汉邦问答 / 问答 / 问答详情

已知f(x)是定义在R上的函数,对任意x都有f(x+4)=f(x)+2f(x)

2023-07-06 07:58:59
TAG: 函数 定义
bikbok

模仿这题做做

已知函数f(x)是定义在r上的偶函数,对任意的x属于r都有f(x+4)=f(x)+f(2)成立,若f(1)=2,则f(2007)是?

f(x+4)=f(x)+f(2)

x

=

-2

f(-2

+

4)

=

f(-2)

+

f(2)

f(2)

=

f(-2)

+

f(2)

f(-2)

=

0

f(x)

是偶函数,所以

f(2)

=

f(-2)

因此

f(x+4)

=

f(x)

+

f(2)

=

f(x)

f(x)

是以4为周期的函数

f(x)

=

f(x

+

4k)

其中

k为整数

2007

=

4*502

-1

所以

f(2007)

=

f(-1)

=

f(1)

=

2

已知f(x)=

(纠正一下,图的最高点应该是y=4处,你自己画图的时候改下吧)由图可知,函数f(x)的单调增区间是(-2,0)和(1,3)(3)f(-2)=4-8+3=-1f(6)=-36+36-5=-5所以f(x)的最小值为f(6)=-5f(0)=3f(3)=-9+18-5=4所以f(x)的最大值为f(3)=4
2023-07-05 04:30:141

已知f(x)?

2023-07-05 04:31:161

已知f(x)是定域义在R上的奇函数,且f(x+2)=-f(x),x属于【0,1】时f(x)=X05则f(11/

f(x)=X05,这是什么?如果忽略它,解答如下:由于f(x+2)=-f(x),那么设x=x-2,则f(x)=-f(x-2);所以f(11/2)=-f(7/2)=f(3/2)=-f(-1/2);又f(x)是定域义在R上的奇函数,则f(x)=-f(-x),所以f(1/2)=-f(-1/2),因此f(11/2)=-f(-1/2)=f(1/2)。x属于【0,1】时f(x)=X05,可求出f(11/2)=f(1/2)等于一个值,即求出来了。
2023-07-05 04:32:121

已知函数f(x)的导函数为…其中e为自然对数的底数k为实数且f(x)在R上不是单调函数,求k的取值范围。

f(x) 不是单调函数,说明 f "(x) 的值有正有负,这就要求 e^x+k^2/e^x 的最小值小于 1/k ,由于 e^x+k^2/e^x>=2|k| (均值不等式),所以 2|k|<1/k ,显然 k>0 ,因此 2k<1/k ,2k^2<1 ,k^2<1/2 ,解得 0<k<√2/2 。选 C 。
2023-07-05 04:32:272

已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f(1/2)=1,如果对于0

顶那个用手机打的。。用了不少时间吧。。
2023-07-05 04:32:343

已知函数f(x)的导函数为f`(x),且满足f(x)=2xf`(1)+ln(x),则f(x)在点M(1,f(1))处的切线方程为

2023-07-05 04:33:322

已知函数f(x)的的导函数为f(x),满足xfˊ(x)+2f(x)=lnx/x,且满足f(e)=1/2e,则函数的单调性情况.

xf"(x)+2f(x)=lnx/x, 则x≠0, 即可表为 y"+2y/x=lnx/x^2, 是一阶线性微分方程,则y = f(x) = e^(-∫2dx/x)[∫(lnx/x^2)e^(∫2dx/x)dx+C] = (1/x^2)(∫lnx+C)= (1/x^2)((xlnx-x+C),f(e)= 1/(2e), 得 C=e/2,则 f(x)=(xlnx-x+e/2)/x^2.f"(x)=(2x-xlnx-e)/x^3, 观察得驻点 x=e.f""(x)=(2xlnx-5x+3e)/x^4, f""(e)=0, 故 x=e不是极值点。又 f"(1)=2-e<0, f"(e^2)=-1/e^5, lim<x→0+> f"(x)=+ ∞, lim<x→+ ∞> f"(x)=0, 故函数在定义域上单调减少。
2023-07-05 04:33:491

