侧且到原点的距离相等的点所表 示的两个数互为相反数. (3)相反数的性质 任何一个数都有相反数,而且只有一个.正数的相反数一定是负数;负数的相反数一定是正数;0的相反数仍是0. 4绝对值 (1)绝对值的定义 一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|al. (2)绝对值的意义 1.绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 即 如果a>0,那么|a|=a; 如果a=0,那么|a|=0; 如果a<0,那么|a|=-a. 2.绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)绝对值的性质:绝对值具有非负性,即有|a|≥0;若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+...+|m|=0,则a=b=...=m=0. 以上就是一些有理数知识点整理,希望对大家有所帮助。
瑞瑞爱吃桃2023-06-27 08:35:381

初中数学绝对值教案有哪些

  新学期的伊始,让学生尽快进行自我调整,明确奋斗目标,进入最佳的学习状态。因此,以下是我分享给大家的初中数学绝对值教案的资料,希望可以帮到你!  初中数学绝对值教案一   一、教材内容   北师大2012年版《义务教育教科书 数学》七年级上册第二章第三节“绝对值”。   二、设计思路   1、设计理念   《义务教育数学课程标准(2011年版)》指出:数学教学是数学活动的教学,是师生交往、互动、共同发展的过程。学生是数学学习的主人,教师是学生学习数学学习的组织者、引导者和合作者。教学中,有关相反数和绝对值的概念教学精心设置问题串,由浅入深,提出一系列有思维层次或不同理解深度的问题,力图使每一个学生都能投入到学习活动中,理解相反数和绝对值的几何意义以及两者之间的本质联系,使不同的学生有不同的收获。教学过程中适时向学生提供以自主探究、合作交流等方式进行的主动式学习活动。让学生经历归纳、概括绝对值的若干性质,提炼上述活动中对绝对值代数解释的理解和应用,并用自己熟悉的方式、语言及数学符号去表示。   2、教材内容分析   (1)教材内容:这节课教学的主要内容为理解相反数、绝对值两个概念及它们之间的联系;掌握绝对值的相关性质,并能用符号语言来表示即讨论︱a︱与a之间的关系;利用绝对值比较两个负数的大小。   (2)教材地位:本节紧承前一节《数轴》的内容,首先从数字特征角度总结出相反数的概念,然后又借助数轴,从几何角度理解相反数的意义,同时自然从几何的角度引入绝对值的概念,然后又进行了代数解释。理解并掌握绝对值的概念是有理数大小比较和有理数四则混合运算的重要基础,所以又自然过渡到下节课的《有理数的加法》中去。思维及教学活动连接紧密,使前后形成整体,起到了承前启后的重要作用。   3、学情分析   学生的知识能力基础:在前面一节课中,学生已经理解了有理数的意义,并能用数轴上的点表示有理数,能比较有理数的大小。初步获得了分析问题和解决问题的一些基本方法,初步体验解决方法的多样性,初步发展了创新意识。   学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探究活动,解决了一些简单的现实问题,感受到了从数学活动中积累数学经验的过程;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。   三、教学目标   1、知识及技能   (1)借助数轴,理解绝对值和相反数的概念。   (2)知道︱a︱的含义(这里a表示有理数)以及互为相反数的两个数在数轴上的位置关系。   (3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。   (4)通过应用绝对值解决实际问题,体会绝对值的意义和作用   2、过程与方法   (1)经历运用数学符号描述相反数和绝对值概念的过程,发展抽象思维。经历从相反数到绝对值的学习过程,使学生感知数学知识具有普遍的联系性。   (2)初步形成反思意识,通过讨论、小组合作学习等形式使学生学会合作,并能与他人交流思维的过程和结果。   3、情感、态度与价值观   初步认识数学与人类生活的密切联系。体验数学活动充满着探索与创造,感受数学的严谨性。通过数形结合理解相反数和绝对值的意义及它们之间的必然联系,使学生在学习过程中获得一定的愉悦感。   四、教学重点   相反数和绝对值的概念,从相反数的代数定义探究其几何本质,从绝对值的几何定义里理解它的代数解释。并理解两者之间的关系。   五、教学难点   绝对值问题中有关非负数的问题。   六、教学方法   引导发现法、直观演示法、合作探究法   七、课前准备   1、教具:计算机、多媒体课件、三角板   2、学具:直尺或三角板。   八、教学过程   初中数学绝对值教案二   一、课题:二元一次方程组   二、课型:讲授课   三、课时:1课时   四、教学目标   1.会用代入消元法解二元一次方程组;   2.了解“消元”思想,初步体会数学研究中“化未知为已知”的化归思想;   3.经历化未知为已知的探索过程,从中获得成功的体验,增强学习兴趣。   五、教学重难点   重点:用代入消元法解二元一次方程组。   难点:在解题过程中体会“消元”思想和“化未知为已知”的化归思想。   六、教学过程   本节课设计了六个教学环节。第一环节:情境引入;第二环节:探索新知;第三环节:巩固新知;第四环节:练习提高;第五环节:课堂小结;第六环节:布置作业。   第一环节:情境引入   教师引导学生共同回忆上一节课讨论的“买门票”问题,想一想当时是怎么获得二元一次方程组的解的。   设他们中有x个成人,y个儿童,我们得到了方程组x+y=8,5x+3y=34,成人和儿童到底去了多少人呢?在上一节课的“做一做”中,我们通过检验x=5,y=3是不是方程x+y=8和方程5x+3y=34的解,从而得知这个解既是x+y=8的解,也是5x+3y=34的解,根据二元一次方程组的解的定义,是方程组x+y=8,5x+3y=34的解。所以成人和儿童分别去了5人和3人。   提出问题:每一个二元一次方程的解都有无数多个,而方程组的解是方程组中各个方程的公共解,前面的方法中我们找到了这个公共解,但如果数据不巧,这可没那么容易,那么,有什么方法可以获得任意一个二元一次方程组的解呢?   第二环节:探索新知   回顾七年级第一学期学习的一元一次方程,是不是也曾碰到过类似的问题,能否利用一元一次方程求解该问题?(由学生独立思考解决,教师注意指导学生规范表达)   解:设去了x个成人,则去了(8-x)个儿童。   根据题意,得5x+3(8-x)=34,解得x=5。   将x=5代入8-x=8-5=3。   答:去了5个成人,3个儿童。   在学生解决的基础上,引导学生进行比较:列二元一次方程组和列一元一次方程设未知数有何不同?列出的方程和方程组又有何联系?对你解二元一次方程组有何启示?   (先让学生独立思考,然后在学生充分思考的前提下,进行小组讨论,在此基础上由学生代表回答,老师适时地引导与补充,力求通过学生观察、思考与讨论后能得出以下的一些要点)   1.列二元一次方程组设有两个未知数:x个成人,y个儿童。列一元一次方程只设了一个未知数:x个成人,儿童去的个数通过去的总人数与去的成人数相比较,得出(8-x)个。因此y应该等于(8-x)。而由二元一次方程组的一个方程x+y=8,根据等式的性质可以推出y=8-x。   2.发现一元一次方程中5x+3(8-x)=34与方程组中的第二个方程5x+3y=34相类似,只需把 5x+3y=34中的“y”用“(8-x)”代替就转化成了一元一次方程。   教师引导学生发现了新旧知识之间的联系,便可寻求到解决新问题的方法——将新知识(二元一次方程组)转化为旧知识(一元一次方程)便可。   (由学生来回答)上一节课我们就已知道方程组中相同的字母表示的是同一个未知量,所以将x+y=8变形得y=8-x,我们把y=8-x代入方程5x+3y=34,这样就有5x+3(8-x)=34,“二元”化成“一元”。   教师总结:同学们很善于思考。这就是我们在数学研究中经常用到的“化未知为已知”的化归思想,通过它使问题得到完美解决。下面我们完整地解一下这个二元一次方程组。   (教师把解答的详细过程板书在黑板上,并要求学生一起来完成)   解:x+y=8,①5x+3y=34,②   由①得y=8-x,③   将③代入②得5x+3(8-x)=34,解得x=5。   把x=5代入③得y=3。   所以原方程组的解为x=5,y=3。   (提醒学生进行检验,即把求出的解代入原方程组,必然使原方程组中的每个方程都同时成立,如不成立,则可知解有问题)   下面我们试着用这种方法来解答上一节的“谁的包裹多”的问题。   (放手让学生用已经获取的经验去解决新的问题,由学生自己完成,让两个学生在黑板上规范的板书,教师巡视:发现学生的闪光点以及存在的问题并适时地加以辅导,以期学生在解答的过程中领会“代入消元法”的真实含义和“化归”的数学思想)   第三环节:巩固新知   1.解下列方程组:   (1)3x+2y=14,①x=y+3;②(2)2x+3y=16,①x+4y=13。②   (根据学生的情况可以选择学生自己完成或教师指导完成)   解:(1)将②代入①,得3(y+3)+2y=14。   解得y=1。   把y=1代入②,得x=4。   所以原方程组的解为x=4,y=1。   (2)由②得x=13-4y。③   将③代入①,得2(13-4y)+3y=16。   解得y=2。   将y=2代入③得x=5。   所以原方程组的解为x=5,y=2。   (2)题需先进行恒等变形,教师要鼓励学生通过自主探索与交流获得求解,在求解过程中学生消元的具体方法可能不同,所以教学中不必强求解答过程的统一,但要提出如何选择将哪个方程恒等变形、消去哪个未知数能使运算较为简单,让学生在解题中进行思考)   (教师在解完后要引导学生再次就解出的结果进行思考,判断它们是否是原方程组的解,促使学生进一步理解方程组解的含义以及学会检验方程组解的方法)   2.思考总结:(教师根据学生的实际情况进行生与生、师与生之间的相互补充与评价,并提出下面的问题)   (1)给这种解方程组的方法取个什么名字好?   (2)上面解方程组的基本思路是什么?   (3)主要步骤有哪些?   (4)我们观察例题的解法会发现,我们在解方程组之前,首先要观察方程组中未知数的特点,尽可能地选择变形后的方程较简单和代入后化简比较容易的方程变形,这是关键的一步。你认为选择未知数有何特点的方程变形好呢?   (由学生分组讨论,教师深入参与到学生讨论中,发现学生在自主探索、讨论过程中的独特想法,请学生小组的代表回答或学生举手回答,其余学生可以补充,力求让学生能够回答出以下的要点,教师要板书要点,在学生回答时注意进行积极评价)   (1)在解上面两个二元一次方程组时,我们都是将其中的一个方程变形,即用含其中一个未知数的代教式表示另一个未知数,然后代入另一个未变形的方程,从而由“二元”转化为“一元”,达到消元的目的。我们将这种方法叫代入消元法。   (2)解二元一次方程组的基本思路是消元,把“二元”变为“一元”。   (3)解上述方程组的步骤:   第一步:在已知方程组的两个方程中选择一个适当的方程,将它的某个未知数用含有另一个未知数的代数式表示出来;   第二步:把此代数式代入没有变形的另一个方程中,可得一个一元一次方程;   第三步:解这个一元一次方程,得到一个未知数的值;   第四步:把求得的未知数的值代回到原方程组中的任意一个方程或变形后的方程(一般代入变形后的方程),求得另一个未知数的值;   第五步:把方程组的解表示出来;   第六步:检验(口算或笔算在草稿纸上进行),即把求得的解代入每一个方程看是否成立。   (4)用代入消元法解二元一次方程组时,尽量选取一个未知数的系数的绝对值是1的方程进行变形;若未知数的系数的绝对值都不是1,则选取系数的绝对值较小的方程变形。   第四环节:练习提高   1.教材随堂练习(在随堂练习中,可以鼓励学生通过自主探索与交流,各个学生消元的具体方法可能不同,可以不必强调解答过程统一。可能会出现整体代换的思想,若有条件可以提出,为下一课做点铺垫也可以)   2.补充练习:用代入消元法解下列方程组:   (1)x+2y=4,2x-y=3;(2)3x-4y=19,x+2y=3;(3)3x-2y=7,x+32-y=0(注意分数线有括号功能)   第五环节:课堂小结   师生相互交流总结解二元一次方程组的基本思路是“消元”,即把“二元”变为“一元”;解二元一次方程组的第一种解法——代入消元法,其主要步骤是:将其中的一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程。解这个一元一次方程,便可得到一个未知数的值,再将所求未知数的值代入变形后的方程,便求出了一对未知数的值,即求得了方程组的解。   第六环节:布置作业   初中数学数轴教案   一、教学内容分析   1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。   二、学生学习情况分析   (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述;   (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析;   (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。   三、设计思想   从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。   四、教学目标   (一)知识与技能   1、掌握数轴的三要素,能正确画出数轴。   2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。   (二)过程与方法   1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。   2、对学生渗透数形结合的思想方法。   (三)情感、态度与价值观   1、使学生初步了解数学来源于实践,反过来又服务于实践 的辩证唯物主义观点。   2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。   五、教学重点及难点   1、重点:正确掌握数轴画法和用数轴上的点表示有理数。   2、难点:有理数和数轴上的点的对应关系。   六、教学建议   1、重点、难点分析   本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。   2、知识结构   有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下:   定 义 规定了原点、正方向、单位长度的直线叫数轴   三要素 原 点 正方向 单位长度   应 用 数形结合   七、学法引导   1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法。   2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。   八、课时安排   1课时   九、教具学具准备   电脑、投影仪、三角板   十、师生互动活动设计   讲授新课   (出示投影1)   问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度.   师:三个温度计所表示的温度是多少?   生:2℃,-5℃,0℃.   问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)   师:我们能否用类似的图形表示有理数呢?   师:这种表示数的图形就是今天我们要学的内容—数轴(板书课题).   师:与温度计类似,我们也可以在一条直线上画出刻度,标上读   数,用直线上的点表示正数、负数和零.具体方法如下   (边说边画):   1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);   2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);   3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,u2026从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,u2026   师问:我们能不能用这条直线表示任何有理数?(可列举几个数)   让学生观察画好的直线,思考以下问题:   (出示投影2)   (1)原点表示什么数?   (2)原点右方表示什么数?原点左方表示什么数?   (3)表示+2的点在什么位置?表示-1的点在什么位置?   (4)原点向右0.5个单位长度的A点表示什么数?   原点向左1.5个单位长度的B点表示什么数?   根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.   师:在此基础上,给出数轴的定义,即规定了原点、正方向和单   位长度的直线叫做数轴.   进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?   通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.   【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力.   师生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习   尝试反馈,巩固练习   (出示投影3).画出数轴并表示下列有理数:   1、1.5,-2.2,-2.5, , ,0.   2.写出数轴上点A,B,C,D,E所表示的数:   请大家回答下列问题:   (出示投影4)   (1)有人说一条直线是一条数轴,对不对?为什么?   (2)下列所画数轴对不对?如果不对,指出错在哪里?   【教法说明】此组练习的目的是巩固数轴的概念.   十一、小结   本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.   十二、课后练习 习题1.2第2题   十三、教学反思   1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。   2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。   3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。 猜你喜欢: 1. 初一上册数学绝对值试题及答案 2. 七年级数学上册绝对值的应用练习试卷 3. 初中七年级数学教案 4. 七年级上册数学教学设计 5. 七年级绝对值教学反思
hi投2023-06-27 08:35:211

