求根公式

一元三次方程求根公式

一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
hi投2023-08-10 10:22:523

一元三次方程的求根公式是什么?

一元三次方程万能化简公式:ax3+bx2+cx+d=0,而且一元三次方程只含有一个未知数(即“元”),并且未知数的最高次数为3次的整式方程。一般的三次方程不能用配方法求解,但四次方程可以。四次方程的标准解法就是引入参数后等式两边配平方,然后两边开方求解,参数通过解一个三次方程得到。得到的四次方程的求根公式里面只有平方根和立方根,没有四次方根,所以通过笔算开平方和开立方,也能直接笔算出四次方程的解。方程解法:1、意大利学者卡尔丹于1545年发表的卡尔丹公式法;2、中国学者范盛金于1989年发表的盛金公式法。两种公式法都可以解标准型的一元三次方程。用卡尔丹公式解题方便,相比之下,盛金公式虽然形式简单,但是整体较为冗长,不方便记忆,但是实际解题更为直观。
黑桃花2023-08-10 10:22:441

一元二次方程求根公式?

顶点公式-b/2a
九万里风9 2023-07-23 17:07:314

一元二次方程的解法求根公式

公式的一般形式:ax_+bx+c=0(a≠0),其中ax_是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。因式分解法:因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。用因式分解法解一元二次方程的步骤:一元二次方程:(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.
CarieVinne 2023-07-23 17:07:251

一元二次方程的求根公式是?

一元二次求根公式为x=(-b±√(b^2-4ac))/(2a)。解:对于一元二次方程,用求根公式求解的步骤如下。1、把一元二次方程化简为一元二次方程的一般形式,即ax^2+bx+c=0(其中a≠0)。2、求出判别式△=b^2-4ac的值,判断该方程根的情况。若△>0,该方程有两个不相等的实数。若△=0,该方程有两个相等的实数根。若△<0,那么该方程没有实数根。3、然后根据求根公式x=(-b±√(b^2-4ac))/(2a)进行计算,求出该一元二方程的解。扩展资料:1、一元二次方程的求解方法(1)求根公式法对于一元二次方程ax^2+bx+c=0(a≠0),可根据求根公式x=(-b±√(b^2-4ac))/(2a)进行求解。(2)因式分解法首先对方程进行移项,使方程的右边化为零,然后将方程的左边转化为两个一元一次方程的乘积,最后令每个因式分别为零分别求出x的值。x的值就是方程的解。(3)开平方法如果一元二次方程是x^2=p或者(mx+n)^2=p(p≥0)形式,则可采用直接开平方法解一元二次方程。可得x=±√p,或者mx+n=±√p。2、一元二次方程的形式(1)一般形式一元二次方程的一般形式为ax^2+bx+c=0,其中a≠0,ax^2为二次项,bx为一次项,c为常数项。(2)变形式一元二次方程的变形式有ax^2+bx=0,ax^2+c=0。(3)配方式参考资料来源:百度百科-一元二次方程
gitcloud2023-07-23 17:06:341

一元二次求根公式法是什么

,显得很简单。 ⑶ 直接开平方法一般解符合型的方程,如第①小题。 ⑷ 因式分解法是一种常用的方法,它的特点是解法简单,故它是解题中首先考虑的方法,若一元二次方程的一般式的左边不能分解为整数系数因式或系数较大难以分解时,应考虑变换方法。 解:① 两边开平方,得 所以 ② 配方,得 所以 所以 ③
再也不做站长了2023-07-23 17:06:223

立方求根公式

如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根,即为x3=a,那么x叫做a的立方根。求一个数a的立方根的运算叫做开立方,3√a(a∈R),读作“三次根号a”,其中a叫做被开方数,3叫做根指数。
韦斯特兰2023-07-21 08:41:211

一元二次方程求根公式详细的推导过程

用公式法把字母带进去结果就出来了
meira2023-07-17 08:36:529

在实数范围内分解因式必须用求根公式法吗?

在实数范围,求根公式法是最后一种方法,可以因式分解的,用求根公式法都可以解算出答案。但是求根公式法计算比较麻烦,尤其是高阶的,中学知识范围里好像还没有学解法,因此,建议你还是观察习题结构,灵活应用所学公式求解
墨然殇2023-07-12 08:48:231

韦达定理求根公式

韦达定理求根公式:ax2+bx+c=0。韦达定理说明了一元n次方程中根和系数之间的关系。法国数学家韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。历史是有趣的,韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论证。含义根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。
苏州马小云2023-06-23 11:53:231

一元二次方程的复数求根公式是什么?

关于这些内容,你去咨询一下数学老师,他会好好的教你的。
苏州马小云2023-06-22 10:23:001

1元二次方程的复数求根公式是什么?

一元二次方程的复数求根公式是x=(-b±√(b^2-4ac))/2a一元二次方程必须同时满足三个条件:1、这是一个整式方程,即等号两边都是整式,方程中如果是有分母;且未知数是在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程,是一个无理方程。2、有且只含有一个未知数;3、未知数项的最高次数为2。扩展资料一元二次方程解法:一、直接开平方法形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。二、配方法1、二次项系数化为12、移项,左边为二次项和一次项,右边为常数项。3、配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。4、利用直接开平方法求出方程的解。三、公式法现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。四、因式分解法如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。
拌三丝2023-06-18 08:15:221

一元二次方程的复数求根公式是什么?

一元二次方程的复数求根公式是x=(-b±√(b^2-4ac))/2a一元二次方程必须同时满足三个条件:1、这是一个整式方程,即等号两边都是整式,方程中如果是有分母;且未知数是在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程,是一个无理方程。2、有且只含有一个未知数;3、未知数项的最高次数为2。扩展资料一元二次方程解法:一、直接开平方法形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。二、配方法1、二次项系数化为12、移项,左边为二次项和一次项,右边为常数项。3、配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。4、利用直接开平方法求出方程的解。三、公式法现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。四、因式分解法如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。
gitcloud2023-06-18 08:15:221

一元二次方程的复数求根公式是什么?

一元二次方程的复数求根公式是x=(-b±√(b^2-4ac))/2a一元二次方程必须同时满足三个条件:1、这是一个整式方程,即等号两边都是整式,方程中如果是有分母;且未知数是在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程,是一个无理方程。2、有且只含有一个未知数;3、未知数项的最高次数为2。扩展资料一元二次方程解法:一、直接开平方法形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。二、配方法1、二次项系数化为12、移项,左边为二次项和一次项,右边为常数项。3、配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。4、利用直接开平方法求出方程的解。三、公式法现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。四、因式分解法如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。
九万里风9 2023-06-18 08:15:131

复数一元二次求根公式???

2a分之负b加减根号b方减4ac
NerveM 2023-06-18 08:15:124

一元二次方程的复数求根公式是什么?