已知分段函数f(x)求f(f(x))

当x不为0时,导数就是上面那个分式的导数:即f"(x)=[x*2x/(1+x^2)-ln(1+x^2)]/x^2=2/(1+x^2)-ln(1+x^2)/x^2当x=0时,求(f(x)-f(0))/(x-0)=f(x)/x在x=0处的极限,也即ln(1+x^2)/x^2使用罗比塔法则,分子分母同时求导,得到2x/(1+x^2)/2x=1/(1+x^2)极限是1,即f"(x)在x=0时导数是1
2023-07-05 04:34:041

已知f(x),怎么求f(x2)

解:令t=x^2x=根号t代入f(x)得到关于t的函数,再把所有的t换成x注意定义域,例如:f(x)定义域是(a,b)即a<根号t<ba^2<t<b^2也就是说f(x^2)的定义域是(a^2,b^2)
2023-07-05 04:34:211

已知f(x)?

哪里没有看懂?
2023-07-05 04:34:542

已知函数f(x)=x^2+ax+b,g(x)=e^x (cx+d)若曲线y=f(x)和曲线y=g(x

忘光了!哎!
2023-07-05 04:35:081

已知,f(x分之一)等于一减x的平方分之x求f(x)

把x换成x分之1啊
2023-07-05 04:35:211

已知f(x),求解析式

f(x)=2x+7
2023-07-05 04:35:294

已知 ,求 f(x) .

解析: 解法一:∵.∴. 解法二:令t=x+1,则x=t-1, ∵,∴. 解法三:∵ ∴. 提示: 函数记号y=f(x)就是表示自变量x在对应法则f的作用下得到y.求函数解析式的主要方法有配方法、变量替换法,待定系数法等.
2023-07-05 04:35:371

已知F(x)=∫(上限x下限0)(x-2t)f(t)dt,证明若f(x)单调不增,则F(x)单调不减.

用中值定理。F(x)=x∫(0,x)f(t)dt-2∫(0,x)tf(t)dt求导:F"(x)= ∫(0,x)f(t)dt十xf(x)-2xf(x)= ∫(0,x)f(t)dt-xf(x)根据积分中值定理,存在ξ∈(0,x),x>0或者(x,0),x<0,∫(0,x)f(t)dt=xf(ξ)代入F"(x)=x[f(ξ)-f(x)]x>0,ξ<x,f(x)不增,f(ξ)≥f(x), F"(x)≥0,不减。x<0,x<ξ,f(x)≥f(ξ),f(ξ)-f(x)≤0,F"(x)=x[ f(ξ)-f(x) ]≥0,F(x)不减。得证。
2023-07-05 04:36:072

fu2032uff08Xuff09=3XxXfu2032u2032uff08Xuff09=6Xfu2032u2032uff081uff09=6
2023-07-05 04:37:022

已知f(x)满足关系式f(x)+2f(1/x)=3x,求f(x)

f(x)+2f(1/x)=3x,求f(x)将1/x代入,得到f(1/x)+2f(x)=3/x和原式f(x)+2f(1/x)=3x联立就是把f(x)和f(1/x)当成两个未知数,利用配方法消去f(1/x)得到6/x-3x=3f(x)所以f(x)=2/x-x
2023-07-05 04:37:091

以已知函数 f(x)等于——

做这类题目,首先你可以用t替换要你求的函数f(x1),就是令t=x1,则就是要求f(t)的值,在根据你告诉的函数可以知道f(t)=2*t-1;然后用x1替换t就可以求出结果!!!你这个函数就相当于复合函数,在例如已知f(x+1)=x2+3x+4,求f(x)解法一:令t=x+1,则x=t-1有:f(t)=(t-1)2+3(t-1)+4=t2+t+2即:f(x)=x2+x+2解法二:f(x+1)=(x+1)2+x+3=(x+1)2+(x+1)+2∴f(x)=x2+x+2就这样简单。
2023-07-05 04:37:281