初中数学数轴的定义

数轴是指规定了原点、正方向和单位长度的直线。我为大家整理了数轴的定义、数轴的三要素。赶快随我一起了解一下吧。 数轴定义 规定了原点、正方向和单位长度的直线叫数轴。所有的实数都可以用数轴上的点来表示。也可以用数轴来比较两个实数的大小。画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。所以原点、单位长度、正方向是数轴的三要素。利用数轴可以比较实数的大小,数轴上从左往右的点表示的数就是按从小到大的顺序。 数轴三要素 1.原点 在数学上,数轴上原点为0点,坐标系统的原点是指坐标轴的交点。它和正方向、单位长度并称为数轴的三要素,三者缺一不可。在二维直角坐标系中,原点的坐标为(0,0)。而在三维直角坐标系中,原点的坐标为(0,0,0)。 原点在数轴、二维和三维坐标系中起到参考基准的作用,依据此点可以计算出其他点的坐标等。 2.正方向 正方向是人们规定的一个方向,与正方向相反的是负方向。在数轴中,它是三要素之一;在坐标系中,它也是不可或缺的一部分。引入“正方向”的概念的目的是更好地分析和表示问题。 3.单位长度 一个单位的长度。单位1是人们设定的一个参考标准,单位长度就是可供参考的标准,它没有固定值,依设定而变动,不是实际的长度计量单位。 什么是直线 1.直线由无数个点构成。 2.直线是面的组成成分,并继而组成体。 3.直线没有端点,向两端无限延长,长度无法度量。 4.直线是轴对称图形。它有无数条对称轴,其中一条是它本身,还有所有与它垂直的直线(有无数条)对称轴。 5.在平面上过不重合的两点有且只有一条直线,即不重合两点确定一条直线。 6.在球面上,过两点可以做无数条类似直线。
hi投2023-06-27 08:33:521

初中数学中同类项的定义是什么

如果两个单项式,它们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项。 什么是同类项 所含字母相同,并且相同字母的指数也相同的项叫做同类项。另外,所有的常数项也是同类项。 在判断一个多项式中的几项是否是同类项条件: 1.所含字母相同。 2.相同字母的指数分别相等。 同时还需要注意两点: 1.同类项与系数无关,与字母排列顺序也无关; 2.同类项不一定是两项,也可以是三项,四项,……,但至少为两项。 合并同类项定义 合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成系数与另一个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每一项都是系数与相同的另一个因数的积。合并时将分配律逆向运用,用相同的那个因数去乘以各项系数的代数和。 合并同类项例子 例如:(3x-5y)-(6x+7y)+(9x-2y) 解:(1)(3x-5y)-(6x+7y)+(9x-2y) =3x-5y-6x-7y+9x-2y(正确去掉括号) =(3-6+9)x+(-5-7-2)y(合并同类项) =6x-14y
北营2023-06-26 09:29:281

初中数学中同类项是什么

所含字母相同,各字母的指数相同是同类项,四次三项式是各字母的指数和是四,共三项,次数是四。
北有云溪2023-06-26 09:29:153

初中数学中同类项是什么

所含字母相同,各字母的指数相同是同类项,四次三项式是各字母的指数和是四,共三项,次数是四。
余辉2023-06-26 09:29:153

初中数学中同类项是什么

呀啦洗脑神烦的不行
铁血嘟嘟2023-06-26 09:29:134

人教版初中数学知识点总结

初二一次函数:函数定义,图像增减性,图像与k,b的关系
大鱼炖火锅2023-06-19 09:02:402

初中数学知识点总结

知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。2.直角坐标系中,x轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限.4.直角坐标系中,点A(-2,3)在第四象限.5.直角坐标系中,点A(-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y= 的值为1.2.当x=3时,函数y= 的值为1.3.当x=-1时,函数y= 的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是正比例函数.2.函数y=4x+1是一次函数.3.函数 是反比例函数.4.抛物线y=-3(x-2)2-5的开口向下.5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线 的顶点坐标是(1,2).7.反比例函数 的图象在第一、三象限.知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°= . 2.sin260°+ cos260°= 1.3.2sin30°+ tan45°= 2.4.tan45°= 1.5.cos60°+ sin30°= 1. 知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.
铁血嘟嘟2023-06-19 09:02:392

请简单地解释一下初中数学里的‘变量’、‘因变量’和‘自变量’是什么意思?急急急!!!!!

我的理解:“变量”:会变的量“自变量”:也是会变的量(其中“自变”是相对于因变量来说的)“因变量”:跟随自变量的变化而变化(有一定规律的)自变量和因变量都属于变量比如在Y=2X中Y与X都是变量,其中X为自变量,Y为因变量
此后故乡只2023-06-14 06:13:514

初中数学多元变量是什么意思?

