一元三次方程求根公式
一元三次方程求根公式的解法 一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了hi投2023-08-10 10:22:523
一元二次方程求根公式?
顶点公式-b/2a九万里风9 2023-07-23 17:07:314
一元二次方程求根公式详细的推导过程
用公式法把字母带进去结果就出来了meira2023-07-17 08:36:529
赵爽一元二次方程求根公式
赵爽(3世纪初),我国三国时期著名的数学家。他的主要贡献是深入研究了《周脾算经》,为该书写了序言,并作了详细注释。赵爽的数学思想和方法对中国古代数学体系的形成和发展有一定的影响。赵爽在对《周脾算经》做注释时,曾写了一篇很有价值的“勾股圆方图”的注文,他在讨论方程ax_+bx+c=0时,用到了求根公式,与现在的求根公式基本上是一致的。赵爽的成果比印度数学家婆罗门芨多在公元7世纪提出的二次方程求根公式早许多年。在欧洲,一千多年之后才由法国数学家获得类似的结果。黑桃花2023-05-20 22:09:561
一元七次方程求根公式
伽罗瓦可解性定理。伽罗瓦工作的核心部分是可解性判别准则:当且仅当多项式方程的群是可解群(伽罗瓦群),这个方程可用代数的方法求解。无尘剑 2023-05-20 08:56:261
急求四次方程求根公式(要完整的过程)还有五次方程无求根公式的证明过程
方程两边同时除以最高次项的系数可得 x^4+bx^3+cx^2+dx+e=0 (1) 移项可得 x^4+bx^3=-cx^2-dx-e (2) 两边同时加上(1/2bx)^2 ,可将(2)式左边配成完全平方,方程成为 (x^2+1/2bx)^2=(1/4b^2-c)x^2-dx-e (3) 在(3)式两边同时加上(x^2+1/2bx)y+1/4y^2 可得 [(x^2+1/2bx)+1/2y]^2= (1/4b^2-c+y)x^2+(1/2by-d)x+1/4y^2-e (4) (4)式中的y是一个参数。当(4)式中的x为原方程的根时,不论y取什么值,(4)式都应成立。特别,如果所取的y值使(4)式右边关于x的二次三项式也能变成一个完全平方式,则对(4)对两边同时开方可以得到次数较低的方程。 为了使(4)式右边关于x的二次三项式也能变成一个完全平方式,只需使它的判别式变成0,即 (1/2by-d)^2-4(1/4b^2-c+y)(1/4y^2-e)=0 (5) 这是关于y的一元三次方程,可以通过塔塔利亚公式来求出y应取的实数值。 把由(5)式求出的y值代入(4)式后,(4)式的两边都成为完全平方,两边开方,可以得到两个关于x的一元二次方程。解这两个一元二次方程,就可以得出原方程的四个根。 费拉里发现的上述解法的创造性及巧妙之处在于:第一次配方得到(3)式后引进参数y,并再次配方把(3)式的左边配成含有参数y的完全平方,即得到(4)式,再利用(5)式使(4)的右边也成为完全平方,从而把一个一元四次方程的求解问题化成了一个一元三次方程及两个一元二次方程的求解问题。 五次方程无求根公式的证明过程 很复杂 一般人看不懂 如下:从方程的根式解法发展过程来看,早在古巴比伦数学和印度数学的记载中,他们就能够用根式求解一元二次方程ax2+bx+c=0,给出的解相当于+,,这是对系数函数求平方根。接着古希腊人和古东方人又解决了某些特殊的三次数字方程,但没有得到三次方程的一般解法。这个问题直到文艺复兴的极盛期(即16世纪初)才由意大利人解决。他们对一般的三次方程x3+ax2+bx+c=0,由卡丹公式解出根 x= + ,其中p = ba2,q = a3,显然它是由系数的函数开三次方所得。同一时期,意大利人费尔拉里又求解出一般四次方程x4+ax3+bx2+cx+d=0的根是由系数的函数开四次方所得。 