已知f(x)=

f(x)=(ax+2)/(x+2)=(a(x+2)-2a+1)/(x+2)=a+(1-2a)/(x+2)1/x在零到正无穷内单调递减,据此1-2a>0所以a<0.5
2023-07-05 04:37:351

2023-07-05 04:38:011

已知f(x)是一次函数,满足f[f(x)]=x+2,求f(x)

由f(x)是一次函数,可以设f(x)=k*x+b又由f[f(x)]=x+2可得f[f(x)]=k*(k*x+b)+b=k*k*x+k*b+b=x+2故有k*k*x=xk*b+b=2解得:k=1,b=1所以:f(x)=x+1
2023-07-05 04:38:121

已知f(x)有原函数,求f(x)x的定积分

用分部积分∫xf(x)dx=∫xd∫f(x)dx=x∫f(x)dx-∫[∫f(x)dx]dx
2023-07-05 04:38:381

怎么求不定积分中被积函数的原函数 F‘(x)=f(x),已知f(x),怎么求F(x)

就是对f(x)进行积分啊.如果是初等函数直接查初等函数求导公式.F(x)就是那个原函数.(就是对F(X)求导就是f(x),那么有了小f(x)查表就可以知道对应的F(x)的形式,但是要在F(X)后加常数或其它一些格式.具体几句话说不清楚,是高中的数学知识,或者大学的微积分).
2023-07-05 04:38:531

已知连续型随机变量X的概率密度为f(x)=1/√πe∧-x∧2+2x-1,则X的数学期望为

正态分布,u=1
2023-07-05 04:39:081

不定积分的数学题 总是把积分和微分,倒数闹混. 请问已知f(x)的一个原函数,怎么求f(x)?

不要晕,不要混 慢慢想总能得到答案 微分就相当于求导: 比如:求:f(x)=x^2的微分 y=x^2 dy=2xdx 而积分就是说求一个函数的导数等于你已知的函数, 就是微分的逆运算. 比如:你说的求f(x)的一个原函数 这里假设f(x)=2x 那你想什么函数的微分等于2x呢? 这里就是求积分的过程了: 积分:2xdx =x^2+C (C是常数) 所以其中一个原函数可以是: x^2(此时C=0)
2023-07-05 04:39:421

已知f(x),求关于f(x)的定积分

根据已知条件,可如图改写并利用分部积分法求出答案是(1/e)-1。
2023-07-05 04:40:141

14.已知函数 f(x)= x^2+a,x0, log4x,x>0, -|||-(1)若 f[f(?

根据给出的函数 f(x) = x^2 + a,我们需要求解 f[f(?)。首先,我们将 f(x) 的表达式代入 f[f(?) 中,得到:f[f(?)] = f(f(?)) = (f(?)^2) + a接下来,我们需要找到 f(?) 的表达式。根据给定的条件:1. 当 x = x0 时,f(x) = x0^2 + a。2. 当 x = log4x 时,f(x) = (log4x)^2 + a。因此,我们可以将 f(?) 分别代入上述两个条件中,得到:1. f(?) = x0^2 + a2. f(?) = (log4?)^2 + a这里的 "?" 表示一个未知的变量,我们无法确定其具体值。所以,最后的结果为:f[f(?)] = (f(?)^2) + a = ((x0^2 + a)^2) + a 和 ((log4?)^2 + a)^2 + a
2023-07-05 04:40:271

已知f(x)的概率密度函数,求f(ax)的概率密度函数怎么求

Y=g(x)=aXf(y) = f(x)/|g"(x)| = f(y/a)/|a|
2023-07-05 04:40:371

2023-07-05 04:40:452

已知f(x),求f(f(f(x)))