就是有多个未知数的意思
北境漫步2023-06-14 06:13:412

初中数学所有的概念

1过两点有且只有一条直线 2 两点之间线段最短3 同角或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行11 同旁内角互补,两直线平行 12两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等24 推论 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理 有三边对应相等的两个三角形全等26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理 四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论 任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理 不在同一直线上的三个点确定一条直线110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理 一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理 弦切角等于它所夹的弧对的圆周角129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r)④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理 相交两圆的连心线垂直平分两圆的公共弦137定理 把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n∏R/180145扇形面积公式:S扇形=n∏R/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)一、 数正数:正数大于0负数:负数小于00既不是正数,也不是负数;正数大于负数整数包括:正整数,0,负整数分数包括:正分数,负分数有理数包括:整数,分数/有限小数,无限循环小数数轴:在直线上取一点表示0(原点),选取单位长度,规定直线上向右的方向为正方向任何一个有理数(实数)都可以用数轴上的一个点表示,点和数是一一对应的两个数只有符号不同,其中一个数为另一个的相反数;两个互为相反数0的相反数就是0在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等数轴上的两个点表示的数,右边的总比左边的大绝对值:数轴上,一个数所对应的点与原点的距离正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0两个负数比较大小,绝对值大的反而小有理数加法法则:同号相加,不变符号,绝对值相加异号相加,绝对值相等得0;不等,符合和绝对值大的相同,绝对值相减一个数加0,仍是这个数加法交换律:A+B=B+A加法结合律:(A+B)+C=A + (B+C)有理数减法法则:减去一个数,等于加上这个数的相反数有理数乘法法则:两数相乘,同号得正,异号的负,绝对值相乘;任何数与0相乘,积为0乘积为1的两个有理数互为倒数;0没有倒数乘法交换律:AB=BA乘法结合律:(AB)C=A (BC)乘法分配律:A (B+C) =AB+AC有理数除法法则:两个有理数相除,同号得正,异号的负,绝对值相除0除以任何非0的数都得0;0不能做除数乘方:求n个相同因数a的积的运算;结果叫幂;a是底数;n是指数;an读作a的n次幂有理数混和运算法则:先算乘方,再乘除,后加减;括号里的先算无理数:无限不循环小数,有正负之分。算数平方根:一个正数x的平方等于a,即x2=a,则x是a的算数平方根,读作“根号a”0的算数平方根是0平方根:一个数x的平方根等于a,即x2=a,则x是a的平方根(又叫:二次方根)一个正数有两个平方根,且互为相反数;0只有一个,是它本身;负数没有平方根开平方:求一个数的平方根的运算;a叫做被开方数立方根:一个数x的立方等于a,即x3=a,则x是a的立方根(又叫:三次方根)每个数只有一个立方根,正数的是正数;0的是0;负数的是负数开立方:求一个数的立方根的运算;a叫做被开方数实数:有理数和无理数的统称,包括有理数,无理数。相反数、倒数、绝对值的意义相同和有理数的。实数的运算法则和有理数相同。计算后出现带根号的无理数要化简,使被开方数不含分母和开得尽的因数二、式代数式:用基本运算符号连接数字或字母的式子;单独的数字或字母也是代数式单项式:数字和字母的积;单独的数字或字母也是单项式;数字因数叫做单项式的系数多项式:几个单项式的和;每个单项式叫做多项式的项,不含字母的叫常数项单项式的次数:一个单项式中,所有字母的指数和;单独的一个非零数的次数是0多项的次数:次数最高的项的次数同类项:所含字母相同,并且相同字母的指数也相同的项合并同类项:把同类项合并成一项;合并同类项时,系数相加,字母和字母的指数不变去括号法则:括号前面是加号,去括号运算符号不变括号前面是减号,去括号(一级运算)运算符号变多重括号,由里面的括号开始去整式:单项式和多项式的统称整式加减运算:先去括号,再合并同类项,知道式子最简同底数幂的乘法:同底数幂相乘,底数不变,指数相加,如am61an=am+n(m、n为正整数)幂的乘方:幂的乘方,底数不变,指数相乘,如(am)n=amn(m、n为正整数)积的乘方:积的乘方等于积中每个因数乘方的积,如(ab)n=anbn(n为正整数)同底数幂的除法:同底数幂相除,底数不变,指数相减,如am÷n=am-n(m、n为正整数,a≠0,且m>n);a0=1(a≠0);a—p=1/ap(a≠0,p是正整数)整式的乘方:单项式与单项式,把系数、相同字母的幂分别相加,其余字母连同其指数不变,作为积的因式单项式与多项式,根据分配律用单项式去成多项式的每一项,再把积相加多项式与多项式,先用一个多项式的每一项乘另一个的每一项,再把积相加平方差公式:两数和与这两数差的积,等于它们的平方差(a+b)(a-b)=a2-b2完全平方公式:(a-b)2=(b-a)2=a2-2ab+b2(a+b)2=(-a-b)2=a2+2ab+b2整式除法:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式多项式除以单项式,先把多项式的每一项分别除以单项式,再把所得商相加分解因式:把一个多项式化成几个整式的积的形式公因式:多项式各项都含有的相同因式提公因式:多项式的各项含有公因式,把这个公因式提出来,将多项式化成两个因式的乘积完全平方式:形如a2-2ab+b2和a2+2ab+b2的式子运用公式法:把乘法公式反过来,用来把某些多项式分解因式分式:整式A除以整式B,表示成A/B。A为分式的分子;B为分式的分母(B不为0)分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式值不变约分:把一个分式的分子和分母的公因式约去的变形最简分式:分子和分母没有公因式的分式分式乘除法法则:分式相乘,分子相乘作分子,分母相乘作分母分式相除,把除式的分子和分母颠倒位置后再与被除式相乘分式加减法则:同分母分式加减,分母不变,分子相加;异分式先通分,再加减通分:根据分式的基本性质,异分母分式化为同分母分式的过程;通分时常取最简公分母分式方程:分母中含有未知数的方程增根:使原分式方程的分母为0的原方程的根;解分式方程必须检验三、方程(组)等式:用等号表示相等关系的式子;等式具有传递性方程:含有未知数的等式一元一次方程:一个方程中,只含一个未知数(元),且未知数的指数为1(次)的方程等式性质:等式两边同时加上(或减去)同一个代数式,结果还是等式等式两边同时乘以同一个数(或除以同一个不为0的数),结果还是等式移项:从方程一边移到另一边的变形二元一次方程:含有两个未知数,且所含未知数的项数的次数都是1的方程二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程二元一次方程的一个解:适合一个二元一次方程的一组未知数的值二元一次方程组的解:二元一次方程组中各个方程的公共解;它们成对出现代入消元法:简称“代入法”,将其中一个方程的某未知数用含有另一个未知数的代数式表示,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程的方法加减消元法:简称“加减法”,通过两式相加(减)消去其中一个未知数的方法图像法:根据二元一次方程的解和一次函数图像的关系,找出两直线的交点坐标求解的方法整式方程:等号两边都是关于未知数的整式方程一元二次方程:只含有一个未知数的整式方程,化成ax2+bx+c=0(a≠0,a,b,c为常数)配方法:通过配成完全平方式的方法得到一元二次方程的根的方法公式法:对于ax2+bx+c=0(a≠0,a,b,c为常数),当b2-4ac≥0时(当b2-4ac≤0时,方程无解),可用一元二次方程的求根公式求解的方法分解因式法:又称“十字相乘法”,当一元二次方程的一边为0,另一边能分解成两个一次因式的乘积时,求方程的根的方法四、不等式(组)不大于:等于或小于,符号“≤”,读作“小于等于”不小于:大于或大于,符号“≥”,读作“大于等于”不等式:用符号“<”(或“≤”),“>”(或“≥”)连接的式子;不等有传递性(除“≠”)不等式基本性质:不等式两边加上(或减去)同一个整式,不等号方向不变不等式两边乘以(或除以)同一个正数,不等号方向不变不等式两边乘以(或除以)同一个负数,不等号方向变不等式的解:能使不等式成立的未知数的值解集:一个含有未知数的不等式的所有解的统称解不等式:求不等式解集的过程一元一次不等式:不等式的左右两边是整式,只含有一个未知数,且未知数的最高次数是1的不等式一元一次不等式组:由关于同一未知数的几个一元一次不等式合在一起组成一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分解不等式组:求不等式解集的过程一元一次不等式组的解集:同大取大,同小取小,大小不一是无解五、函数函数:有两个变量x和y,给定x值就对应找到一个y值函数图像:把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系里描出它的对应点,所以点组成的图像变量包括:自变量和因变量关系式:表示变量之间关系的方法,根据任何一个自变量的值求出相应的因变量的值表格法:表示因变量随自变量的变化而变化的情况图像法:表示变量之间关系的方法,比较直观平面直角坐标系:在平面内,由两条互相垂直且有公共原点的数轴组成的;两条坐标轴把平面直角坐标系分成4部分:右上为第一象限,右下为第四象限,左上第二,左下第三坐标:过一点分别向x轴、y轴作垂线,垂足在x轴、y轴上所对应的数a、b,则(a,b)坐标加减,图形大小和形状不变;坐标乘除,图形会变化一次函数:若两个变量x,y的关系能表示成y=kx+b(k,b为常数,k≠0)的形式正比例函数:当y=kx+b(k,b为常数,k≠0),b=0的时候,即y=kx,其图像过原点一次函数的图像:k>0直线向左;k<0直线向右。与x轴(-b/k,0);与y轴(0,b)反比例函数:若两个变量x,y的关系能表示成y=k/x(k为常数,k≠0)的形式,x不为0反比例函数的图像:k<0双曲线在二、四象限,在每一象限内,y随x增大而减小k>0双曲线在一、三象限,在每一象限内,y随x增大而增大二次函数:两个变量x,y的关系表示成y=ax2+bx+c(a≠0,a,b,c为常数)的函数二次函数的图像:函数图像是抛物线;a>0时,开口向上有最小值,a<0时,向下有最大值y=a(x-h)2+k的图像,开口方向、对称轴和顶点坐标与a,h,k有关二次函数y=ax2+bx+c的图像与x轴的交点就是ax2+bx+c=0的根:0,1,2个六、三角函数正切(坡比):Rt△ABC中,锐角A的对边与邻边的比,记做tan A;tan A越大,梯子越陡正弦:∠A的对边与斜边的比记做sin A;sin A越大,梯子越陡余弦:∠A的邻边与斜边的比记做cos A;cos A越小,梯子越陡锐角A的正切、正弦、余弦都是∠A的三角函数仰角:当从低处观测高处目标时,视线与水平线所成的锐角俯角:当从高处观测低处目标时,视线与水平线所成的锐角
tt白2023-06-13 07:29:121

初中数学函数知识点

http://wenku.baidu.com/view/e7b6cc6aa98271fe910ef9ba.html这个不知道你觉得怎样,,,Good luck!
韦斯特兰2023-06-10 08:38:035

初中数学函数基础中的变量和常量?

1式中的x是变量,9是常量,y是因变量2式中的3和7是常量,x变量,y是因变量。常量:其值在变化过程中始终保持不变的量叫常量。变量:其值在变化过程中会发生变化的量叫变量,比如上面的例子x是可以任意取值任意变化的。因变量:其值是根据变量中的变化而变化。比如变量取任何值时因变量都有唯一的值与其一一对应。
bikbok2023-06-10 07:54:071

初中数学学习方法:变量之间的关系知识点?

一 理论理解1、若Y随X的变化而变化,则X是自变量 Y是因变量。自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。2、能确定变量之间的关系式:相关公式 ①路程=速度×时间 ②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2 ④ 本息和=本金+利率×本金×时间。⑤总价=单价×总量。⑥平均速度=总路程÷总时间3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。列表法最大的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。四 、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象; b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点。
善士六合2023-06-08 07:27:571

初中数学中100/4是不是百分之4

100/4是25 百分之4是0.04
Ntou1232023-05-28 14:29:102

初中数学的频率公式是什么?而且频率只能用分数表示的吗?用百分比、小数表示。且四舍五入的都是错的?

频率=频数/样本容量
苏州马小云2023-05-27 19:42:292

初中数学中百分比怎么计算

我为大家整理了有关于百分数的计算和含义的知识点,大家快来跟着我一起学习一下吧。 百分数与小数的互化 1.小数化百分数:加上百分号,小数点右移两位。 如:0.64可化为64:去掉百分号,小数点左移两位。 如:85%可化为0.85百分数与分数的互化。 百分数与分数的互化 1.用分子除以分母,化成小数后,再化成百分数。 2.把分子分母同时乘一个数,使分母是100,再把分母变成百分号即可。 百分比的含义 百分数是以分母是100的特殊分数,其分子可不是整数。百分数表示一个数是另一个数的百分之几,表示一个比值不带单位名称。百分比也是一种表达比例,比率或分数数值的方法,如82%代表百分之八十二,或82/100、0.82。成和折则表示十分之几,举例如"九成"和"九折",代表90/100或90%或0.9。所以百分比后面不能接单位。 以上是我整理的有关于百分数的知识,希望对大家有所帮助。
此后故乡只2023-05-27 09:53:391

初中数学,详细步骤,关于线性,二次,三次,互反函数

求曲线的方程吗?
苏萦2023-05-24 07:49:085

初中数学特殊三角函数值一览表

特殊三角函数是性质特殊的一类三角函数的总称,主要包括正弦三角函数、余弦三角函数、正切三角函数、余切三角函数等。接下来让我具体的看一下这些特殊三角函数的值。 特殊三角函数值一览表 特殊三角函数之间的函数关系 (一)倒数关系 tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 (二)商的关系 tanα=sinα/cosα cotα=cosα/sinα (三)平方关系 (sinα)^2+(cosα)^2=1 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2
陶小凡2023-05-24 07:48:391

初中数学特殊三角函数值

三角函数是一个比较难的部分,下面我就大家整理一下初中数学特殊三角函数值,仅供参考。 特殊三角函数值 cos30度=(根号3)/2 cos45度=(根号2)/2 cos60度=1/2 sin30度=1/2 sin45度= (根号2)/2 sin60度=(根号3)/2 tan30度=(根号3)/3 tan45度=1 tan60度=根3 图片版 锐角三角函数定义 锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。 正弦(sin):对边比斜边,即sinA=a/c 余弦(cos):邻边比斜边,即cosA=b/c 正切(tan):对边比邻边,即tanA=a/b 余切(cot):邻边比对边,即cotA=b/a 正割(sec):斜边比邻边,即secA=c/b 余割(csc):斜边比对边,即cscA=c/a 三角和的公式 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 两角和差公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA) 以上就是我为大家整理的初中数学特殊三角函数值 。
kikcik2023-05-24 07:48:361

非负数初中数学中考知识点

  非负数   非负数大于或等于0。   非负数中含有有理数和无理数。   非负数的和或积仍是非负数。   非负数的和为零,则每个非负数必等于零。   非负数的积为零,则至少有一个非负数为零。   非负数的绝对值等于本身。   常见的`非负数   实数的绝对值、实数的偶次幂、算术根等都是常见的非负数。   常见表现形式   非负数的准确数学表达是a≥0、│a│、a^2n是常见的非负数。   知识归纳:任何一个非负数乘以—1都会得到一个非正数。
mlhxueli 2023-05-22 18:13:161

初中数学非负整数是什么意思??

