一元二次方程求根公式?
顶点公式-b/2a九万里风9 2023-07-23 17:07:314
一元二次方程求根公式详细的推导过程
用公式法把字母带进去结果就出来了meira2023-07-17 08:36:529
赵爽一元二次方程求根公式
赵爽(3世纪初),我国三国时期著名的数学家。他的主要贡献是深入研究了《周脾算经》,为该书写了序言,并作了详细注释。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定的影响。赵爽在对《周脾算经》做注释时,曾写了一篇很有价值的“勾股圆方图”的注文,他在讨论方程ax_+bx+c=0时,用到了求根公式,与现在的求根公式基本上是一致的。赵爽的成果比印度数学家婆罗门芨多在公元7世纪提出的二次方程求根公式早许多年。在欧洲,一千多年之后才由法国数学家获得类似的结果。黑桃花2023-05-20 22:09:561
如何用一元二次方程求根公式求根?
先将原方程等号右端的自由项看成 f(x)=x^k · Pm(x) · e^λx 方程①1、对应题主的情况一,Qm(x)=b0原方程 y"+y"-2y=2e^x原方程对应的齐次特征方程 r^2+r-2=0,齐次特征根 r1=1 r2=-2然后看到原方程等号右端为 2e^x,将 2e^x 与 x^k·Pm(x)·e^λx 比较,很明显可以看出λ=1λ=1=r1,而λ≠r2,可以看到λ为单特征根因为只与其中的一个r1相等所以k=1,因为单特征根所以k取1。还记得回答顶部的方程①吗?方程①变成了 f(x)=x^1 · Pm(x) · e^1x =x · e^x · Pm(x)发现m还不知道,再将 x·e^x·Pm(x) 与 2e^x 比较,很明显可以看出Pm(x)=2,所以设Qm(x)=b0,常数对应常数嘛因为 f(x)=x·e^x·Pm(x) 中的x是根据k取得,跟Pm(x)无关e^x是根据λ取得,跟Pm(x)也无关。所以 Pm(x) 只可能与 2e^x 的常数2有关。既然Pm(x)只与常数有关,那就设Qm(x)为一个常数b0所以 y*=x^k · Pm(x) · e^λx最后设为 y*=b0 · x · e^x2、对应题主的情况二,Qm(x)=b0x+b1同理原方程 y"-3y"+2y=x·e^2xr1=1,r2=2比较e^2x与e^λx,所以λ=2λ=2=r2,所以λ为单特征根,所以k=1此时原方程等号右端还有一个 x ,就是留下来对比Pm(x)的所以 Qm(x) 设为 b0x+b1 形式所以最后y*=x^k · Qm(x) · e^λx = x · (b0x+b1) · e^2x即y*= x · (b0x+b1) · e^2x3、对应题主的情况三,Qm(x)=b0x^2+b1x+b2原方程 2y"+5y"=5x^2-2x-1r1=0r2=-5/2对比λ=0=r1,所以k取1,而Pm(x)要去对应5x^2-2x-1,所以Qm(x)设为b0x^2+b1x+b2所以最后y*=x^k · Qm(x) · e^0 = x · (b0x^2+b1x+b2) = b0x^3+b1x^2+b2x即y* = b0x^3+b1x^2+b2x苏萦2023-05-13 08:33:381
一元二次方程求根公式是什么?
△小于0,求根公式没有变化,只是根号里面是个负数,开方出来就是虚数。一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。用配方法解一元二次方程的步骤:①把原方程化为一般形式。②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。③方程两边同时加上一次项系数一半的平方。④把左边配成一个完全平方式,右边化为一个常数。⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。gitcloud2023-05-13 08:33:381
一元二次方程求根公式
>>>ax2 + bx + c = 0(2是指2次方)呵呵,难为一楼了,不过好像错了啊?是b的平方减4ac吧?那好像是求得虚根.楼主这么懒啊?求x不就行了.三四年没用了不过道还记得,拿笔我背了:x=2a分之-b加减根号下b的平方减4acNtou1232023-05-13 08:33:372
一元二次方程求根公式是什么?
ax²+bx+c=0的两根x=[-b±√(b²-4ac)]/2a望采纳墨然殇2023-05-13 08:33:377
一元二次方程求根公式是什么?
一元二次方程求根公式:1、当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a2、当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax+bx+c=0(a≠0)其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。一元二次方程求解注意:一元二次方程的一般形式:ax2+bx+c=0(a≠0),特征:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。小菜G的建站之路2023-05-13 08:33:371
一元二次方程求根公式是什么
一元二次方程求根公式: 当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a 当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a 只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。 它的标准形式为:ax²+bx+c=0(a≠0) 一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。 公式法可以解任何一元二次方程。 因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。 配方法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号两边同时加上一次项系数绝对值一半的平方,左边配成完全平方式,再开方就得解了。 除此之外,还有图像解法和计算机法。 图像解法利用二次函数和根域问题粗略求解。gitcloud2023-05-13 08:33:361
一元二次方程求根公式是什么?
一元二次方程求根公式:1、当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a2、当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax+bx+c=0(a≠0)其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。一元二次方程求解注意:一元二次方程的一般形式:ax2+bx+c=0(a≠0),特征:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。拌三丝2023-05-13 08:33:361
一元二次方程求根公式
Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2agitcloud2023-05-13 08:33:354
求一元二次方程求根公式解法!
一元二次方程的解法有如下几种: 第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式 例1:X^2-4X+3=0 本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。 例2:X^2-8X+16=0 本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同) 例3:X^2-9=0 本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3。 例4:X^2-5X=0 本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5 第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程: X^2+2X-3=0 第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。 第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。 还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11。 最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了。 定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a 举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确)。 因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 �6�12 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般 形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式 法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程 是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。阿啵呲嘚2023-05-13 08:33:351
一元二次方程求根公式
x=[-b±✔(b²-4ac)]/(2a)凡尘2023-05-13 08:33:355
一元二次方程求根公式?
vfdgxnbcf陶小凡2023-05-13 08:33:3510
一元二次方程求根公式是什么?
一元二次方程求根公式: 当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a 当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)。非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。性质一n次单位根的模为1,即|εk|=1性质二两个n次单位根εj与εk 的乘积还是一个n次单位根,且εjεk =εj+k推论1:εj-1=ε-j推论2:εkm=εmk推论3:若k除以n的余数为r,则εk=εr注:它说明εk等价于r=0Chen2023-05-13 08:33:341
一元二次方程求根公式是什么?
一元二次方程求根公式:当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax²+bx+c=0(a≠0)一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。公式法可以解任何一元二次方程。因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。配方法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号两边同时加上一次项系数绝对值一半的平方,左边配成完全平方式,再开方就得解了。除此之外,还有图像解法和计算机法。图像解法利用二次函数和根域问题粗略求解。CarieVinne 2023-05-13 08:33:341
解一元二次方程求根公式法
一元二次方程的一般形式为:ax^2(2为次数,即X的平方)+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程。解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。扩展资料解方程:(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。示例:(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解: 9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=善士六合2023-05-13 08:33:341