用根式求解四次或四次以下方程的问题在16世纪已获得圆满解决,但是在以后的几个世纪里,探寻五次和五次以上方程的一般公式解法却一直没有得到结果。1770年前后,法国数学家拉格朗日转变代数的思维方法,提出方程根的排列与置换理论是解代数方程的关键所在,并利用拉格朗日预解式方法,即利用1的任意n次单位根 ( n =1)引进了预解式x1+ x2+ 2x3+…+ n-1xn,详细分析了二、三、四次方程的根式解法。他的工作有力地促进了代数方程论的进步。但是他的这种方法却不能对一般五次方程作根式解,于是他怀疑五次方程无根式解。并且他在寻求一般n次方程的代数解法时也遭失败,从而认识到一般的四次以上代数方程不可能有根式解。他的这种思维方法和研究根的置换方法给后人以启示。 1799年,鲁菲尼证明了五次以上方程的预解式不可能是四次以下的,从而转证五次以上方程是不可用根式求解的,但他的证明不完善。同年,德国数学家高斯开辟了一个新方法,在证明代数基本理论时,他不去计算一个根,而是证明它的存在。随后,他又着手探讨高次方程的具体解法。在1801年,他解决了分圆方程xp-1=0(p为质数)可用根式求解,这表明并非所有高次方程不能用根式求解。因此,可用根式求解的是所有高次方程还是部分高次方程的问题需进一步查明。 随后,挪威数学家阿贝尔开始解决这个问题。1824年到1826年,阿贝尔着手考察可用根式求解的方程的根具有什么性质,于是他修正了鲁菲尼证明中的缺陷,严格证明:如果一个方程可以根式求解,则出现在根的表达式中的每个根式都可表示成方程的根和某些单位根的有理数。并且利用这个定理又证明出了阿贝尔定理:一般高于四次的方程不可能代数地求解。接着他进一步思考哪些特殊的高次方程才可用根式解的问题。在高斯分圆方程可解性理论的基础上,他解决了任意次的一类特殊方程的可解性问题,发现这类特殊方程的特点是一个方程的全部根都是其中一个根(假设为x)的有理函数,并且任意两个根q1(x)与q2(x)满足q1q2(x)=q2q1(x),q1,q2为有理函数。现在称这种方程为阿贝尔方程。其实在对阿贝尔方程的研究中已经涉及到了群的一些思想和特殊结果,只是阿贝尔没能意识到,也没有明确地构造方程根的置换集合(因为若方程所有的根都用根x1来表示成有理函数qj(x1),j=1,2,3,…,n,当用另一个根xi代替x1时,其中1〈i≤n ,那么qj(xi)是以不同顺序排列的原方程的根,j=1,2,…,n。实际上应说根xi=q1(xi),q2(xi),…,qn(xi)是根x1,x2,…,xn的一个置换),而仅仅考虑可交换性q1q2(x)=q2q1(x)来证明方程只要满足这种性质,便可简化为低次的辅助方程,辅助方程可依次用根式求解。 阿贝尔解决了构造任意次数的代数可解的方程的问题,却没能解决判定已知方程是否可用根式求解的问题。法国数学家伽罗瓦正是处在这样的背景下,开始接手阿贝尔未竞的事业。伽罗瓦在证明不存在一个五次或高于五次的方程的一般根式解法时,与拉格朗日相同,也从方程根的置换入手。当他系统地研究了方程根的排列置换性质后,提出了一些确定的准则以判定一个已知方程的解是否能通过根式找到,然而这些方法恰好导致他去考虑一种称之为“群”的元素集合的抽象代数理论。在1831年的论文中,伽罗瓦首次提出了“群”这一术语,把具有封闭性的置换的集合称为群,首次定义了置换群的概念。他认为了解置换群是解决方程理论的关键,方程是一个其对称性可用群的性质描述的系统。他从此开始把方程论问题转化为群论的问题来解决,直接研究群论。他引入了不少有关群论的新概念,从而也产生了他自己的伽罗瓦群论,因此后人都称他为群论的创始人。 对有理系数的n次方程 x+axn-1+a2xn-2+…+an-1x+an=0 (1) 假设它的n个根x1,x2,…,xn的每一个变换叫做一个置换,n个根共有n!个可能的置换,它们的集合关于置换的乘法构成一个群,是根的置换群。