0,1,2,3,4,5,6,7,8.。。。。。。。。
拌三丝2023-05-22 07:48:233

初中数学非负整数是什么意思

不是 我打字速度慢 就不多说了
LuckySXyd2023-05-22 07:48:2111

初中数学非负整数包括什么

即用数码0,1,2,3,4,5,……所表示的数,也就是除负整数外的所有整数,通常也被称为自然数。 非负整数定义 非负整数是正整数和零。也就是除了负整数外的所有整数。 这名词在使用初期,也有人以为是“非负”是“真实”(faith)的翻译,后来一名研究生,在论证此问题时,发明了现在所谓的“非负整数”之概念,至今,这范围仍在进行学术探讨中。 一个给定的整数n可以是负数(n<0),非负数(n≥0),零(n=0)或正数(n>0)。 什么是自然数 用以计量事物的件数或表示事物次序的数。即用数码0,1,2,3,4,……所表示的数。表示物体个数的数叫自然数,自然数由0开始,一个接一个,组成一个无穷的集体。 什么是非负整数集 全体非负整数的集合通常称非负整数集(或自然数集)。 非负整数集包含0、1、2、3等自然数。数学上用黑体大写字母“N”表示非负整数集。非负整数包括正整数和零。非负整数集是一个可列集。 分数定义 把单位“1”平均分成若干份,表示这样的一份或其中几份的数叫分数。表示这样的一份的数叫分数单位。 分数分为假分数和真分数。假分数又分为带分数和整数。分子和分母互质,这个分数就称为最简分数。要把小数化分数,看看是几位小数,来确定分母,再看小数点后是几,就是分子,如有整数,就变成带分数。
北境漫步2023-05-22 07:48:191

数形结合思想在初中数学的应用

巧用数形结合解决代数问题学生在进行数学练习及考试时,时常会遇到十分复杂的代数问题,若学生花费大量的时间进行计算,会影响其他知识板块的学习。特别是填空、单选等问题,会一定程度上浪费学生的解题时间,影响着学生的解题效率。因此,教师应引导学生应用数形结合思想进行解题,正确地分配解题时间,调整学生的解题思路,使学生可以在短时间内正确回答问题,当遇到相关数学难题时,将其转化为几何图形,更加轻松得出问题的答案。例如:教学《反比例函数》这一内容时,其中有一道例题:P是反比例函数y=5/x,在第一象限分支中的一个动点,PA垂直于x轴,并随着x不断变大,请问三角形APO的面积会发生怎样的变化?这是一道典型的例题,教师可以引导学生应用数形结合思想,将其转化为具体的几何形象进行解题。最终得知,三角形APO是直角三角形,并不会随P点的变化发生改变,接下来进行验证发现面积不变,从而得出答案。
苏萦2023-05-21 22:10:171

数形结合方法在初中数学解题中有什么重要作用

数形结合在中学数学中的应用开题报告
真颛2023-05-21 22:10:163

解答初中数学几何题时有哪些思想方法

解答初中数学几何题时有哪些思想方法 分类讨论思想等腰三角形已知两角或两腰底角还是顶角腰还是底函数一般存在X2就有两个解。分式方程无解分母为0化出来的方程无解。 由特殊到一般一般找规律题总结结论题。整体带入 如果一个字母的值无法求出那就把已知的代数式的值代入求解。 一看到图形三角形平行四边形正方形..就想它的基本性质旋转。想旋转角对应边对应点到旋转中心的距离相等..一般求解。要有对应线段成比例。一般找相似图形A型图X型图平行就有相似。再两边对应成比例且夹角相等要掌握图形的性质、判定。正确分类。 一、数形结合思想 数形结合思想是指看到图形的一些特征可以想到数学式子中相应的反映是看到数学式子的特征就能联想到在图形上相应的几何表现。如教材引入数轴后就为数形结合思想奠定了基础。如有理数的大小比较相反数和绝对位的几何意义列方程解应用题的画图分析等这种抽象与形象的结合能使学生的思维得到训练。 数形结合是数学解题中常用的思想方法数形结合的思想可以使某些抽象的数学问题直观化、生动化能够变抽象思维为形象思维有助于把握数学问题的本质另外由于使用了数形结合的方法很多问题便迎刃而解且解法简捷。 所谓数形结合就是根据数与形之间的对应关系通过数与形的相互转化来解决数学问题的思想实现数形结合常与以下内容有关1实数与数轴上的点的对应关系2函数与图象的对应关系3曲线与方程的对应关系4以几何元素和几何条件为背景建立起来的概念如复数、三角函数等5所给的等式或代数式的结构含有明显的几何意义。如等式 。 纵观多年来的中考试题巧妙运用数形结合的思想方法解决一些抽象的数学问题可起到事半功倍的效果数形结合的重点是研究“以形助数”。 例1如图所示比较aabb的大小 简析在数轴上指出-a-b两个数表示的点四数大小关系就一目了 然。 例2有一十字路口甲从路口出发向南直行乙从路口以西1500米处向东直行已知甲、乙同时出发10分钟后两人第一次距十字路口的距离相等40分钟后两人再次距十字路口距离相等求甲、乙两人的速度。 简析画出“十字”图分析表示出两人在10分钟、40分钟时的位置由图分析从而列出方程组。 二、整体变换思想 整体变换思想是指将复杂的代数式或几何图形中的一部分看作一个整体进行变换使问题简单化。 例3已知y=ax7+bx5+cx3+dx-1当x=2时y=4则当x=-2时 y= 。 简析由已知条件求出27a+25b+23c+2d的值整体代入求出x=-2时 y的值。 例4有一个六位数它的个位数学是6如果把6移至第一位前面时 所得到的六位数是原数的4倍求这个六位数。 简析设这个六位数的前五位数为x那么这个六位数为10x+8整 体处理问题就简单化了。 三、分类讨论思想 在解答某些数学问题时,有时会有多种情况,对各种情况加以分类,并逐类求解,然后综合求解,这就是分类讨论法。分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。 分类评论的一般步骤是明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。 分类讨论应遵循的原则分类的对象是确定的,标准是统一的,不遗漏,不重复,分层次,不越级讨论。 当某个问题有多种情况出现或推导结果不唯一确定时常运用分类讨论再加以集中归纳。例如对|a|要去掉绝对值符号应讨论绝对值内部式子的符号要分三种情况去掉绝对值符号。几何中也存在着一些数学和位置关系的分类讨论。 例5甲、乙两人骑自行车同时从相距75km的两地相向而行甲的速度为15km/n乙的速度为10km/n经过多少小时甲、乙两人相距25km 简析甲、乙两人相遇前后都会相距25km。分两种情况解答。 例6在同一图形内画出∠AOB=60°∠COB=50°OD是∠AOB的平分线OE是∠COB的平分线并求出∠DOE的度数。 简析分∠COB在∠AOB的内部和外部两种情形总图。 四、转化与化归思想 解决某些数学问题时,如果直接求解较为困难,可通过观察、分析、类比、联想等思维过程,运用恰当的数学方法进行变换,将问题转化为一个新问题(相对来说较为熟悉的问题),通过新问题的求解,、达到解决原问题的目的。这一思想方法我们称之为“转化与化归的思想方法”。转化是将数学命题由一种形式向另一种形式的转换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题。转化与化归思想是中学数学最基本的思想方法。 转化与化归思想是指根据已有知识、经验通过观察、联想、类比等手段把问题进行变换转化为已经解决或容易解决的问题。如二元一次方程组三元一次方程组的解决实质就是化为解已经学过的一元一次方程。如果把若干个人之间握手总次数单握称为“握手问题”那么像无三点共线的n个点之间连线共端点射线夹角小于平角的角个数一条线段上有若干个点形成的线段的条数足球队之间单个循环比赛场次都可转化为“握手问题”。 例7用同样长的火柴组成6个大小相同的正方形最少要火柴 根。 简析这6个大小相同的正方形可看作一个正方体的6个面这样所 用火柴最少。实际上就是正方体的12条棱。 例8用同样长的6根火柴棒摆大小相同的三角形最多能摆多少个 简析同样长的6根火柴棒可以看作正三棱锥的三条棱那么最多能 摆四个三角形。 五、逆变换思想 逆变换思想是指对一些定义、定理、公式法则的逆用和对解题思路的逆向分析。如加减、函数、通分与约分去括号与添括号与均为互逆变换。 例9计算 简析逆用乘法分配律。 例10 简析逆用幂运算法则。 例11当a= 时|a|a||=2a 简析采用逆向分析例12先看绝对值结果根据绝对值的非负性得-2a≥0则a≤0。 六、函数与方程思想 函数思想是指变量与变量之间的一种对应思想。方程思想则指把研究数学问题中已知量与未知量之间的数量关系转化成方程或方程组等数学模型。当函数值为零时函数问题就转化为方程问题。同样也可以把方程视为函数值为零时求自变量的问题。 例12一角的余角的3倍和它的补角的互为补角求这个角的度数。简析几何题中列方程组会使问题解决。 例13某工程队要招聘甲、乙两种工种的工人700人甲、乙两种工 种的工人的月工资分别为800元和1200元现要求乙种工种的工人数不少于甲种工种人数的3倍问甲、乙两种工种各招聘多少人时可使得每月所付的工资最少 简析建立函数关系式确定自变量范围利用一次函数单调性增减性解决问题。 总之在数学教学中切实把握好上述几个典型的数学思想方法同时注重渗透的过程依据课本内容和学生的认识水平从初中开始有计划有步骤地渗透使其成为由知识转化为能力的纽带成为提高学生的学习效率和数学能力的法宝。
瑞瑞爱吃桃2023-05-21 22:10:151