一元二次方程的复数求根公式是x=(-b±√(b^2-4ac))/2a一元二次方程必须同时满足三个条件:1、这是一个整式方程,即等号两边都是整式,方程中如果是有分母;且未知数是在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程,是一个无理方程。2、有且只含有一个未知数;3、未知数项的最高次数为2。扩展资料一元二次方程解法:一、直接开平方法形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。二、配方法1、二次项系数化为12、移项,左边为二次项和一次项,右边为常数项。3、配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。4、利用直接开平方法求出方程的解。三、公式法现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。四、因式分解法如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。
CarieVinne 2023-06-18 08:15:111

赵爽一元二次方程求根公式

赵爽(3世纪初),我国三国时期著名的数学家。他的主要贡献是深入研究了《周脾算经》,为该书写了序言,并作了详细注释。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定的影响。赵爽在对《周脾算经》做注释时,曾写了一篇很有价值的“勾股圆方图”的注文,他在讨论方程ax_+bx+c=0时,用到了求根公式,与现在的求根公式基本上是一致的。赵爽的成果比印度数学家婆罗门芨多在公元7世纪提出的二次方程求根公式早许多年。在欧洲,一千多年之后才由法国数学家获得类似的结果。
黑桃花2023-05-20 22:09:561

为什么五次以上的方程没有求根公式?我知道有证明,可以写出来吗

从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,这是对系数函数求平方根.接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法.这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决.他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得.同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得.用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果.1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法.他的工作有力地促进了代数方程论的进步.但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解.并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解.他的这种思维方法和研究根的置换方法给后人以启示.1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善.同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在.随后,他又着手探讨高次方程的具体解法.在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解.因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明.随后,挪威数学家阿贝尔开始解决这个问题.1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数.并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解.接着他进一步思考哪些特殊的高次方程才可用根式解的问题.在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数.现在称这种方程为阿贝尔方程.其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n.实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解.阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题.法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业.伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手.当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论.在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念.他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统.他从此开始把方程论问题转化为群论的问题来解决,直接研究群论.他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人.对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群.方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题.现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群.一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变.伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域.可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表.更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜.到十九世纪六十年代,他的理论才终于为人们所理解和接受.伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影
凡尘2023-05-20 08:56:261

为什么五次以上的方程没有求根公式? 我知道有证明,可以写出来吗?

从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,这是对系数函数求平方根.接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法.这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决.他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得.同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得. 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果.1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法.他的工作有力地促进了代数方程论的进步.但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解.并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解.他的这种思维方法和研究根的置换方法给后人以启示. 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善.同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在.随后,他又着手探讨高次方程的具体解法.在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解.因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明. 随后,挪威数学家阿贝尔开始解决这个问题.1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数.并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解.接着他进一步思考哪些特殊的高次方程才可用根式解的问题.在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数.现在称这种方程为阿贝尔方程.其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n.实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解. 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题.法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业. 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手.当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论.在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念.他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统.他从此开始把方程论问题转化为群论的问题来解决,直接研究群论.他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人. 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群.方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题.现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群.一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变.伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域.可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表.更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜.到十九世纪六十年代,他的理论才终于为人们所理解和接受. 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一.他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题.伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的.最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响.同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响.http://www.nhyz.org/psz/%CA%FD%D1%A7%CA%B7/buer.html
肖振2023-05-20 08:56:261

一元七次方程求根公式

伽罗瓦可解性定理。伽罗瓦工作的核心部分是可解性判别准则:当且仅当多项式方程的群是可解群(伽罗瓦群),这个方程可用代数的方法求解。
无尘剑 2023-05-20 08:56:261

我已找到一元五次方程的求根公式了

根据 Galois理论,每种方程对应一个伽罗瓦群,这个方程可解,当且仅当这个群可解,而当n大于等于5时,这个群一般是不可解的,这个问题多年前就被证明了。一元五次方程是没有求根公式的,因为它对应的伽罗瓦群不可解。这是某一年的菲尔斯奖。不可能随便说说就解决的。用伽罗瓦理论还可以解决几何三大难题,化圆为方,二体积问题,还有三等分角问题
FinCloud2023-05-20 08:56:261

一元五次方程为什么没有求根公式

一元五次方程是没有求根公式的,因为它对应的伽罗瓦群不可解。求一元五次方程的根式解曾困扰数学家三百余年,阿贝尔和伽罗瓦的工作证明了一般一元五次方程没有根式解。1930 年华罗庚《苏家驹之代数的五次方程式解法不能 成立之理由》一文,是对试图推翻阿贝尔和伽罗瓦证明的一种反驳,也是华罗庚的成名之作。 最近国内学者声称“破解”了一元五次方程。这种“破解”,仅限于一元五次方程根的数值求解。6 世纪,在意大利数学家塔塔利亚(Tartaglia)、卡尔达诺(Cardano)、费拉利(Ferrari)等人的努力下,用根式求解三次方程与四次方程的方法终获解决。这样,利用代数符号,无论是二次方程、三次方程还是四次方程,都能通过根式求出它的一般解。于是,数学家们开始寻找一元五次方程的公式解法。虽屡遭挫折,但人们相信,五次方程的解就隐藏在某个角落。在随后三百多年,破解五次方程成了数学中最迷人的挑战之一,很多数学家和数学爱好者,都把它作为检验自己才能的试金石。可是毫无例外,他们都失败了。五次及以上方程的根式解虽然没有找到,人们却积累了很多的经验和知识,特别值得一提的是法国数学家拉格朗日(Lagrange)。1770 年,拉格朗日发表了《关于代数方程解的思考》,他讨论了人们所熟知的解二、三、四次方程的一切方法,并且指出这些成功解法所根据的情况对于五次以及更高次的方程是不可能发生的。拉格朗日试图得出这种不可能性的证明,然而,经过顽强的努力之后,拉格朗日不得不坦言这个问题“好像是在向人类的智慧挑战”。
墨然殇2023-05-20 08:56:261

急求关于证明5次以上多项式不存在求根公式的证明!!