方程的可解性可以在根的置换群的某些性质中有所反映,于是伽罗瓦把代数方程可解性问题转化为与相关的置换群及其子群性质的分析问题。现在把与方程联系起的置换群(它表现了方程的对称性质)称为伽罗瓦群,它是在某方程系数域中的群。一个方程的伽罗瓦群是对于每一个其函数值为有理数的关于根的多项式函数都满足这个要求的最大置换群,也可以说成对于任一个取有理数值的关于根的多项式函数,伽罗瓦群中的每个置换都使这函数的值不变。伽罗瓦创立群论是为了应用于方程论,但他并不局限于此,而是把群论进行了推广,作用于其他研究领域。可惜的是,伽罗瓦群论的理论毕竟太深奥,对十九世纪初的人们来说是很难理解的,连当时的数学大师都不能理解他的数学思想和他的工作的实质,以至他的论文得不到发表。更不幸的是伽罗瓦在二十一岁时便因一场愚蠢的决斗而早逝,我们不得不为这位天才感到惋惜。到十九世纪六十年代,他的理论才终于为人们所理解和接受。 伽罗瓦群理论被公认为十九世纪最杰出的数学成就之一。他给方程可解性问题提供了全面而透彻的解答,解决了困扰数学家们长达数百年之久的问题。伽罗瓦群论还给出了判断几何图形能否用直尺和圆规作图的一般判别法,圆满解决了三等分任意角或倍立方体的问题都是不可解的。最重要的是,群论开辟了全新的研究领域,以结构研究代替计算,把从偏重计算研究的思维方式转变为用结构观念研究的思维方式,并把数学运算归类,使群论迅速发展成为一门崭新的数学分支,对近世代数的形成和发展产生了巨大影响。同时这种理论对于物理学、化学的发展,甚至对于二十世纪结构主义哲学的产生和发展都发生了巨大的影响无尘剑 2023-05-20 08:56:251
如何用一元二次方程求根公式求根?
先将原方程等号右端的自由项看成 f(x)=x^k · Pm(x) · e^λx 方程①1、对应题主的情况一,Qm(x)=b0原方程 y"+y"-2y=2e^x原方程对应的齐次特征方程 r^2+r-2=0,齐次特征根 r1=1 r2=-2然后看到原方程等号右端为 2e^x,将 2e^x 与 x^k·Pm(x)·e^λx 比较,很明显可以看出λ=1λ=1=r1,而λ≠r2,可以看到λ为单特征根因为只与其中的一个r1相等所以k=1,因为单特征根所以k取1。还记得回答顶部的方程①吗?方程①变成了 f(x)=x^1 · Pm(x) · e^1x =x · e^x · Pm(x)发现m还不知道,再将 x·e^x·Pm(x) 与 2e^x 比较,很明显可以看出Pm(x)=2,所以设Qm(x)=b0,常数对应常数嘛因为 f(x)=x·e^x·Pm(x) 中的x是根据k取得,跟Pm(x)无关e^x是根据λ取得,跟Pm(x)也无关。所以 Pm(x) 只可能与 2e^x 的常数2有关。既然Pm(x)只与常数有关,那就设Qm(x)为一个常数b0所以 y*=x^k · Pm(x) · e^λx最后设为 y*=b0 · x · e^x2、对应题主的情况二,Qm(x)=b0x+b1同理原方程 y"-3y"+2y=x·e^2xr1=1,r2=2比较e^2x与e^λx,所以λ=2λ=2=r2,所以λ为单特征根,所以k=1此时原方程等号右端还有一个 x ,就是留下来对比Pm(x)的所以 Qm(x) 设为 b0x+b1 形式所以最后y*=x^k · Qm(x) · e^λx = x · (b0x+b1) · e^2x即y*= x · (b0x+b1) · e^2x3、对应题主的情况三,Qm(x)=b0x^2+b1x+b2原方程 2y"+5y"=5x^2-2x-1r1=0r2=-5/2对比λ=0=r1,所以k取1,而Pm(x)要去对应5x^2-2x-1,所以Qm(x)设为b0x^2+b1x+b2所以最后y*=x^k · Qm(x) · e^0 = x · (b0x^2+b1x+b2) = b0x^3+b1x^2+b2x即y* = b0x^3+b1x^2+b2x苏萦2023-05-13 08:33:381
一元二次方程求根公式是什么?