浅谈初中数学教学中如何培养学生的数形结合的解题能力

数学是研究现实世界数量关系与空间形式的一门科学, 数与形的统一结合贯穿于数学学科研究与发展的始终。数和形 是数学研究的两大对象,数形结合法是一种重要的数学思想方法。数 是指数据与式子,主要表现在以下几方面:函数、方程、不等式、数列、复数、排列组合等。形 可以理解为几何图形。采用数形结合法去解数学题,就是对题目中的条件与结论,既分析其代数含义又分析其几何含义。力图将代数和几何统一起来去找出解题思路。 数形结合是数学中的一种重要思想与解题策略, 利用数形结合这一思想, 可以较直观地对问题进行分析, 解决许多比较抽象的数学问题。因此, 通过数形结合能很好地解决一些问题, 对培养学生的解题能力非常重要。 一、渗透数形结合思想,提高学生的数学素养 素质教育是通过科学有效的途径,开发受教育者的潜能,以完善和全面的提高学生素质为根本目的教育。数学素质在人的素质养成上具有不可替代的作用。这是因为数学的直观思维、逻辑推理、精确计算以及结论明确无误等特征是每个学生应该具备的科学文化素质。由此可见,对数学教师来说,要突出素质教育的数学教学关键是加强数学思想方法的教学,因为数学思想方法作为数学知识的精髓,它既是数学中的深层次的基础知识,又是解决问题和思维策略。数学思想方法掌握的深、浅度,直接关系到能否顺利或比较简捷地解决问题;关系到是否深刻地对数学知识本质认识,数学规律的理性认识;关系到是否能把某些数学内容和对数学的认识过程中提炼上升的数学观点加以应用。而这些数学知识的掌握是以解题思维能力作为起点的。因此,在中学数学教学中,如何引导学生选择恰当的方法来提高解题速度和效率,应注重培养学生解题能力,掌握多种方法。尤其数形结合法的教学更是学生应该熟练掌握的重要思维方法。 数形结合是解决数学问题的重要思想,其实质是把抽象的数学语言与直观的图形结合起来,以直观辅助抽象的思考,以抽象的思考研究直观的细节。著名数学家华罗庚先生说过:数无形,少直观;形无数,难入微。发掘数与形互相依存的关系,把数式运算的周密性和图形的直观性巧妙结合起来,对解决数学问题非常有益,它常能有效突破解题障碍,顺利沟通已知和未知,使问题由繁化简,由难化易。数形结合思想方法是中学数学基础知识的精髓之一,是把许多知识转化为能力的桥。在中学数学教学中,许多抽象问题学生往往觉得难以理解,如果教师能灵活地引导学生进行数形结合,转化为直观、易感知的问题,学生就易理解,就能把问题解决,从而获得成功的体验,增强学生学习数学的信心。尤其是对于较难问题,学生若能独立解决或在老师的启发和引导下把问题解决,心情更是愉悦,这样,就容易激发学生学习数学的热情、兴趣和积极性。同时,学生一旦掌握了数形结合法,并不断进行尝试、运用,许多问题就能迎刃而解。 二、在数学教学中渗透数形结合思想 本文特从以下几个方面,对数形结合"解题进行例析研究。1几何图形与数量关系相结合  几何中的计算与证明问题,常常根据几何图形的特点挖掘蕴涵的数量关系;一些数量关系的比较问题,常常构造出由数量关系反映出的几何图形,根据图形的直观性寻求解决。2函数图象与数量关系相结合  数轴使实数与数轴上的点建立起一一对应的关系,平面直角坐标系使有序实数对与平面上的点建立起一一对应的关系,为数形结合创造了充分的条件函数图象在直角坐标系的位置及变化趋势,为研究函数的性质提供了直观、形象的依据,反过来,依据函数的性质又能推断函数图象在直角坐标系屮的位置及变化情况,数形结合成为研究解决函数问题的重要思想方法。3图形的运动变化与函数问题的结合  函数建立起两个变量之间的关系,运动变化便进入了数学,运动改变了图形的位置、形状,其中蕴涵的 数量关系也会发生变化,研究图形运动变化体现出来的函数关系,使数形结合更具活力,更丰富多彩。   4 注重数学思想方法的教学 加深认识,让学生亲自参与知识发现的过程。恩格斯说:世界不是一成不变的事物的集合体,而是过程的集合体。对于数学而言,知的发生过程就是思维方法的产生过程,因此教师在平时的教学过程中,应切实加深学生对知识的认识,让学生亲自去参与知识发现的过程,揭示事物的本质特征。 数学学习贯穿着两条主线,即数学知识和数学思想方法,通性通法蕴涵着丰富的数学思想和方法,更 贴近学生的认知水平,符合常人的思维习惯,同样也有利于培养学生的数学能力。在初中数学中,常用的数学思想有函数和方程思想、数形结合思想分类讨论论思想、化归转化思想、整体处理思想等,上面教学片断的探究题,教者通过引导学生从数和形的角度来解决问题,很好地发展了学生的方程思想和数形结合思想,同时也渗透了数学分类的思想方法。在平时的教学中,我们应在解决问题的过程中,对这些数学思想加以揭示、运用和提炼,以提高学生的思维水平和解题能力。 人常说,数学是锻炼思维的体操,恐怕就是因为
肖振2023-05-21 22:10:131

初中数学几何题解题技巧

立体几何是初中数学中的重要内容,也是学习的难点,而且在中考中立体几何属于必考点,通常在一个题目中会包含多个立体几何的考查点,掌握立体几何解题技巧至关重要。那么接下来给大家分享一些关于初中数学几何题解题技巧,希望对大家有所帮助。 一.添辅助线有二种情况 1按定义添辅助线: 如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。 2按基本图形添辅助线: 每个几何定理都有与它相对应的几何图形,我们 把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。举例如下: (1)平行线是个基本图形: 当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线 (2)等腰三角形是个简单的基本图形: 当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。 (3)等腰三角形中的重要线段是个重要的基本图形: 出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。 (4)直角三角形斜边上中线基本图形 出现直角三角形斜边上的中点往往添斜边上的中线。出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。 (5)三角形中位线基本图形 几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。 (6)全等三角形: 全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加 方法 是将四个端点两两连结或过二端点添平行线 (7)相似三角形: 相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。 (8)特殊角直角三角形 当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明 (9)半圆上的圆周角 出现直径与半圆上的点,添90度的圆周角;出现90度的圆周角则添它所对弦---直径;平面几何中总共只有二十多个基本图形就像房子不外有一砧,瓦,水泥,石灰,木等组成一样。 二.基本图形的辅助线的画法 1.三角形问题添加辅助线方法 方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。 方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。 方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。 方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于 第一条线段,而另一部分等于第二条线段。 2.平行四边形中常用辅助线的添法 平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下: (1)连对角线或平移对角线: (2)过顶点作对边的垂线构造直角三角形 (3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线 (4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。 (5)过顶点作对角线的垂线,构成线段平行或三角形全等. 3.梯形中常用辅助线的添法 梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有: (1)在梯形内部平移一腰。 (2)梯形外平移一腰 (3)梯形内平移两腰 (4)延长两腰 (5)过梯形上底的两端点向下底作高 (6)平移对角线 (7)连接梯形一顶点及一腰的中点。 (8)过一腰的中点作另一腰的平行线。 (9)作中位线 当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。 4.圆中常用辅助线的添法 在平面几何中,解决与圆有关的问题时,常常需要添加适当的辅助线,架起题设和结论间的桥梁,从而使问题化难为易,顺其自然地得到解决,因此,灵活掌握作辅助线的一般规律和常见方法,对提高学生分析问题和解决问题的能力是大有帮助的。 (1)见弦作弦心距 有关弦的问题,常作其弦心距(有时还须作出相应的半径),通过垂径平分定理,来沟通题设与结论间的联系。 (2)见直径作圆周角 在题目中若已知圆的直径,一般是作直径所对的圆周角,利用"直径所对的圆周角是直角"这一特征来证明问题。 (3)见切线作半径 命题的条件中含有圆的切线,往往是连结过切点的半径,利用"切线与半径垂直"这一性质来证明问题。 (4)两圆相切作公切线 对两圆相切的问题,一般是经过切点作两圆的公切线或作它们的连心线,通过公切线可以找到与圆有关的角的关系。 (5)两圆相交作公共弦 对两圆相交的问题,通常是作出公共弦,通过公共弦既可把两圆的弦联系起来,又可以把两圆中的圆周角或圆心角联系起来。 初中几何常见辅助线作法歌诀汇编 人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。 还要刻苦加钻研,找出规律凭 经验 。图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。 要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。 弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。 弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。 还要作个内接圆,内角平分线梦圆。如果遇到相交圆,不要忘作公共弦。 内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。 要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。 假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。 解题还要多心眼,经常 总结 方法显。切勿盲目乱添线,方法灵活应多变。 分析综合方法选,困难再多也会减。虚心勤学加苦练,成绩上升成直线。 几何证题难不难,关键常在辅助线;知中点、作中线,中线处长加倍看; 底角倍半角分线,有时也作处长线;线段和差及倍分,延长截取证全等; 公共角、公共边,隐含条件须挖掘;全等图形多变换,旋转平移加折叠; 中位线、常相连,出现平行就好办;四边形、对角线,比例相似平行线; 梯形问题好解决,平移腰、作高线;两腰处长义一点,亦可平移对角线; 正余弦、正余切,有了直角就方便;特殊角、特殊边,作出垂线就解决; 实际问题莫要慌,数学建模帮你忙;圆中问题也不难,下面我们慢慢谈; 弦心距、要垂弦,遇到直径周角连;切点圆心紧相连,切线常把半径添; 两圆相切公共线,两圆相交公共弦;切割线,连结弦,两圆三圆连心线; 基本图形要熟练,复杂图形多分解;以上规律属一般,灵活应用才方便。 初中数学几何题解题技巧相关 文章 : ★ 初中数学解题技巧与方法 ★ 做题技巧数学初中几何证明题 ★ 初中数学常用的解题技巧 ★ 初中数学里常用的十种经典解题方法 ★ 初中数学解题方法大汇总 ★ 初中数学几何变换法解题方法 ★ 初中数学需要掌握的解题方法和思路 ★ 初中数学的各题型解题方法 ★ 初中数学几何的学习方法
hi投2023-05-21 16:47:331

初中数学几何最值问题,必须高手进

几何最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积等)的最大值或最小值。在中考中常以填空选择及解答题形式出现,难易程度多为难题、压轴题。务必掌握求几何最值的基本方法:(1)特殊位置及极端位置法:先考虑特殊位置或极端位置,确定最值的具体数据,再进行一般情况下的推理证明(2)几何定理(公理)法:应用几何中的不等量性质、定理。常见几何性质有:两点之间线段最短;点到直线垂线段最短;三角形两边之和大于第三边;斜边大于直角边(3)数形结合法:分析问题变动元素的代数关系,构造二次函数等。代数最值问题一般以应用题形式出现,常见题型为求一个花费最低、消耗最少、产值最高、获利最大的方案。作为各地中考必考题之一,难度以中档为主,是所有学生必拿之分。解这类题目的关键点在于合理建立函数模型,理解题意的基础上,合理设出未知量,分析题中等量关系,列出函数解析式或方程,求解、讨论结果意义并以“答:……”做结尾。特别注意如果所列方程为分式方程,需检验增根!具体例题题型如下:
豆豆staR2023-05-21 16:47:331