5次以上代数方程无求根公式的定理,是Lagrange猜想出来的,后来Abel最先证明之。 ——伽罗华的早逝和群论的命运 埃.伽罗华(E.Galois,1811-1832)创立了具有划时代意义的数学分支——群论 在数学发展史上作出了重大贡献。但是,他在还不到21岁的时候就与世长辞了。剖析伽 罗华短促而坎坷的一生,对于我们如何对待人才,怎样发展科学,具有一定的启发作用 。 伽罗华是法国巴黎郊区布尔—拉—林镇镇长的儿子。12岁之前受他母亲教育的,在 这时期他学习了希腊语、拉丁文和通常的算术课。1923年他离开了双亲,考入巴黎预科 学校路易—勒—格兰学院(皇家中学),从而开始接受正规学校的教育。在第三年,他 报名选学了第一门数学课。由于他的老师深刻地讲授,伽罗华对数学产生了浓厚的兴趣 ,他很快地学完了通常规定的课程,并求教于当时的数学大师。他如饥似渴地阅读了A. M.勒让德的著作《几何原理》和T.L.拉格朗日的《代数方程的解法》、《解析函数论 》、《微积分学教程》。由于他刻苦学习,能着重领会和掌握其中的数学思维方法,因 引,这些功课的学习,使他思路开阔,科学创造的思维能力得到了训练和提高。他的中 学数学专业班的老师里查说“伽罗华只宜在数学的尖端领域工作”。1829年3月他在《纯 粹与应用数学年报》上发表了他的第一篇论文——《周期连分数的一个定理的证明》。 这时他还是一位中学生。他曾先后两次参加综合技术大学的入学考试,结果都落第了。 1829年7月2日,正当他准备入学考试的时候,他父亲由于受不了牧师的攻击、诽谤、自 杀了。这些遭遇都给伽罗华带来了不幸。1829年10月25日,他只被师范大学录取为预备 生。 当伽罗华17岁时,就着手研究数学中最困难的问题之一一般π次方程求解问题。我 们知道,一般的二次方程的解,要求对系数的一个函数求平方根。要得出三次方程的一 般解,要求对系数的函数开立方。一般的四次方程的解,要求开四次方。一般的五次方 程的解是否也能用加减乘除开方这五种运算的代数方法从方程的系数得出呢?许多人为 之耗去许多精力,但都失败了。直到1770年,法国数学家拉格朗日对上述问题的研究才 算迈出重要的一步。他精心分析了二次、三次、四次方程根式解结构之后,提出了方程 的预解式概念,并且进一步看出预解式和诸根排列置换下形式不变性有关,这时他认识 到求解一般五次方程的代数方法可能不存在。此后,挪威数学家阿贝尔利用置换群的理 论给出了高于四次的一般代数方程的代数求解公式不存在的严格证明。伽罗华在前人研 究成果的基础上,利用群论的方法,从系统结构的整体上彻底解决了根式解的难题。他 从拉格朗日那里学习和继承了问题转化的思想,即把预解式的构成同置换群联系起来, 并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化成或者归结为置换 群及其子群结构的分析上。高斯早就预见到代数方程的根式解的问题终归为二项方程的 求解问题。伽罗华仔细分析了具有根式解的二项方程作为“预解方程”时所对应的置换 子群的特征。结果他发现,如果一个群可以生成一系列极大正规子群,而它们的合成因 子是质数,则该群是可解的。当大于四次的代数方程所对应的群的合成因子就不全是质 数,因而五次及高于五次的代数方程有些是不能用代数方法解出的。 1829年,伽罗华在他中学最后一年快要结束时,他把关于群论研究所初步结果的第 一批论文提交给法国科学院。科学院委托当时法国最杰出的数学家柯西作为这些论文的 鉴定人。在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见 听取会。他在一封信中写道:“今天我应当向科学院提交一份关于年轻的伽罗华的工作 报告……但因病在家。我很贵憾未能出席今天的会议,希望你安排我参加下次会议以讨 论已指明的议题。”然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍 伽罗华的著作。为什么会发生这样的事情?这是值得研究的一个问题。1830年2月,伽罗 华将他的研究成果比较详细地写成论文交上去了。以参加科学院的数学大奖评选,论文 寄给当时科学院终身秘书J.B.傅立叶,但傅立叶在当年5月就去世了,在他的遗物中未 能发现伽罗华的手稿。就这样,伽罗华递交的两次数学论文都被遗失了。 人们由于受已有经验、旧传统观念和偏见的束缚,往往产生出一种墨守陈规的倾向 和不愿接受新鲜事物的惰性。我们认为:柯西之所以原先打算讨论伽罗华所提供的报告 ,以后又不了了之,很可能是他思想的偏见所致,领会不了伽罗华在数学上具有革命性 的新思想。在伽罗华之前人们考虑方程求解问题,基本是一个方法一个方法孤立地去解 决,解次数不同的方程,用不同的方法。直到拉格朗日开始,才注意到解各种代数方程 的方法之间的联系,并用根的置换理论看清了以前各种解法之间的统一性。拉格朗日这 种从整体上考虑问题的新的思想萌芽被伽罗华接受过来,并大大发展了,产生出新的思 想——系统结构的整体思想。把孤立地考虑方程求解的问题归结为数学新的对象——群 及其子群的结构性质分析上去,这就从局部考虑问题上升到整体考虑问题。这是以前数 学家考虑问题不曾有的一种具有革命性的新思想,从而开拓出群论这个新的数学研究领 域。 1831年1月,伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成 论文提交给法国科学院。这篇论文是伽罗华关于群论的重要著作。当时的数学家S.K. 泊松为了理解这篇论文绞尽了脑汁。尽管借助于拉格朗日已证明的一个结果可以表明伽 罗华所要证明的论断是正确的,但最后他还是建议科学院否定它。 对事业必胜和信念激励着年轻的伽罗华。虽然他的论文一再被丢失,得不到应有的 支持,但他并没有灰心,他坚信他的科研成果,不仅一次又一次地想办法传播出去,还 进一步向更广的领域探索。伽罗华诞生在拿破仑帝国时代,经历了波旁王朝的复辟时期 ,又赶上路易.腓力浦朝代初期。他是当时最先进的革命政治集团——共和党的成员。 这时法国激烈的政治斗争吸引了年轻热情的伽罗华,他先后两次被捕入狱,并且被学校 开除了。第二次被捕是1831年7月14日,直到1832年4月29日才出狱。不久,由于参加无 意义的决斗受重伤,于5月31日离开了人间。在他临死的前一夜还把他的重大科研成果匆 忙写成后,委托他的朋友薛伐里叶保存下来,从而使他的劳动结晶流传后世,造福人类 。 伽罗华的重大创作在生前始终没有机会发表。直到1846年,也就是他死后14年,法 国数学家刘维尔才着手整理后,首次发表于刘维尔主编的《数学杂志》上,自此,伽罗 华的重大贡献才逐渐为人们所了解。1870年法国数学家约当根据伽罗华的思想,写了《 论置换与代数方程》一书,在这本书里伽罗华的思想得到了进一步的阐述。今天由伽罗 华开创的群论,不仅对近代数学的各个方面,而且对物理学、化学的许多分支都产生了 重大的影响。 伽罗华及其所创立的群论蒙难的历史事实深刻地告诉我们:作为在学术上有杰出贡 献的老一辈科学家,一定要积极热情地鼓励和支持年青一代的科学研究成果。要发扬“ 甘当梯子”的精神,让年青科学工作者“踩着自己的肩膀”攀登到科学的顶峰。就是说 ,对于创造活力的青年人,作为老一代的科学家就应该像园丁培育芳草一样去精心浇灌 ,对于他们在创造过程中出现的这样或那样的问题应该耐心地予以指教,有的问题应与 他们一块去思考,共同去完善提高它。不要怕青年人超过自己,要欢迎他们超过自己。 同时青年人也要尊重老一代科学家,虚心学习他的长处,主动取得他们的支持和帮助。 只有这样,才能各自发挥所长,共同攻关,携手前进,为迅速发展科学事业做出更大的 贡献。 ------------------ http://www.baidu.com/s?cl=3&wd=%D6%A4%C3%F75%B4%CE%D2%D4%C9%CF%B6%E0%CF%EE%CA%BD%B2%BB%B4%E6%D4%DA%C7%F3%B8%F9%B9%AB%CA%BD
北营2023-05-20 08:56:252

一般一元五次方程有求根公式吗?