△小于0,求根公式没有变化,只是根号里面是个负数,开方出来就是虚数。一元二次方程的求根公式在方程的系数为有理数、实数、复数或是任意数域中适用。只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax+bx+c=0(a≠0)。其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。用配方法解一元二次方程的步骤:①把原方程化为一般形式。②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边。③方程两边同时加上一次项系数一半的平方。④把左边配成一个完全平方式,右边化为一个常数。⑤进一步通过直接开平方法求出方程的解,如果右边是非负数,则方程有两个实根;如果右边是一个负数,则方程有一对共轭虚根。gitcloud2023-05-13 08:33:381
一元二次方程求根公式
>>>ax2 + bx + c = 0(2是指2次方)呵呵,难为一楼了,不过好像错了啊?是b的平方减4ac吧?那好像是求得虚根.楼主这么懒啊?求x不就行了.三四年没用了不过道还记得,拿笔我背了:x=2a分之-b加减根号下b的平方减4acNtou1232023-05-13 08:33:372
三次方程求根公式
一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。 一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下: (1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到 (2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3)) (3)由于x=A^(1/3)+B^(1/3),所以(2)可化为 x^3=(A+B)+3(AB)^(1/3)x,移项可得 (4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知 (5)-3(AB)^(1/3)=p,-(A+B)=q,化简得 (6)A+B=-q,AB=-(p/3)^3 (7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即 (8)y1+y2=-(b/a),y1*y2=c/a (9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a (10)由于型为ay^2+by+c=0的一元二次方程求根公式为 y1=-(b+(b^2-4ac)^(1/2))/(2a) y2=-(b-(b^2-4ac)^(1/2))/(2a) 可化为 (11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2) y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2) 将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得 (12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2) B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2) (13)将A,B代入x=A^(1/3)+B^(1/3)得 (14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3) 式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了大鱼炖火锅2023-05-13 08:33:3711
一元二次方程求根公式是什么?
ax²+bx+c=0的两根x=[-b±√(b²-4ac)]/2a望采纳墨然殇2023-05-13 08:33:377
一元二次方程求根公式是什么?