初中数学几何公式

三角形:中线定理斯特瓦尔特定理欧拉公式海伦公式四边形:托勒密定理及其推广三点共线与三线共点:梅涅劳斯定理塞瓦定理西姆松定理欧拉定理布里安香定理及其推广几何变换:位似变换轴向变换反演变换常用、实用解题方法:倒推、构造、向量、变换等以上都是最基本的东西,随便买的一本竞赛书上应该都会有这些。
左迁2023-05-21 16:47:327

所有初中数学几何证明理由

初中数学几何定理集锦1.同角(或等角)的余角相等.3.对顶角相等.5.三角形的一个外角等于和它不相邻的两个内角之和.6.在同一平面内垂直于同一条直线的两条直线是平行线.7.同位角相等,两直线平行.12.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合.16.直角三角形中,斜边上的中线等于斜边的一半.19.在角平分线上的点到这个角的两边距离相等.及其逆定理.21.夹在两条平行线间的平行线段相等.夹在两条平行线间的垂线段相等.22.一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形.24.有三个角是直角的四边形、对角线相等的平行四边形是矩形.25.菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角.27.正方形的四个角都是直角,四条边相等.两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角.34.在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等.36.垂直于弦的直径平分这条弦,并且平分弦所对弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.43.直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似.46.相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比.相似三角形面积的比等于相似比的平方.37.圆内接四边形的对角互补,并且任何一个外角等于它的内对角.47.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.48.切线的性质定理①经过圆心垂直于切线的直线必经过切点.②圆的切线垂直于经过切点的半径.③经过切点垂直于切线的直线必经过圆心.49.切线长定理从圆外一点引圆的两条切线,它们的切线长相等.连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角.50.弦切角定理弦切角的度数等于它所夹的弧的度数的一半.弦切角等于它所夹的弧所对的圆周角.51.相交弦定理;切割线定理;割线定理
小白2023-05-21 16:47:321

初中数学几何的定理有哪些

太多了,你上书店买本参考书
gitcloud2023-05-21 16:47:312

初中数学的经典几何题型有什么?

初中数学几何定理集锦 1。同角(或等角)的余角相等。 3。对顶角相等。 5。三角形的一个外角等于和它不相邻的两个内角之和。 6。在同一平面内垂直于同一条直线的两条直线是平行线。 7。同位角相等,两直线平行。 12。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。 16。直角三角形中,斜边上的中线等于斜边的一半。 19。在角平分线上的点到这个角的两边距离相等。及其逆定理。 21。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。 22。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。 24。有三个角是直角的四边形、对角线相等的平行四边形是矩形。 25。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。 27。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。 34。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。 36。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 43。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。 46。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。 37.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。 47。切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。 48。切线的性质定理①经过圆心垂直于切线的直线必经过切点。 ②圆的切线垂直于经过切点的半径。 ③经过切点垂直于切线的直线必经过圆心。 49。切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。 50。弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。 51。相交弦定理 ; 切割线定理 ; 割线定理
陶小凡2023-05-21 16:47:311

初中数学几何公式

三角形:中线定理斯特瓦尔特定理欧拉公式海伦公式四边形:托勒密定理及其推广三点共线与三线共点:梅涅劳斯定理塞瓦定理西姆松定理欧拉定理布里安香定理及其推广几何变换:位似变换轴向变换反演变换常用、实用解题方法:倒推、构造、向量、变换等以上都是最基本的东西,随便买的一本竞赛书上应该都会有这些。
康康map2023-05-21 16:47:317

所有初中数学几何证明理由

初中数学几何定理集锦 1。同角(或等角)的余角相等。 3。对顶角相等。 5。三角形的一个外角等于和它不相邻的两个内角之和。 6。在同一平面内垂直于同一条直线的两条直线是平行线。 7。同位角相等,两直线平行。 12。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。 16。直角三角形中,斜边上的中线等于斜边的一半。 19。在角平分线上的点到这个角的两边距离相等。及其逆定理。 21。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。 22。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。 24。有三个角是直角的四边形、对角线相等的平行四边形是矩形。 25。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。 27。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。 34。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。 36。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 43。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。 46。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。 37.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。 47。切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线。 48。切线的性质定理①经过圆心垂直于切线的直线必经过切点。 ②圆的切线垂直于经过切点的半径。 ③经过切点垂直于切线的直线必经过圆心。 49。切线长定理 从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。 50。弦切角定理 弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。 51。相交弦定理 ; 切割线定理 ; 割线定理采纳哦
ardim2023-05-21 16:47:301

初中数学怎么学:中考必背的几何定理大汇总

1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等 4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直 6.直线外一点与直线上各点连接的所有线段中,垂线段最短 7.平行公理经过直线外一点,有且只有一条直线与这条直线平行 8.如果两条直线都和第三条直线平行,这两条直线也互相平行 9.同位角相等,两直线平行 10.内错角相等,两直线平行 11.同旁内角互补,两直线平行 12.两直线平行,同位角相等 13.两直线平行,内错角相等 14.两直线平行,同旁内角互补 15.定理三角形两边的和大于第三边 16.推论三角形两边的差小于第三边 17.三角形内角和定理三角形三个内角的和等于180° 18.推论1直角三角形的两个锐角互余 19.推论2三角形的一个外角等于和它不相邻的两个内角的和 20.推论3三角形的一个外角大于任何一个和它不相邻的内角 21.全等三角形的对应边、对应角相等 22.边角边公理有两边和它们的夹角对应相等的两个三角形全等 23.角边角公理有两角和它们的夹边对应相等的两个三角形全等 24.推论有两角和其中一角的对边对应相等的两个三角形全等 25边边边公理有三边对应相等的两个三角形全等 26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等 27.定理1:在角的平分线上的点到这个角的两边的距离相等 28.定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29.角的平分线是到角的两边距离相等的所有点的集合 30.等腰三角形的性质定理等腰三角形的两个底角相等 31.推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32.等腰三角形的顶角平分线、底边上的中线和高互相重合 33.推论3:等边三角形的各角都相等,并且每一个角都等于60° 34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35.推论1:三个角都相等的三角形是等边三角形 36.推论2:有一个角等于60°的等腰三角形是等边三角形 37.在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38.直角三角形斜边上的中线等于斜边上的一半 39.定理线段垂直平分线上的点和这条线段两个端点的距离相等 40.逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42.定理1:关于某条直线对称的两个图形是全等形 43.定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44.定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45.逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46.勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即ab=c 47.勾股定理的逆定理如果三角形的三边长a、b、c有关系ab=c,那么这个三角形是直角三角形 48.定理四边形的内角和等于360° 49.四边形的外角和等于360° 50.多边形内角和定理n边形的内角的和等于(n-2)×180° 51.推论任意多边的外角和等于360° 52.平行四边形性质定理1平行四边形的对角相等 53.平行四边形性质定理2平行四边形的对边相等 54.推论夹在两条平行线间的平行线段相等 55.平行四边形性质定理3平行四边形的对角线互相平分 56.平行四边形判定定理1两组对角分别相等的四边形是平行四边形 57.平行四边形判定定理2两组对边分别相等的四边形是平行四边形 58.平行四边形判定定理3对角线互相平分的四边形是平行四边形 59.平行四边形判定定理4一组对边平行相等的四边形是平行四边形 60.矩形性质定理1矩形的四个角都是直角 61.矩形性质定理2矩形的对角线相等 62.矩形判定定理1有三个角是直角的四边形是矩形 63.矩形判定定理2对角线相等的平行四边形是矩形 64.菱形性质定理1菱形的四条边都相等 65.菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角 66.菱形面积=对角线乘积的一半,即S=(a×b)÷2 67.菱形判定定理1:四边都相等的四边形是菱形 68.菱形判定定理2:对角线互相垂直的平行四边形是菱形 69.正方形性质定理1:正方形的四个角都是直角,四条边都相等 70.正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71.定理1关于中心对称的两个图形是全等的 72.定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73.逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74.等腰梯形性质定理等腰梯形在同一底上的两个角相等 75.等腰梯形的两条对角线相等 76.等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形 77.对角线相等的梯形是等腰梯形 78.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰 80.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边 81.三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半 82.梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(ab)÷2S=L×h 83.(1)比例的基本性质如果a:b=c:d,那么ad=bc   如果ad=bc,那么a:b=c:d 84.(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d 85.(3)等比性质如果a/b=c/d=…=m/n(bd…n≠0),那么(ac…m)/(bd…n)=a/b 86.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87.推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 88.定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91.相似三角形判定定理1:两角对应相等,两三角形相似(ASA) 92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93.判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS) 94.判定定理3:三边对应成比例,两三角形相似(SSS) 95.定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96.性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97.性质定理2:相似三角形周长的比等于相似比 98.性质定理3:相似三角形面积的比等于相似比的平方 99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值 100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101.圆是定点的距离等于定长的点的集合 102.圆的内部可以看作是圆心的距离小于半径的点的集合 103.圆的外部可以看作是圆心的距离大于半径的点的集合 104.同圆或等圆的半径相等 105.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106.和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107.到已知角的两边距离相等的点的轨迹,是这个角的平分线 108.到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 109.定理不在同一直线上的三个点确定一条直线 110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111.推论1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧   弦的垂直平分线经过圆心,并且平分弦所对的两条弧   平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112.推论2:圆的两条平行弦所夹的弧相等 113.圆是以圆心为对称中心的中心对称图形 114.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116.定理一条弧所对的圆周角等于它所对的圆心角的一半 117.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径 119.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120.定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角 121.直线L和O相交d﹤r直线L和O相切d=r直线L和O相离d﹥r 122.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 123.切线的性质定理圆的切线垂直于经过切点的半径 124.推论1:经过圆心且垂直于切线的直线必经过切点 125.推论2:经过切点且垂直于切线的直线必经过圆心 126.切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 127.圆的外切四边形的两组对边的和相等 128.弦切角定理弦切角等于它所夹的弧对的圆周角 129.推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130.相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等 131.推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项
黑桃花2023-05-21 16:47:291