从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响
黑桃花2023-05-20 08:56:251

急求四次方程求根公式(要完整的过程)还有五次方程无求根公式的证明过程

方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方,方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2-e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+y)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 五次方程无求根公式的证明过程 很复杂 一般人看不懂 如下:从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响
无尘剑 2023-05-20 08:56:251

为什么五次以上的方程没有求根公式?

笨,有了计算机还用你去算吗?你是学数学的吗?学数学的也不会去算的哦~~
无尘剑 2023-05-20 08:56:254

关于证明5次以上多项式不存在求根公式的证明!!

伽罗瓦仔细研究了前人的理论,特别是拉格朗日、鲁菲尼、高斯、阿贝尔等人的著作,开始研究多项式方程的可解性理论,他并不急于寻求解高次方程的方法,而是将重心放在判定已知的方程是否有根式解。如果有,也不去追究该方程的根究竟是怎样的,只需证明有根式解存在即可。峰 1.伽罗瓦群论的创建 伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。 2.伽罗瓦群论的实质 我们可以从伽罗瓦的工作过程中,逐步领悟伽罗瓦理论的精髓。首先分析一下他是怎样在不知道方程根的情况下,构造伽罗瓦群的。仍然是对方程(1),设它的根x1,x2,…,xn中无重根,他构造了类似于拉格朗日预解式的关于x1,x2,…,xn的一次对称多项式 △1=a1x1+a2x2+…+anxn,其中ai(i=1,2,3,…,n)不必是单位根,但它必是一些整数且使得n!个形如△1的一次式△1,△2,…,△n!各不相同,接着又构造了一个方程 =0 (2) 该方程的系数必定为有理数(可由对称多项式定理证明),并且能够分解为有理数域上的不可约多项式之积。设f(x)=是的任意一个给定的m次的不可约因子,则方程(1)的伽罗瓦群是指n!个△i中的这m个排列的全体。同时他又由韦达定理知伽罗瓦群也是一个对称群,它完全体现了此方程的根的对称性。但是计算一个已知方程的伽罗瓦群是有一定困难的,因此伽罗瓦的目的并不在于计算伽罗瓦群,而是证明:恒有这样的n次方程存在,其伽罗瓦群是方程根的可能的最大置换群s(n),s(n)是由n!个元素集合构成的,s(n)中的元素乘积实际上是指两个置换之积。现在把s(n)中的元素个数称为阶,s(n)的阶是n!。 伽罗瓦找出方程系数域中的伽罗瓦群g后,开始寻找它的最大子群h1,找到h1后用一套仅含有理运算的手续(即寻找预解式)来找到根的一个函数。的系数属于方程的系数域r,并且在h1的置换下不改变值,但在g的所有别的置换下改变值。再用上述方法,依次寻找h1的最大子群h2,h2的最大子群h3,…于是得到h1,h2,…,hm,直到hm里的元素恰好是恒等变换(即hm为单位群i)。在得到一系列子群与逐次的预解式的同时,系数域r也随之一步步扩大为r1,r2,…,rm,每个ri对应于群hi。当hm=i时,rm就是该方程的根域,其余的r1,r2,…,rm-1是中间域。一个方程可否根式求解与根域的性质密切相关。例如,四次方程 x4+px2+q=0 (3) p与q独立,系数域r添加字母或未知数p、q到有理数中而得到的域,先计算出它的伽罗瓦群g,g是s(4)的一个8阶子群,g={e,e1,e2,…e7},其中e=,e1=,e2=,e3=,e4=,e5=, e6=, e7=。 要把r扩充到r1,需在r中构造一个预解式,则预解式的根,添加到r中得到一个新域r1,于是可证明原方程(3)关于域r1的群是h1,h1={e,e1,e2,e3},并发现预解式的次数等于子群h1在母群g中的指数8÷4=2(即指母群的阶除以子群的阶)。第二步,构造第二个预解式,解出根 ,于是在域r1中添加得到域r2,同样找出方程(3)在r2中的群h2,h2={e,e1},此时,第二个预解式的次数也等于群h2在h1中的指数4÷2=2。第三步,构造第三个预解式,得它的根 ,把添加到r2中得扩域r3,此时方程(3)在r3中的群为h3,h3={e},即h3=i,则r3是方程(3)的根域,且该预解式的次数仍等于群h3在h2中的指数2÷1=2。在这个特殊的四次方程中,系数域到根域的扩域过程中每次添加的都是根式,则方程可用根式解。这种可解理论对于一般的高次方程也同样适用,只要满足系数域到根域的扩域过程中每次都是添加根式,那么一般的高次方程也能用根式求解。 现仍以四次方程(3)为例,伽罗瓦从中发现了这些预解式实质上是一个二次的二项方程,既然可解原理对高次方程也适用,那么对于能用根式求解的一般高次方程,它的预解式方程组必定存在,并且所有的预解式都应是一个素数次p的二项方程xp=a。由于高斯早已证明二项方程是可用根式求解的。因此反之,如果任一高次方程所有的逐次预解式都是二项方程,则能用根式求解原方程。于是,伽罗瓦引出了根式求解原理,并且还引入了群论中的一个重要概念“正规子群”。 他是这样给正规子群下定义的:设h是g的一个子群,如果对g中的每个g都有gh=hg,则称h为g的一个正规子群,其中gh表示先实行置换g,然后再应用h的任一元素,即用g的任意元素g乘h的所有置换而得到的一个新置换集合。定义引入后,伽罗瓦证明了当作为约化方程的群(如由g 约化到h1)的预解式是一个二项方程xp=a (p为素数)时,则h1是g的一个正规子群。反之,若h1是g的正规子群,且指数为素数p,则相应的预解式一定是p次二项方程。他还定义了极大正规子群:如果一个有限群有正规子群,则必有一个子群,其阶为这有限群中所有正规子群中的最大者,这个子群称为有限群的极大正规子群。一个极大正规子群又有它自己的极大正规子群,这种序列可以逐次继续下去。因而任何一个群都可生成一个极大正规子群序列。他还提出把一个群g生成的一个极大正规子群序列标记为g、h、i、j…, 则可以确定一系列的极大正规子群的合成因子[g/h],[h/i],[i/g]…。合成因子[g/h]=g的阶数/ h的阶数。对上面的四次方程(3),h1是g的极大正规子群, h2是h1的极大正规子群,h3又是h2的极大正规子群,即对方程(3)的群g 生成了一个极大正规子群的序列g、h1、h2、h3。 随着理论的不断深入,伽罗瓦发现对于一个给定的方程,寻找它在伽罗瓦群及其极大不变子群序列完全是群论的事。因此,他完全用群论的方法去解决方程的可解性问题。最后,伽罗瓦提出了群论的另一个重要概念“可解群”。他称具有下面条件的群为可解群:如果它所生成的全部极大正规合成因子都是质数。 根据伽罗瓦理论,如果伽罗瓦群生成的全部极大正规合成因子都是质数时,方程可用根式求解。若不全为质数,则不可用根式求解。由于引入了可解群,则可说成当且仅当一个方程系数域上的群是可解群时,该方程才可用根式求解。对上面的特殊四次方程(3),它的[g/h]=8/4=2,[h1/h2]=2/1=2,2为质数,所以方程(3)是可用根式解的。再看一般的n次方程,当n=3时,有两个二次预解式t2=a和t3=b,合成序列指数为2与3,它们是质数,因此一般三次方程可根式解。同理对n=4,有四个二次预解式,合成序列指数为2,3,2,2,于是一般四次方程也可根式求解。一般n次方程的伽罗瓦群是s(n),s(n)的极大正规子群是a(n) (实际a(n)是由s(n)中的偶置换构成的一个子群。如果一个置换可表为偶数个这类置换之积,则叫偶置换。),a(n)的元素个数为s(n)中的一半,且a(n)的极大正规子群是单位群i,因此[s(n)/a(n)]=n!/(n!/2)=2,[a(n)/i]=(n!/2)/1=n!/2, 2是质数,但当n ≥5时,n!/2不是质数,所以一般的高于四次的方程是不能用根式求解的。至此,伽罗瓦完全解决了方程的可解性问题。 顺带提一下,阿贝尔是从交换群入手考虑问题的,他的出发点与伽罗瓦不同,但他们的结果都是相同的,都为了证其为可解群,并且伽罗瓦还把阿贝尔方程进行了推广,构造了一种现在称之为伽罗瓦方程的方程,伽罗瓦方程的每个根都是其中两个根的带有系数域中系数的有理函数。
NerveM 2023-05-20 08:56:241