一元二次方程求根公式:1、当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a2、当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax+bx+c=0(a≠0)其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。一元二次方程求解注意:一元二次方程的一般形式:ax2+bx+c=0(a≠0),特征:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。小菜G的建站之路2023-05-13 08:33:371
二次方程求根公式 快来了解下吧
只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax2+bx+c=0(a≠0)。其中ax2叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。小白2023-05-13 08:33:371
一元二次方程求根方法
有三种:因式分解法配方法公式法:x=[-b±根号下(b²-4ac)]/(2a)meira2023-05-13 08:33:373
方程求根公式
方程的求根公式x=[-b±√(b^2-4ac)]/2a。a为二次项系数,b为一次项系数,c是常数。根据因式分解与整式乘法的关系,把各项系数直接带入求根公式,可避免配方过程而直接得出根,这种解一元二次方程的方法叫作公式法。方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。用求根公式法解一元二次方程的一般步骤为:1、把方程化成一般形式ax^2+bx+c=0,确定a,b,c的值(要注意符号)。2、求出判别式Δ=b^2-4ac的值,来判断根的情况。3、当Δ=b^2-4ac≥0(此处△读“德尔塔”)时,x=[-b±(b^2-4ac)^(1/2)]/2a;当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]}/2a。wpBeta2023-05-13 08:33:361
二元一次方程求根公式
x=[-b±根号﹙b²-4ac﹚]/﹙2a﹚△=b²-4ac≥0用求根公式解一元二次方程的方法叫做求根公式法。用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式,确定a,b,c的值(注意符号);②求出判别式的值,判断根的情况;③在的前提下,把a、b、c的值代入公式扩展资料:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程。所有二元一次方程都可化为ax+by+c=0(a、b≠0)的一般式与ax+by=c(a、b≠0)的标准式,否则不为二元一次方程。适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解。每个二元一次方程都有无数对方程的解,由二元一次方程组成的二元一次方程组才可能有唯一解,二元一次方程组常用加减消元法或代入消元法转换为一元一次方程进行求解。将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解,这种解方程组的方法叫做代入消元法。用代入消元法解二元一次方程组的一般步骤:(1)等量代换:从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数(例如y),用另一个未知数(如x)的代数式表示出来,即将方程写成y=ax+b的形式;(2)代入消元:将y=ax+b代入另一个方程中,消去y,得到一个关于x的一元一次方程;(3)解这个一元一次方程,求出x的值;(4)回代:把求得的x的值代入y=ax+b中求出y的值,从而得出方程组的解;(5)把这个方程组的解写成 的形式.西柚不是西游2023-05-13 08:33:361
二元一次方程求根公式是什么?
二元一次方程的求根公式为:二元一次方程的求根的具体方法:1、代入消元法:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法。2、加减消元法:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法。3、顺序消元法:“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的想法,叫做消元思想。扩展资料:方程的解:1、使二元一次方程两边的值相等的两个未知数的一组值,叫做二元一次方程的解。2、二元一次方程组的两个公共解,叫做一组二元一次方程组的解。3、二元一次方程有无数个解,除非题目中有特殊条件。4、但二元一次方程组只有唯一的一组解,即x,y的值只有一个。也有特殊的,例如无数个解。kikcik2023-05-13 08:33:361
一元二次方程求根公式是什么
一元二次方程求根公式: 当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a 当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a 只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。 它的标准形式为:ax²+bx+c=0(a≠0) 一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。 公式法可以解任何一元二次方程。 因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。 配方法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号两边同时加上一次项系数绝对值一半的平方,左边配成完全平方式,再开方就得解了。 除此之外,还有图像解法和计算机法。 图像解法利用二次函数和根域问题粗略求解。gitcloud2023-05-13 08:33:361
一元二次方程求根公式是什么?
一元二次方程求根公式:1、当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a2、当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax+bx+c=0(a≠0)其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。一元二次方程求解注意:一元二次方程的一般形式:ax2+bx+c=0(a≠0),特征:等式左边加一个关于未知数x的二次多项式,等式右边是零,其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。拌三丝2023-05-13 08:33:361
一元一次方程求根公式
ax+b=0 (a≠0)x=-b/a北有云溪2023-05-13 08:33:364
谁能给我三次方程求根公式
一元三次方程求根公式的解法-------摘自高中数学网站一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如 x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次方程和特殊型x^3+px+q=0作比较,可知(5)-3(AB)^(1/3)=p,-(A+B)=q,化简得(6)A+B=-q,AB=-(p/3)^3(7)这样其实就将一元三次方程的求根公式化为了一元二次方程的求根公式问题,因为A和B可以看作是一元二次方程的两个根,而(6)则是关于形如ay^2+by+c=0的一元二次方程两个根的韦达定理,即(8)y1+y2=-(b/a),y1*y2=c/a(9)对比(6)和(8),可令A=y1,B=y2,q=b/a,-(p/3)^3=c/a(10)由于型为ay^2+by+c=0的一元二次方程求根公式为y1=-(b+(b^2-4ac)^(1/2))/(2a)y2=-(b-(b^2-4ac)^(1/2))/(2a)可化为(11)y1=-(b/2a)-((b/2a)^2-(c/a))^(1/2)y2=-(b/2a)+((b/2a)^2-(c/a))^(1/2)将(9)中的A=y1,B=y2,q=b/a,-(p/3)^3=c/a代入(11)可得(12)A=-(q/2)-((q/2)^2+(p/3)^3)^(1/2)B=-(q/2)+((q/2)^2+(p/3)^3)^(1/2)(13)将A,B代入x=A^(1/3)+B^(1/3)得(14)x=(-(q/2)-((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-(q/2)+((q/2)^2+(p/3)^3)^(1/2))^(1/3)式 (14)只是一元三方程的一个实根解,按韦达定理一元三次方程应该有三个根,不过按韦达定理一元三次方程只要求出了其中一个根,另两个根就容易求出了FinCloud2023-05-13 08:33:361
一元二次方程求根公式
Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2agitcloud2023-05-13 08:33:354
求一元二次方程求根公式解法!