初中数学平面几何定理

  1.勾股定理(毕达哥拉斯定理)   2.射影定理(欧几里得定理)   3.三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分   4.四边形两边中心的连线的两条对角线中心的连线交于一点   5.间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。   6.三角形各边的垂直一平分线交于一点。   7.三角形的三条高线交于一点   8.设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL   9.三角形的外心,垂心,重心在同一条直线(欧拉线)上。   10.(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心.从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,   11.欧拉定理:三角形的外心.重心.九点圆圆心.垂心依次位于同一直线(欧拉线)上   12.库立奇*大上定理:(圆内接四边形的九点圆)   圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。   13.(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半   14.(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点   15.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2)   16.斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2   17.波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD   18.阿波罗尼斯定理:到两定点A.B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上   19.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD   20.以任意三角形ABC的边BC.CA.AB为底边,分别向外作底角都是30度的等腰△BDC.△CEA.△AFB,则△DEF是正三角形,   21.爱尔可斯定理1:若△ABC和△DEF都是正三角形,则由线段AD.BE.CF的中心构成的三角形也是正三角形。   22.爱尔可斯定理2:若△ABC.△DEF.△GHI都是正三角形,则由三角形△ADG.△BEH.△CFI的重心构成的三角形是正三角形。   23.梅涅劳斯定理:设△ABC的三边BC.CA.AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P.Q.R则有BPPC×CQQA×ARRB=1   24.梅涅劳斯定理的逆定理:(略)   25.梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q.∠C的平分线交边AB于R,.∠B的平分线交边CA于Q,则P.Q.R三点共线。   26.梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A.B.C作它的外接圆的切线,分别和BC.CA.AB的延长线交于点P.Q.R,则P.Q.R三点共线   27.塞瓦定理:设△ABC的三个顶点A.B.C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC.CA.AB或它们的延长线交于点P.Q.R,则BPPC×CQQA×ARRB()=1.   28.塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB.AC的交点分别是D.E,又设BE和CD交于S,则AS一定过边BC的中心M   29.塞瓦定理的逆定理:(略)   30.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点   31.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC.CA.AB分别相切于点R.S.T,则AR.BS.CT交于一点。   32.西摩松定理:从△ABC的外接圆上任意一点P向三边BC.CA.AB或其延长线作垂线,设其垂足分别是D.E.R,则D.E.R共线,(这条直线叫西摩松线)   33.西摩松定理的逆定理:(略)   34.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心。   35.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC.CA.AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。   36.波朗杰.腾下定理:设△ABC的外接圆上的三点为P.Q.R,则P.Q.R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).   37.波朗杰.腾下定理推论1:设P.Q.R为△ABC的外接圆上的三点,若P.Q.R关于△ABC的西摩松线交于一点,则A.B.C三点关于△PQR的的西摩松线交于与前相同的一点   38.波朗杰.腾下定理推论2:在推论1中,三条西摩松线的交点是A.B.C.P.Q.R六点任取三点所作的三角形的"垂心和其余三点所作的三角形的垂心的连线段的中点。   39.波朗杰.腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P.Q.R的关于△ABC的西摩松线交于一点   40.波朗杰.腾下定理推论4:从△ABC的顶点向边BC.CA.AB引垂线,设垂足分别是D.E.F,且设边BC.CA.AB的中点分别是L.M.N,则D.E.F.L.M.N六点在同一个圆上,这时L.M.N点关于关于△ABC的西摩松线交于一点。   41.关于西摩松线的定理1:△ABC的外接圆的两个端点P.Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。   42.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。   43.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC.CA.AB分别成同向的等角的直线PD.PE.PF,与三边的交点分别是D.E.F,则D.E.F三点共线。   44.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L.M.N,在△ABC的外接圆取一点P,则PL.PM.PN与△ABC的三边BC.CA.AB或其延长线的交点分别是D.E.F,则D.E.F三点共线   45.清宫定理:设P.Q为△ABC的外接圆的异于A.B.C的两点,P点的关于三边BC.CA.AB的对称点分别是U.V.W,这时,QU.QV.QW和边BC.CA.AB或其延长线的交点分别是D.E.F,则D.E.F三点共线   46.他拿定理:设P.Q为关于△ABC的外接圆的一对反点,点P的关于三边BC.CA.AB的对称点分别是U.V.W,这时,如果QU.QV.QW与边BC.CA.AB或其延长线的交点分别为ED.E.F,则D.E.F三点共线。(反点:P.Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P.Q两点关于圆O互为反点)   47.朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。   48.九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-pointcircle],或欧拉圆,费尔巴哈圆.   49.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。   50.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。   51.康托尔定理2:一个圆周上有A.B.C.D四点及M.N两点,则M和N点关于四个三角形△BCD.△CDA.△DAB.△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M.N两点关于四边形ABCD的康托尔线。   52.康托尔定理3:一个圆周上有A.B.C.D四点及M.N.L三点,则M.N两点的关于四边形ABCD的康托尔线.L.N两点的关于四边形ABCD的康托尔线.M.L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M.N.L三点关于四边形ABCD的康托尔点。   53.康托尔定理4:一个圆周上有A.B.C.D.E五点及M.N.L三点,则M.N.L三点关于四边形BCDE.CDEA.DEAB.EABC中的每一个康托尔点在一条直线上。这条直线叫做M.N.L三点关于五边形A.B.C.D.E的康托尔线。   54.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。   55.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。   56.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。   57.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。   58.笛沙格定理1:平面上有两个三角形△ABC.△DEF,设它们的对应顶点(A和D.B和E.C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。   59.笛沙格定理2:相异平面上有两个三角形△ABC.△DEF,设它们的对应顶点(A和D.B和E.C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。   60.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D.B和E.C和F,则这三线共点。   60.巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE.BC和EF.CD和FA的(或延长线的)交点共线。
gitcloud2023-05-21 16:47:291

初中数学函数的定义是什么

在一个变化过程中,发生变化的量叫变量(数学中,常常为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。自变量:函数一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。
北营2023-05-21 12:53:343

求初中数学所有恒等式变形的题目。。。

1.如果函数f(x)满足两个恒等式:f(-x)+f(x)=0,f(x+2)+f(x)=0,又知当0≤x≤1时,f(x)=x,则f(7.5)=--.2.已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz.  分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边.  证因为x+y+z=xyz,所以  左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2)    =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2    =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx)    =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx)    =xyz+xyz+xyz+xyz    =4xyz=右边.3.已知a4+b4+c4+d4=4abcd,且a,b,c,d都是正数,求证:a=b=c=d.  证由已知可得a4+b4+c4+d4-4abcd=0,  (a2-b2)2+(c2-d2)2+2a2b2+2c2d2-4abcd=0,  所以  (a2-b2)2+(c2-d2)2+2(ab-cd)2=0.  因为(a2-b2)2≥0,(c2-d2)2≥0,(ab-cd)2≥0,所以  a2-b2=c2-d2=ab-cd=0,  所以(a+b)(a-b)=(c+d)(c-d)=0.  又因为a,b,c,d都为正数,所以a+b≠0,c+d≠0,所以  a=b,c=d.  所以  ab-cd=a2-c2=(a+c)(a-c)=0,  所以a=c.故a=b=c=d成立4.已知a+b+c=0,求证  2(a4+b4+c4)=(a2+b2+c2)2.  分析与证明用比差法,注意利用a+b+c=0的条件.  左-右=2(a4+b4+c4)-(a2+b2+c2)2    =a4+b4+c4-2a2b2-2b2c2-2c2a2    =(a2-b2-c2)2-4b2c2    =(a2-b2-c2+2bc)(a2-b2-c2-2bc)    =[a2-(b-c)2][a2-(b+c)2]    =(a-b+c)(a+b-c)(a-b-c)(a+b+c)=0.所以等式成立5.例10证明:  (y+z-2x)3+(z+x-2y)3+(x+y-2z)3  =3(y+z-2x)(z+x-2y)(x+y-2z).  分析与证明此题看起来很复杂,但仔细观察,可以使用换元法.令y+z-2x=a,①z+x-2y=b,②x+y-2z=c,③  则要证的等式变为a3+b3+c3=3abc.  联想到乘法公式:  a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca),所以将①,②,③相加有  a+b+c=y+z-2x+z+x-2y+x+y-2z=0,  所以a3+b3+c3-3abc=0,  所以  (y+z-2x)3+(z+x-2y)3+(x+y-2z)3  =3(y+z-2x)(z+x-2y)(x+y-2z).
mlhxueli 2023-05-20 17:37:571

初中数学计算恒等变形性质

等式的性质有:性质1:等式两边同时加上相等的数或式子,两边依然相等.若a=b那么有a+c=b+c性质2:等式两边同时乘(或除)相等的非零的数或式子,两边依然相等若a=b 那么有a·c=b·c 或a÷c=b÷c (a,b≠0 或 a=b ,c≠0)性质3:等式两边同时乘方(或开方),两边依然相等若a=b那么有a^c=b^c或(c次根号a)=(c次根号b)
u投在线2023-05-20 17:37:561

初中数学根式运算法则公式

很多同学都学习了根式,我整理了一些根式运算法则,大家一起来看看吧。 根式运算法 根式开方法则是根式的运算法则之一,算术根开n次方,把根指数扩大n倍,被开方数不变。非算术根的开方不总是可能的,负数的奇次方根开奇次方时,一般先将给定根式化为算术根后再按法则开方 1.根号2乘以2,把2变成根号4再乘,就是根号4乘根号2,再根号下的2乘以zhi4的积,就是根号8,也可化简写成2倍根号2. 如题:√dao2*2=2√2=√2*√4=√(2*4)=√(2^2*4)=√8 2.根号3乘以根号6就是根号下6乘以3的积,就是根号18,再把18变成9乘以2,因为9可以开根,所以最后化简得出3倍根号2. 如题:√3*√6=√(3*6)=√18=√(9*2)=√3^2*2)=3√2 3.根号32乘以根号25,得出根号800,根号800再化简得根号下的400乘以2的积,400又等于20乘以20,就是20的平方,最后化简得出20倍根号2. 如题:√32*√25=√(32*25)=√800=√(400*2)=√(20^2*2)=20√2 根式高频考点 ①根据字母的取值范围化简二次根式; ②根据二次根式的化简结果确定字母的取值范围; ③利用二次根式的性质求字母(或代数式)的最小(大)值; ④利用平方差公式进行分母有理化的计算求值;再者就是相关最简二次根式、同类二次根式等相关的基础知识考察, 根式性质 在实数范围内: (1)偶次根号下不能为负数,其运算结果也不为负。 (2)奇次根号下可以为负数。 不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可。 以上就是一些数学根式的相关信息,希望对大家有所帮助。
LuckySXyd2023-05-20 08:56:271

初中数学开根号怎么开?

你这都不错的了明年我都要高考了还不回开根号呢
水元素sl2023-05-20 08:56:2715

初中数学负数比较大小的方法

很多同学都学习过负数,那么负数我们要怎么进行比较?大家一起来看看吧。 比较两个负数大小的方法 1、比较绝对值,绝对值大的反而小。 2、在数轴线上,越靠近0越大。 3、作差法,用第一个负数减去第二个负数,如果算出来的是正数,那么第一个负数大,如果算出来的是负数,那么第二个负数大。 4、作商法,用第一个负数比上第二个负数,如果比的值小于1,那么分子那个负数大,如果比出来的值大于1,那么分母那个负数大。 负数用负号(相当于减号)“-”和一个正数标记,如−2,代表的就是2的相反数。于是,任何正数前加上负号便成了负数。 负数的历史 据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。比如,356摆成||| ,3056摆成等等。这些小竹棍叫做“算筹”算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。”意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。 刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。 我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。” 以上就是一些负数的相关信息,供大家参考。
北境漫步2023-05-19 11:02:101

初中数学和差化积公式归纳

想要学好数学,基础知识一定要掌握牢固。下面是我整理的内容,供大家参考。 初中数学和差化积公式整理 2sinAcosB=sin(A+B)+sin(A-B);2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B);-2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2;cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB;tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB;-ctgA+ctgBsin(A+B)/sinAsinB 快速记忆和差化积公式口诀 和差化积公式 和差化积需同名,变量置换要记清; 假若函数不同名,互余角度换名称。 简记为: S+S=2S·C,S-S=2C·S; C+C=2C·C,C-C=-2S·S。 还有什么常用数学公式 乘法与因式分解: a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 一元二次方程的解: -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系: X1+X2=-b/a X1*X2=c/a 注:韦达定理 某些数列前n项和: 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2 2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理: a/sinA=b/sinB=c/sinC=2R 注:其中R表示三角形的外接圆半径 余弦定理: b2=a2+c2-2accosB
铁血嘟嘟2023-05-19 11:01:471