丢番图对一元二次方程的求根公式有怎样研究和贡献

家居物品摆放合理、方便取用这里主要说跟小孩相关的:玩具、衣物、书的摆放。我自己不喜欢乱,而且听说分类是个很重要的能力,所以小刘的玩具一直是分类收纳的。经过很多次收纳方式迭代,我从中收获了一些实实在在的好处。1、小刘的乐高很多,全部集中放在一个大抽屉里,每次小刘玩乐高,就是胡乱拿几个出来,随便拼一拼,也搭不出个样子。直到有一天,我受不了乱糟糟一堆,在抽屉里放上定制的亚克力隔板,将乐高按照形状进行了分类。分好类的第二天,小刘就用方块砖搭出了一个小飞机。我猜想:孩子还小时,大脑处理不了那么多信息,所以当一大堆形状各异的乐高放在一起时,他就懵了,无从下手。分好类,一格里只有一种(比如都是方块砖),小脑袋就更好构思了。再长大一些,分类也是很有好处的。且不谈分类能带来秩序感,也不讲分类本身就是数学启蒙,只说:分好类,小孩自己找东西方便,就不会总是:“妈妈,我的零件找不到了,你来帮我一下。”,就这一点,我认为花在规划收纳上的精力就值了。2、小孩总是很容易被光电类的玩具吸引,但这类玩具本身没什么营养,我还是希望他能多玩玩积木、拼拼图、读读书。但硬跟孩子犟也不好,这时收纳就能帮忙:把最希望他玩的玩具放在他最容易拿到的地方,不喜欢的玩具放远一点。很多时候,小孩选择玩具是无意识的,看到哪个就是哪个,玩一会又去拖另一个。所以,别放太多玩具在外面,不然:太乱影响注意力;增加收玩具难度,导致收玩具规则执行受阻。一段时间换一拨玩具,保持新鲜感,还能通过更换玩具类型促进不同能力发展。现在小刘的玩耍区设在书架帮边,书架下两层放着我希望他看的书,当他坐在地毯上没事干时,一转头,刚好就看到书,一伸手,刚好拿到我选的书。离玩耍区最近的,除了书架,就是乐高收纳盒,其他玩具要特意从地毯上站起来穿上鞋走过去才能拿到。当然,这是因为小刘本来就爱搭乐高,对于孩子很不喜欢的玩具,估计很近也不会拿吧。3、良好的收纳助力自理能力的发展。说说穿衣服的例子。小刘学会穿衣服后,我就希望他能“起床-选衣服-穿衣服”,一条龙自理,别老喊我。一开始他的衣服在衣柜里,柜子把手高他够不着,所以我买了抽屉给他用。 一个抽屉放所有的上衣,一个抽屉放所有的裤子。但有时他会搭配出短袖?棉裤的组合,不让他穿还不干。后来就进行了整理:只放当季的衣服;任意上衣和裤子都能基本搭上,以免穿的太难看(偶尔也会出现黄衣配黄裤的组合,随他去。);衣物只放一层,以免拿乱。这之后,所有跟衣服相关的事就交给他自己了,不再为这些劳神。 再到后来,我又简化了他的操作步骤:出门的上衣和裤子放在一个抽屉里,睡衣和内衣放在另一个抽屉。每个抽屉里,前排是上衣,后排是裤子。无论是早上出门,还是晚上洗澡后,都只需打开一次抽屉,前后排各拿一件,就完成了。 尽量不给他生活自理带来麻烦,也不给家长添麻烦。除了穿衣服,还有很多例子:设置一个矮矮的淋浴头支架,这样调好水温孩子就能自己洗澡;马桶旁边挂上小坐便垫,用马桶脚凳,方便孩子自助大小便,大人也不用另外收拾了;电饭煲放在孩子够的着的地方,方便自己盛饭。等等。
九万里风9 2023-05-19 20:16:353

复数根的求根公式

复数方程求根公式:x^2+x+4=0。形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。一个数的ni次方为:xni = cos(ln(xn)) + i sin(ln(xn))。一个数的ni次方根为:x1/ni= cos(ln(x1/n)) - i sin(ln((x1/n))。以i为底的对数为:log_i(x) = 2 ln(x)/ iπ。i的余弦是一个实数:cos(i) = cosh(1) = (e + 1/e)/2 = (e² + 1) /2e = 1.54308064。i的正弦是虚数:sin(i) = sinh(1) i =[(e - 1/e)/ 2]i = 1.17520119 i。i,e,π,0和1的奇妙关系:eiπ+1=0。ii=e-π/2。
瑞瑞爱吃桃2023-05-14 07:05:161

如何用一元二次方程求根公式求根?