一元二次方程的解法有如下几种: 第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式 例1:X^2-4X+3=0 本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。 例2:X^2-8X+16=0 本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同) 例3:X^2-9=0 本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3。 例4:X^2-5X=0 本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5 第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程: X^2+2X-3=0 第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。 第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。 还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11。 最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了。 定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a 举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确)。 因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 �6�12 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般 形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式 法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程 是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。阿啵呲嘚2023-05-13 08:33:351
一元二次方程求根公式
x=[-b±✔(b²-4ac)]/(2a)凡尘2023-05-13 08:33:355
二元一次方程求根公式?
二元一次方程两种解法,一种是代入消元法;一种是加减消元法代入消元法是将①代入②,或将②代入①加减消元法是前面的系数相同的话是①减②;第二个系数相同并且符号为+-相反符号是①加②,如果前面的系数和第二个系数都和第二组相同那么①加②,①减②都可以。(如有真的不会做,我只能说你六年级二元一次方程没学好了,三元别说了,二元都不会不可能会三元)苏萦2023-05-13 08:33:3513
一元二次方程求根公式?
vfdgxnbcf陶小凡2023-05-13 08:33:3510
一元一次方程求根公式
学生学习离不开方程,求一元一次方程和一元二次方程的根十分必要。什么是一元一次方程的根呢?下面是我整理的什么是一元一次方程的根,欢迎阅读。 什么是一元一次方程的根 一元一次方程的根就是一元一次方程的解——就是方程中的未知数 根就是符合一元一次方程的解 一元一次方程求根公式 由于一元一次方程是基本方程,故教科书上的解法只有上述的方法。 但对于标准形式下的一元一次方程:ax+b=0 (a≠0)。 可得出求根公式 一元一次方程解法步骤 一、去分母 做法:在方程两边各项都乘以各分母的最小公倍数; 依据:等式的性质二 二、去括号 一般先去小括号,再去中括号,最后去大括号,可根据乘法分配律(记住如括号外有减号或除号的话一定要变号) 依据:乘法分配律 三、移项 做法:把方程中含有未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边) 依据:等式的性质一 四、合并同类项 做法:把方程化成ax=b(a≠0)的形式; 依据:乘法分配律(逆用乘法分配律) 解方程步骤 解方程步骤 五、系数化为1 做法:在方程两边都除以未知数的系数a,得到方程的解x=b/a。ardim2023-05-13 08:33:341
二元一次方程求根公式?