初中数学关于圆的定理

切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。  如图中,切线长AC=AB。  ∵∠ABO=∠ACO=90°  BO=CO=半径  AO=AO公共边  ∴RtΔABO≌RtΔACO(HL)  ∴AB=AC  ∠AOB=∠AOC  ∠OAB=∠OAC垂径定理: 垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧  垂径定理如图DC为直径AB垂直于DC则AE=EB弧AC等于弧BC圆周角定理:定义  :顶点在圆上,且两边与圆还有另一个交点。圆周角定理  :同弧所对圆周角是圆心角的一半.  证明略(分类思想,3种,半径相等)弦切角定理:  定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.(弦切角就是切线与弦所夹的角)弦切角定理证明  证明:设圆心为O,连接OC,OB,OA。过点A作TP的平行线交BC于D,  则∠TCB=∠CDA  ∵∠TCB=90-∠OCD  ∵∠BOC=180-2∠OCD  更清楚的∴,∠BOC=2∠TCB(弦切角的度数等于它所夹的弧的圆心角的度数的一半)  ∵∠BOC=2∠CAB  ∴∠TCB=∠CAB(弦切角的度数等于它所夹的弧的圆周角)  证明已知:AC是⊙O的弦,AB是⊙O的切线,A为切点,弧是弦切角∠BAC所夹的弧.  求证:.(弦切角定理)  证明:分三种情况:  (1) 圆心O在∠BAC的一边AC上  ∵AC为直径,AB切⊙O于A,  ∴弧CmA=弧CA  ∵为半圆,  ∴∠CAB=90=弦CA所对的圆周角  (2) 圆心O在∠BAC的内部.  过A作直径AD交⊙O于D,  若在优弧m所对的劣弧上有一点E  那么,连接EC、ED、EA  则有:∠CED=∠CAD、∠DEA=∠DAB  ∴∠CEA=∠CAB  ∴(弦切角定理)  (3) 圆心O在∠BAC的外部,  过A作直径AD交⊙O于D  那么∠CDA+∠CAD=∠CAB+∠CAD=90  ∴∠CDA=∠CAB  ∴(弦切角定理)四圆定理:垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧  几何语言:  ∵OC⊥AB,OC过圆心  (垂径定理)  推论1  (1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧  几何语言:  ∵OC⊥AB,AC=BC,AB不是直径  (平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧)  (2)弦的垂直平分线过圆心,并且平分弦所对的两条弧  几何语言:  ∵AC=BC,OC过圆心  (弦的垂直平分线过圆心,并且平分弦所对的两条弧)  (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧  几何语言:  (平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧)  推论2圆的两条平分弦所夹的弧相等  几何语言:∵AB‖CD  圆心角、弧、弦、弦心距之间的关系  定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距也相等  推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等  圆周角  定理一条弧所对的圆周角等于它所对的圆心角的一半  推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等  推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径  推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形  圆的内接四边形  定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角  几何语言:  ∵四边形ABCD是⊙O的内接四边形  ∴∠A+∠C=180°,∠B+∠ADB=180°,∠B=∠ADE  切线的判定和性质  切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线  几何语言:∵l⊥OA,点A在⊙O上  ∴直线l是⊙O的切线(切线判定定理)  切线的性质定理圆的切线垂直于经过切点半径  几何语言:∵OA是⊙O的半径,直线l切⊙O于点A  ∴l⊥OA(切线性质定理)  推论1经过圆心且垂直于切线的直径必经过切点  推论2经过切点且垂直于切线的直线必经过圆心  切线长定理  定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角  几何语言:∵弦PB、PD切⊙O于A、C两点  ∴PA=PC,∠APO=∠CPO(切线长定理)  弦切角  弦切角定理弦切角等于它所夹的弧对的圆周角  几何语言:∵∠BCN所夹的是,∠A所对的是  ∴∠BCN=∠A  推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等  几何语言:∵∠BCN所夹的是,∠ACM所对的是,=  ∴∠BCN=∠ACM  和圆有关的比例线段  相交弦定理:圆内的两条相交弦,被焦点分成的两条线段长的积相等  几何语言:∵弦AB、CD交于点P  ∴PA·PB=PC·PD(相交弦定理)  推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项  几何语言:∵AB是直径,CD⊥AB于点P  ∴PC2=PA·PB(相交弦定理推论)  切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项  几何语言:∵PT切⊙O于点T,PBA是⊙O的割线  ∴PT2=PA·PB(切割线定理)  推论从圆外一点因圆的两条割线,这一点到每条割线与圆的焦点的两条线段长的积相等  几何语言:∵PBA、PDC是⊙O的割线  ∴PT2=PA·PB(切割线定理推论)
wpBeta2023-05-19 11:01:382

初中数学定理

http://hi.baidu.com/%C7%A7%B9%C5%C6%E5%BB%EA/blog/item/b3e24b636895ed610d33fafa.html
hi投2023-05-19 11:01:173

初中数学公式大全

LuckySXyd2023-05-19 11:01:176

初中数学知识

上可圈可点的网站
Ntou1232023-05-19 11:01:174

初中数学比例的六个定理是什么?

初中数学比例的六个定理,合比,分比,合分比,更比,等比,反比:比例基本性质:如果a:b=c:d,a×d=b×c。合比定理:如果a:b=c:d,(a±b):b=(c±d)/d。如果a:b=c:d,且存在b+a≠0,d+c≠0,a:(b+a)=c:(d+c)如果a:b=c:d,且存在b-a≠0,d-c≠0,a:(b-a)=c:(d-c)。如果a:b=c:d,且存在b-na≠0,d-nc≠0,a:(b-na)=c:(d-nc)。等比定理(等比性质):如果a:b=c:d=m:n(b+d+…+n≠0),(a+c+m):(b+d++n)=a:b。定理合比定理:如果a/b=c/d,(a+b)/b=(c+d)/d(b、d≠0)。分比定理:如果a/b=c/d,(a-b)/b=(c-d)/d(b、d≠0)。合分比定理:如果a/b=c/d,(a+b)/(a-b)=(c+d)/(c-d)(b、d、a-b、c-d≠0)。等比定理:如果a/b=c/d,a/c=b/d(a、b、c、d≠0)。
黑桃花2023-05-19 11:01:161

初中数学的比例定理有哪些?

初中数学比例的六个定理,合比,分比,合分比,更比,等比,反比:比例基本性质:如果a:b=c:d,a×d=b×c。合比定理:如果a:b=c:d,(a±b):b=(c±d)/d。如果a:b=c:d,且存在b+a≠0,d+c≠0,a:(b+a)=c:(d+c)如果a:b=c:d,且存在b-a≠0,d-c≠0,a:(b-a)=c:(d-c)。如果a:b=c:d,且存在b-na≠0,d-nc≠0,a:(b-na)=c:(d-nc)。等比定理(等比性质):如果a:b=c:d=m:n(b+d+…+n≠0),(a+c+m):(b+d++n)=a:b。定理合比定理:如果a/b=c/d,(a+b)/b=(c+d)/d(b、d≠0)。分比定理:如果a/b=c/d,(a-b)/b=(c-d)/d(b、d≠0)。合分比定理:如果a/b=c/d,(a+b)/(a-b)=(c+d)/(c-d)(b、d、a-b、c-d≠0)。等比定理:如果a/b=c/d,a/c=b/d(a、b、c、d≠0)。
u投在线2023-05-19 11:01:161

初中数学知识点总结

a+b=c
gitcloud2023-05-19 11:01:153

初中数学公式定理

三角形面积S=1/2Sin(∠a)A*B注意∠a是边A与边B的夹角(Sin(∠a))是三角涵数S=√[p(p-a)(p-b)(p-c)] 而公式里的p为半周长: p=(a+b+c)/2
铁血嘟嘟2023-05-19 11:01:146

初中数学比例的六个定理,合比.分比.合分比.更比.等比.反比.分别是?

初中数学比例的六个定理,合比,分比,合分比,更比,等比,反比:比例基本性质:如果a:b=c:d,a×d=b×c。合比定理:如果a:b=c:d,(a±b):b=(c±d)/d。如果a:b=c:d,且存在b+a≠0,d+c≠0,a:(b+a)=c:(d+c)如果a:b=c:d,且存在b-a≠0,d-c≠0,a:(b-a)=c:(d-c)。如果a:b=c:d,且存在b-na≠0,d-nc≠0,a:(b-na)=c:(d-nc)。等比定理(等比性质):如果a:b=c:d=m:n(b+d+…+n≠0),(a+c+m):(b+d++n)=a:b。定理合比定理:如果a/b=c/d,(a+b)/b=(c+d)/d(b、d≠0)。分比定理:如果a/b=c/d,(a-b)/b=(c-d)/d(b、d≠0)。合分比定理:如果a/b=c/d,(a+b)/(a-b)=(c+d)/(c-d)(b、d、a-b、c-d≠0)。等比定理:如果a/b=c/d,a/c=b/d(a、b、c、d≠0)。
瑞瑞爱吃桃2023-05-19 11:01:121

初中数学几何图形判定及性质(懂的来)

具体指的是那一部分啊 请说清楚 这样才能便于更好 更准确的回答
CarieVinne 2023-05-19 11:01:125

初中数学比例的基本性质有哪些?

初中数学比例的六个定理,合比,分比,合分比,更比,等比,反比:比例基本性质:如果a:b=c:d,a×d=b×c。合比定理:如果a:b=c:d,(a±b):b=(c±d)/d。如果a:b=c:d,且存在b+a≠0,d+c≠0,a:(b+a)=c:(d+c)如果a:b=c:d,且存在b-a≠0,d-c≠0,a:(b-a)=c:(d-c)。如果a:b=c:d,且存在b-na≠0,d-nc≠0,a:(b-na)=c:(d-nc)。等比定理(等比性质):如果a:b=c:d=m:n(b+d+…+n≠0),(a+c+m):(b+d++n)=a:b。定理合比定理:如果a/b=c/d,(a+b)/b=(c+d)/d(b、d≠0)。分比定理:如果a/b=c/d,(a-b)/b=(c-d)/d(b、d≠0)。合分比定理:如果a/b=c/d,(a+b)/(a-b)=(c+d)/(c-d)(b、d、a-b、c-d≠0)。等比定理:如果a/b=c/d,a/c=b/d(a、b、c、d≠0)。
善士六合2023-05-19 11:01:121

新人教版数学课本讲等比合比性质的在哪一章?初中数学里好像竟然没讲

是的,新人教版中删去了与比例有关的性质。老人教版这些内容安排在"比例线段"一节中。
NerveM 2023-05-19 11:01:121

初中数学比例基本性质的推论中合比性质是怎样推出的?

解:设a/b=c/d=k,则 a=bk,c=dk所以a+b/b=bk/b=d c+d/d=dk/d=k 所以a+b/b=c+d/d
FinCloud2023-05-19 11:01:092

初中数学

(1)(-4,4) 12(*2)(3,-3)求采纳
Jm-R2023-05-19 11:01:094
 首页 上一页  1 2 3 4  下一页  尾页