先将原方程等号右端的自由项看成 f(x)=x^k · Pm(x) · e^λx 方程①1、对应题主的情况一,Qm(x)=b0原方程 y"+y"-2y=2e^x原方程对应的齐次特征方程 r^2+r-2=0,齐次特征根 r1=1 r2=-2然后看到原方程等号右端为 2e^x,将 2e^x 与 x^k·Pm(x)·e^λx 比较,很明显可以看出λ=1λ=1=r1,而λ≠r2,可以看到λ为单特征根因为只与其中的一个r1相等所以k=1,因为单特征根所以k取1。还记得回答顶部的方程①吗?方程①变成了 f(x)=x^1 · Pm(x) · e^1x =x · e^x · Pm(x)发现m还不知道,再将 x·e^x·Pm(x) 与 2e^x 比较,很明显可以看出Pm(x)=2,所以设Qm(x)=b0,常数对应常数嘛因为 f(x)=x·e^x·Pm(x) 中的x是根据k取得,跟Pm(x)无关e^x是根据λ取得,跟Pm(x)也无关。所以 Pm(x) 只可能与 2e^x 的常数2有关。既然Pm(x)只与常数有关,那就设Qm(x)为一个常数b0所以 y*=x^k · Pm(x) · e^λx最后设为 y*=b0 · x · e^x2、对应题主的情况二,Qm(x)=b0x+b1同理原方程 y"-3y"+2y=x·e^2xr1=1,r2=2比较e^2x与e^λx,所以λ=2λ=2=r2,所以λ为单特征根,所以k=1此时原方程等号右端还有一个 x ,就是留下来对比Pm(x)的所以 Qm(x) 设为 b0x+b1 形式所以最后y*=x^k · Qm(x) · e^λx = x · (b0x+b1) · e^2x即y*= x · (b0x+b1) · e^2x3、对应题主的情况三,Qm(x)=b0x^2+b1x+b2原方程 2y"+5y"=5x^2-2x-1r1=0r2=-5/2对比λ=0=r1,所以k取1,而Pm(x)要去对应5x^2-2x-1,所以Qm(x)设为b0x^2+b1x+b2所以最后y*=x^k · Qm(x) · e^0 = x · (b0x^2+b1x+b2) = b0x^3+b1x^2+b2x即y* = b0x^3+b1x^2+b2x
苏萦2023-05-13 08:33:381

一元二次方程求根公式是什么?

△小于0,求根公式没有变化,只是根号里面是个负数,开方出来就是虚数。一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。用配方法解一元二次方程的步骤:①把原方程化为一般形式。②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。③方程两边同时加上一次项系数一半的平方。④把左边配成一个完全平方式,右边化为一个常数。⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。
gitcloud2023-05-13 08:33:381

求根公式是什么?

是由方程系数直接把根表示出来的数学计算公式。标准式ax²+bx+c=0(a≠0)求根公式x=[-b±√(b²-4ac)]/2a相关公式至于一元四次方程ax^4 +bx^3 +cx^2 +dx+e=0求根公式由卡当的学生弗拉利找到了。关于三次、四次方程的求根公式,因为要涉及复数概念,这里不介绍了。一元三次、四次方程求根公式找到后,人们在努力寻找一元五次方程求根公式,三百年过去了,但没有人成功,这些经过尝试而没有得到结果的人当中,不乏有大数学家。后来年轻的挪威数学家阿贝尔于1824年所证实, n次方程(n≥5)没有公式解。
北有云溪2023-05-13 08:33:371

二元一次方程的求根公式,及其推导过程?

二元一次方程为:ax^2+bx+c=0,其中a不为0;求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a 推导过程如下:对ax^2+bx+c=0进行配方,得到(x+b/2a)^2—(b^2-4ac)/4a^2=0移项开方就得到了求根公式
Ntou1232023-05-13 08:33:371

二元一次方程△的公式与求根公式

二元一次方程的△公式是△=b^2-4acx1=(-b+(b^2-4ac)^1/2)/2a,x2=(-b-(b^2-4ac)^1/2)/2a。含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式。
北营2023-05-13 08:33:371

一元二次方程求根公式

>>>ax2 + bx + c = 0(2是指2次方)呵呵,难为一楼了,不过好像错了啊?是b的平方减4ac吧?那好像是求得虚根.楼主这么懒啊?求x不就行了.三四年没用了不过道还记得,拿笔我背了:x=2a分之-b加减根号下b的平方减4ac
Ntou1232023-05-13 08:33:372

为什么五次以上的方程没有求根公式

整式方程未知数次数最高项次数高于2次的方程,称为高次方程.高次方程解法思想是通过适当的方法,把高次方程化为次数较低的方程求解.对于5次及以上的一元高次方程没有通用的代数解法和求根公式(即通过各项系数经过有限次四则运算和乘方和开方运算无法求解)
hi投2023-05-13 08:33:371

三次方程求根公式

一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
大鱼炖火锅2023-05-13 08:33:3711

一元二次方程根的求根公式

一元二次方程ax²+bx+c=0两个根=(-b±√b²-4ac)/2a
CarieVinne 2023-05-13 08:33:373

一元二次方程求根公式是什么?

ax²+bx+c=0的两根x=[-b±√(b²-4ac)]/2a望采纳
墨然殇2023-05-13 08:33:377

一元二次方程求根公式是什么?

一元二次方程求根公式:1、当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a2、当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax+bx+c=0(a≠0)其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。一元二次方程求解注意:一元二次方程的一般形式:ax2+bx+c=0(a≠0),特征:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
小菜G的建站之路2023-05-13 08:33:371

一元三次方程的求根公式

     ^
北境漫步2023-05-13 08:33:375

二元一次方程的求根公式,忘了,请告诉我谢谢

x=(±b+√(b²-4ac))/2a
NerveM 2023-05-13 08:33:375

求根公式是什么?

求根公式一般指的是,一元二次(或多次)的方程 程序化得出的的求根计算公式。扩展资料公式法解一元二次方程的一种方法,也指套用公式计算某事物。另外还有配方法、十字相乘法、直接开平方法与分解因式法。公式表达了用配方法解一般的一元二次方程的结果。根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。步骤1、化方程为一般式:2、确定判别式,计算Δ(希腊字母,音译为戴尔塔)。 3、若Δ>0,该方程在实数域内有两个不相等的实数根:;若Δ=0,该方程在实数域内有两个相等的实数根: 若Δ<0,该方程在实数域内无解,但在虚数域内有两个共轭复根,为 参考资料:公式法.百度百科
小白2023-05-13 08:33:371

二次方程求根公式 快来了解下吧

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
小白2023-05-13 08:33:371

二元一次方程的求根公式是什么?

a1x+b1y=c1a2x+b2y=c2当a1b2-a2b1≠0,b1a2-b2a1≠0时x=(c1b2-c2b1)/(a1b2-a2b1)y=(c1a2-c2a1)/(b1a2-b2a1)当a1b2-a2b1=0,c1b2-c2b1≠0时,无解当a1b2-a2b1=0,c1b2-c2b1=0时,解为一切实数
NerveM 2023-05-13 08:33:373

求根公式是什么?