二元一次方程的一般形式:ax+by+c=0其中a、b不为零二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。消元方法“消元”是解二元一次方程的基本思路。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元多次方程再解出未知数。这种将方程组中的未知数个数由多化少,逐一解决的解法,叫做消元解法。[2]消元方法一般分为:代入消元法,简称:代入法(常用)加减消元法,简称:加减法(常用)顺序消元法,(这种方法不常用)[2]整体代入法.(不常用)以下是消元方法的举例:{x-y=3①{3x-8y=4②由①得x=y+3③③代入②得3(y+3)-8y=4解得y=1所以x=4则:这个二元一次方程组的解为{x=4{y=1实用方法{13x+14y=41{14x+13y=4027x+27y=81y-x=127y=54y=2x=1y=2把y=2代入(3)得即x=1所以:x=1,y=2最后x=1,y=2,解出来特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法是二元一次方程的另一种方法,就是说把一个方程用其他未知数表示,再带入另一个方程中如:x+y=590y+20=90%x代入后就是:x+90%x-20=590例2:(x+5)+(y-4)=8(x+5)-(y-4)=4令x+5=m,y-4=n原方程可写为m+n=8m-n=4解得m=6,n=2所以x+5=6,y-4=2所以x=1,y=6特点:两方程中都含有相同的代数式,如题中的x+5,y-4之类,换元后可简化方程也是主要原因。(三)参数换元例3,x:y=1:45x+6y=29令x=t,y=4t方程2可写为:5t+24t=2929t=29t=1所以x=1,y=4此外,还有代入法可做题。x+y=53x+7y=-1解:x=5-y3(5-y)+7y=-115-3y+7y=-14y=-16y=-4得:x=9y=-4如果关于x,y的二元一次方程组3x-ay=16,的解是x=7你是否可以通过观察、研究,用简便方法求出下列关于2x+by=15y=1x,y的方程组的解?(1)方程组:3(x+y)-a(x-y)=16①2(x+y)+b(x-y)=15②(2)方程组:3(x-2y)÷2-a÷3y=16①(x-2y)+b÷3y=15②苏州马小云2023-05-13 08:33:3410
复数方程求根公式
复数方程求根公式:x^2+x+4=0。形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。方程(equation)是指含有未知数的等式。是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。FinCloud2023-05-13 08:33:341
一元二次方程求根公式是什么?
一元二次方程求根公式: 当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a 当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a(i是虚数单位)。非实复数α是实系数n次方程f(x)=0的根,则其共轭复数α*也是方程f(x)=0的根,且α与α*的重数相同,则称α与α*是该方程的一对共轭复(虚)根。共轭复根经常出现于一元二次方程中,若用公式法解得根的判别式小于零,则该方程的根为一对共轭复根。性质一n次单位根的模为1,即|εk|=1性质二两个n次单位根εj与εk 的乘积还是一个n次单位根,且εjεk =εj+k推论1:εj-1=ε-j推论2:εkm=εmk推论3:若k除以n的余数为r,则εk=εr注:它说明εk等价于r=0Chen2023-05-13 08:33:341
二次方程求根公式
{-b+-根下(b^2-4ac)}/2a此后故乡只2023-05-13 08:33:343
一元二次方程求根公式是什么?
一元二次方程求根公式:当Δ=b^2-4ac≥0时,x=[-b±(b^2-4ac)^(1/2)]/2a当Δ=b^2-4ac<0时,x={-b±[(4ac-b^2)^(1/2)]i}/2a只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程。它的标准形式为:ax²+bx+c=0(a≠0)一元二次方程有4种解法,即直接开平方法、配方法、公式法、因式分解法。公式法可以解任何一元二次方程。因式分解法,也就是十字相乘法,必须要把所有的项移到等号左边,并且等号左边能够分解因式,使等号右边化为0。配方法比较简单:首先将二次项系数a化为1,然后把常数项移到等号的右边,最后在等号两边同时加上一次项系数绝对值一半的平方,左边配成完全平方式,再开方就得解了。除此之外,还有图像解法和计算机法。图像解法利用二次函数和根域问题粗略求解。CarieVinne 2023-05-13 08:33:341
解一元二次方程求根公式法
一元二次方程的一般形式为:ax^2(2为次数,即X的平方)+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2 的整式方程。解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。扩展资料解方程:(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。示例:(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解: 9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=善士六合2023-05-13 08:33:341