求根公式为:ax²+bx+c=0,a≠0x1=[-b-√(b²-4ac)]/(2a)x2=[-b+√(b²-4ac)]/(2a)韦达定理为:x1+x2=-b/ax1*x2=c/a发展历史:法国数学家弗朗索瓦·韦达在著作《论方程的识别与订正》中改进了三、四次方程的解法,还对n=2、3的情形,建立了方程根与系数之间的关系,现代称之为韦达定理。 韦达最早发现代数方程的根与系数之间有这种关系,因此,人们把这个关系称为韦达定理。韦达在16世纪就得出这个定理,证明这个定理要依靠代数基本定理,而代数基本定理却是在1799年才由高斯作出第一个实质性的论性。
u投在线2023-05-13 08:33:361

方程求根公式

方程的求根公式x=[-b±√(b^2-4ac)]/2a。a为二次项系数,b为一次项系数,c是常数。根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫作公式法。方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。用求根公式法解一元二次方程的一般步骤为:1、把方程化成一般形式ax^2+bx+c=0,确定a,b,c的值(要注意符号)。2、求出判别式Δ=b^2-4ac的值,来判断根的情况。3、当Δ=b^2-4ac≥0(此处△读“德尔塔”)时,x=[-b±(b^2-4ac)^(1/2)]/2a;当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]}/2a。
wpBeta2023-05-13 08:33:361

求根公式推导过程

一元二次方程求根公式详细的推导过程:一元二次方程的根公式是由配方法推导来的,那么由ax^2+bx+c(一元二次方程的基本形式)推导根公式的详细过程如下。1、ax^2+bx+c=0(a≠0,^2表示平方),等式两边都除以a,得x^2+bx/a+c/a=0。2、移项得x^2+bx/a=-c/a,方程两边都加上一次项系数b/a的一半的平方,即方程两边都加上b^2/4a^2。3、配方得 x^2+bx/a+b^2/4a^2=b^2/4a^2-c/a,即 (x+b/2a)^2=(b^2-4ac)/4a。4、开根后得x+b/2a=±[√(b^2-4ac)]/2a (√表示根号),最终可得x=[-b±√(b^2-4ac)]/2a。满足条件:(1)是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。(2)只含有一个未知数。(3)未知数项的最高次数是2。
北营2023-05-13 08:33:361

用求根公式法解方程

先计算b^2-4ac是否大于等于0,1.如果b^2-4ac>0那么就有不相等的两个实根2.如果b^2-4ac=0那么就有两个相等的实根3.如果b^2-4ac=0那么就无解前两种可以用公式法x=[-b±根号下(b^2-4ac)]/(2a)参考资料:书配方法:用配方法解方程ax2+bx+c=0(a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+()2=-+()2方程左边成为一个完全平方式:(x+)2=当b2-4ac≥0时,x+=±∴x=(这就是求根公式)例2.用配方法解方程3x2-4x-2=0解:将常数项移到方程右边3x2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+()2=+()2配方:(x-)2=以上回答你满意么?
苏州马小云2023-05-13 08:33:361

二元一次方程求根公式

x=[-b±根号﹙b²-4ac﹚]/﹙2a﹚△=b²-4ac≥0用求根公式解一元二次方程的方法叫做求根公式法。用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式,确定a,b,c的值(注意符号);②求出判别式的值,判断根的情况;③在的前提下,把a、b、c的值代入公式扩展资料:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。每个二元一次方程都有无数对方程的解,由二元一次方程组成的二元一次方程组才可能有唯一解,二元一次方程组常用加减消元法或代入消元法转换为一元一次方程进行求解。将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法。用代入消元法解二元一次方程组的一般步骤:(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;(5)把这个方程组的解写成  的形式.
西柚不是西游2023-05-13 08:33:361

二元一次方程求根公式是什么?

二元一次方程的求根公式为:二元一次方程的求根的具体方法:1、代入消元法:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法。2、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。3、顺序消元法:“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。扩展资料:方程的解:1、使二元一次方程两边的值相等的两个未知数的一组值,叫做二元一次方程的解。2、二元一次方程组的两个公共解,叫做一组二元一次方程组的解。3、二元一次方程有无数个解,除非题目中有特殊条件。4、但二元一次方程组只有唯一的一组解,即x,y的值只有一个。也有特殊的,例如无数个解。
kikcik2023-05-13 08:33:361

求根公式是什么

求根公式:x=[-b±√(b²-4ac)]/2a公式描述:公式为一元二次方程ax2+bx+c=0(a≠0)的求根公式。一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式:根号下b²-4ac应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。
Ntou1232023-05-13 08:33:362

如何用一元二次方程的求根公式求解根?

一元二次方程求根公式: 当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a 当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)。非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。性质一n次单位根的模为1,即|εk|=1性质二两个n次单位根εj与εk 的乘积还是一个n次单位根,且εjεk =εj+k推论1:εj-1=ε-j推论2:εkm=εmk推论3:若k除以n的余数为r,则εk=εr注:它说明εk等价于r=0
九万里风9 2023-05-13 08:33:361

一元一次方程的求根公式是什么??

公式法即记住公式,y=ax²+bx+c顶点坐标为( -b/(2a),(4ac-b²)/(4a))如:求y=-3x²-x+1的顶点, 即 a=-3,b=-1,c=1-b/(2a)=1/(-6)=-1/6(4ac-b²)/(4a)=(-12-1)/(-12)=13/12所以顶点(-1/6,13/12)过原点的抛物线y=ax²+bx的顶点坐标是(-b/2a,-b²/4a),即c=0时.
LuckySXyd2023-05-13 08:33:361

一元二次的求根公式 详细一点啊

一元二次方程 ax^2+bx+c=0(a,b,c是常数)求根公式:当Δ=b^2-4ac≥0时有实数根,x=[-b±(b^2-4ac)^(1/2)]/2a当Δ=b^2-4ac<0时有虚数根,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)
此后故乡只2023-05-13 08:33:363

一元二次方程的求根公式有哪些?

设一个二元一次方程为:ax^2+bx+c=0,其中a不为0,因为要满足此方程为二元一次方程所以a不能等于0.求根公式为:x1=(-b+(b^2-4ac)^1/2)/2a ,x2=(-b-(b^2-4ac)^1/2)/2a 扩展资料韦达定理说明了一元二次方程中根和系数之间的关系。法国数学家弗朗索瓦·韦达于1615年在著作《论方程的识别与订正》中建立了方程根与系数的关系,提出了这条定理。 由于韦达最早发现代数方程的根与系数之间有这种关系,人们把这个关系称为韦达定理。 参考资料百度百科-韦达定理
Ntou1232023-05-13 08:33:361

如何求解一元二次方程的求根公式?

对 进行计算,求出方程的根。求解步骤:①把方程化成一般形式  ,确定a,b,c的值(注意符号);②求出判别式  的值,判断根的情况;③在  (注:此处△读“德尔塔”)的前提下,把a、b、c的值代入公式进行计算,求出方程的根。一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。一元二次方程中的判别式: 应该理解为“如果存在的话,两个自乘后为的数当中任何一个”。在某些数域中,有些数值没有平方根。
大鱼炖火锅2023-05-13 08:33:361

一元二次方程的求根公式是什么?

x=(-b±✔b^2-4ac)/2a
铁血嘟嘟2023-05-13 08:33:3611

数学求根公式是什么

数学求根公式是:x=[-b±√(b^2-4ac)]/(2a)。所谓方程的根是方程左右两边相等的未知数的取值。一元二次方程根和解不同,根可以相同,而解一定是不同的。 公式就是用数学符号表示各个量之间的一定关系(如定律或定理)的式子。具有普遍性,适合于同类关系的所有问题。在数理逻辑中,公式是表达命题的形式语法对象,除了这个命题可能依赖于这个公式的自由变量的值之外。
可桃可挑2023-05-13 08:33:361

一元二次方程的求根公式是什么?

ax^2十bX+c=0(a≠0)的根是,当b^2一4ac≥0时x=(一b±√(b^2一4ac))/2a
此后故乡只2023-05-13 08:33:362

一元二次方程求根公式是什么

一元二次方程求根公式: 当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a 当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a 只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。 它的标准形式为:ax²+bx+c=0(a≠0) 一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。 公式法可以解任何一元二次方程。 因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。 配方法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号两边同时加上一次项系数绝对值一半的平方,左边配成完全平方式,再开方就得解了。 除此之外,还有图像解法和计算机法。 图像解法利用二次函数和根域问题粗略求解。
gitcloud2023-05-13 08:33:361

一元二次方程求根公式是什么?

一元二次方程求根公式:1、当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a2、当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax+bx+c=0(a≠0)其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。一元二次方程求解注意:一元二次方程的一般形式:ax2+bx+c=0(a≠0),特征:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
拌三丝2023-05-13 08:33:361

一元一次方程求根公式

ax+b=0 (a≠0)x=-b/a
北有云溪2023-05-13 08:33:364

二次方程的求根公式是什么?

一元二次方程的求根公式为:x=[-b±√(b²-4ac)]/2a一元二次方程的标准形式为:ax²+bx+c=0(a≠0)只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。成立条件一元二次方程成立必须同时满足三个条件:①是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。②只含有一个未知数。③未知数项的最高次数是2。
余辉2023-05-13 08:33:361

四次方程的求根公式

https://gss0.baidu.com/70cFfyinKgQFm2e88IuM_a/baike/pic/item/30ecd5ef17f7b520adafd532.jpg
阿啵呲嘚2023-05-13 08:33:363

数学中方程的求根公式有哪些

-b±根号下(b²-4ac)x=———————————— 2a
北境漫步2023-05-13 08:33:361

数学求根公式

数学求根公式是x=-b±√(b^2-4ac)/(2a),一元二次方程的求根公式是数学代数学基本公式,它的用途是解一元二次方程,公式法是解一元二次方程的一种方法。根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。对于多元方程,方程的解不能说成是方程的根。
再也不做站长了2023-05-13 08:33:361

谁能给我三次方程求根公式

一元三次方程求根公式的解法-------摘自高中数学网站一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a(10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a)y2=-(b-(b^2-4ac)^(1/2))/(2a)可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)(13)将A,B代入x=A^(1/3)+B^(1/3)得(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了
FinCloud2023-05-13 08:33:361

二元一次方程的求根公式是什么?

二元一次方程不叫根叫解,没有求根公式。
FinCloud2023-05-13 08:33:362

二次方程的解法 求根公式

形如(X-m)²=n(n≥0)一元二次方程可以直接开平方法求得解为X=m±√n。等号左边是一个数的平方的形式而等号右边是一个常数。降次的实质是由一个一元二次方程转化为两个一元一次方程。方法是根据平方根的意义开平方。只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式aX²+bX+c=0(a≠0),其中aX²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。
FinCloud2023-05-13 08:33:351

一元二次方程求根公式

Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a
gitcloud2023-05-13 08:33:354

三元一次方程的求根公式是什么?

你要的是一元三次的求根公式吧?一元三次方程求根公式的解法一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a(10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a)y2=-(b-(b^2-4ac)^(1/2))/(2a)可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)(13)将A,B代入x=A^(1/3)+B^(1/3)得(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了 若满意望采纳
wpBeta2023-05-13 08:33:351

求一元二次方程求根公式解法!

一元二次方程的解法有如下几种: 第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式 例1:X^2-4X+3=0 本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。 例2:X^2-8X+16=0 本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同) 例3:X^2-9=0 本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3。 例4:X^2-5X=0 本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5 第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程: X^2+2X-3=0 第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。 第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。 还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11。 最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了。 定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a 举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确)。 因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 �6�12 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般 形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式 法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程 是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
阿啵呲嘚2023-05-13 08:33:351

复数根的求根公式

复数根的求根公式如下:一元二次方程的复数求根公式是x=(-b±√(b^2-4ac))/2a。一元二次方程的形式:ax²+bx+c=0(a≠0)。折叠变形式:ax²+bx=0(a、b是实数,a≠0); ax²+c=0(a、c是实数,a≠0); ax²=0(a是实数,a≠0)。复数根的求根公式为ax^2+bx+c=0,复数根即虚根,顾名思义就是解方程后得到的是虚数,虚数是为了满足负数的平方根而产生的,规定根号-1为i。而虚根一般只在二次或更高次的方程中出现,如果一个实系数整式方程有虚根,则其共轭复数也是所给方程的根(共轭根),实现系数二次方程具有虚根的必要充分条件是b^2-4ac<0。一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解。一元二次方程的解也称为一元二次方程的根(只含有一个未知数的方程的解也叫做这个方程的根)。一元二次方程成立的条件:1、等号两边都是整式。方程中如果有分母,且未知数在分母上,这个方程不是一元二次方程;方程中如果有根号,且未知数在根号内,也不是一元二次方程。2、只含有一个未知数。3、未知数项的最高次数是2。
hi投2023-05-13 08:33:351

一元二次方程求根公式

x=[-b±✔(b²-4ac)]/(2a)
凡尘2023-05-13 08:33:355

求根公式是什么

△=b*b-4ac
Jm-R2023-05-13 08:33:353

方程的求根公式

方程的求根公式x=[-b±√(b^2-4ac)]/2a。a为二次项系数,b为一次项系数,c是常数。根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫作公式法。方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。用求根公式法解一元二次方程的一般步骤为:1、把方程化成一般形式ax^2+bx+c=0,确定a,b,c的值(要注意符号)。2、求出判别式Δ=b^2-4ac的值,来判断根的情况。3、当Δ=b^2-4ac≥0(此处△读“德尔塔”)时,x=[-b±(b^2-4ac)^(1/2)]/2a;当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]}/2a。
西柚不是西游2023-05-13 08:33:351

一元二次方程的求根公式是什么?

aX^2十bx+c=0(a≠0)的求根公式为当b^2一4ac≥0时X=(一b士√(b^2一4ac))/2a
余辉2023-05-13 08:33:352

数学求根公式是什么?

根本就不会用 有会用的教一下 谢谢
小白2023-05-13 08:33:359

二元一次方程求根公式?

二元一次方程两种解法,一种是代入消元法;一种是加减消元法代入消元法是将①代入②,或将②代入①加减消元法是前面的系数相同的话是①减②;第二个系数相同并且符号为+-相反符号是①加②,如果前面的系数和第二个系数都和第二组相同那么①加②,①减②都可以。(如有真的不会做,我只能说你六年级二元一次方程没学好了,三元别说了,二元都不会不可能会三元)
苏萦2023-05-13 08:33:3513
 1 2  下一页  尾页