因无论f(x)=1或0,都有 f(x)≤1所以 f(f(x))=1f(f(f(x)))=1
2023-07-05 04:41:063

f[f(x)]=f(x^2)=x^4
2023-07-05 04:41:321

已知 f(x)是定义在R上的偶函数,并且满足f(x+2)=-1/f(x),当2≤x≤3时, f(x)=x,求f(2013)

周期是4 ,那2013除以4=503余1也就是求f(2013)=f(1)
2023-07-05 04:41:424

已知函数f(x)由下表给出,则f(f(3))等于( )求解

f(3)=4,所以f(f(3))=f(4)=1
2023-07-05 04:41:514

已知函数f(x)= x^2-3x+5的定义域是R,若f(x)= x^2-3x+5的最小正周期为t=2

(1)X=0.4343循环100X=43.43(循环)100X-X=43X=43/99(2)X=0.677循环100X=67.7(循环)10X=6.7(循环)100X-10X=61X=61/90(3)X=0.634545循环10000X=6345.45(循环)100X=63.45(循环)10000X-100X=6345-63=6282x=6282/9900=1047/1650
2023-07-05 04:42:101

已知函数f(x)=ax-b(α﹥0),f(f(x))=4x-3,则f(2)=?

2023-07-05 04:42:422

已知函数f(x)是定义在实数集R上的偶函数,且对任意实数x都有f(x+1)=2f(x)+1,则f(2012)的值是

令x=0f(1)=2f(0)+1令x= - 1f(0)=2f(-1)+1f(0)=2f(1)+1=4f(0)+3f(0)=-1f(1)= -1f(x+1)+1=2[f(x)+1]令g(x)=f(x)+1g(x+1)=2g(x)g(2)=2g(1)g(3)=2^2g(1)g(4)=2^3g(1).......................g(2012)=2^(2011)g(1)f(2012)+1=2^(2012)*[f(1)+1]=0f(2012)=-1
2023-07-05 04:43:063

已知函数f(x)的定义域为(0,+∞),且f(x)=2f(1/x)√x-1,求f(x)

令x=1/x,则f(1/x)=2f(x)√1/x-1,那么f(x),f(1/x)就是二元一次方程组的解,将此式与上式联立解出f(x)=2√x+1/3
2023-07-05 04:43:181

已知f(x)是定义在R上的不恒为零的函数,求任意实数x,y都有f(xy)=yf(x)+xf(y),

f(1)=0;f(-1)=0;奇函数。令x=y=1,代入f(xy)=yf(x)+xf(y),得f(1)=0;令x=y=-1,代入f(xy)=yf(x)+xf(y),得f(-1)=0。令y=-1,代入f(xy)=yf(x)+xf(y),得f(-x)=-f(x)+xf(-1)=-f(x),故为奇函数。
2023-07-05 04:43:251

2016管理类联考数学第25题。 已知f(x)=x*x+ax+b,则0≤f(x)≤1 (1)f(x)

2023-07-05 04:43:344

已知函数f(x)的导数f′(x)满足0

解答:解:(I)设f(x)=x有不同于α的实数根β,即f(β)=β,不妨设β>α,于是在α与β间必存在c,α<c<β,使得β-α=f(β)-f(α)=(β-α)f′(c)∴f′(c)=1,这与已知矛盾,∴方程f(x)=x存在唯一实数根α.(II)令g(x)=x-f(x)∴g′(x)=1-f′(x)>0∴g(x)在定义域上为增函数又g(α)=α-f(α)=0∴当x>α时,g(x)>g(α)=0∴当x>α时,f(x)<x、(III)不妨设x1<x2,∵0<f′(x)<1∴f(x)在定义域上为增函数由(2)知x-f(x) 在定义域上为增函数、∴x1-f(x1)<x2-f(x2)∴0<f(x2)-f(x1)<x2-x1即|f(x2)-f(x1)|<|x2-x1|∵|x2-x1|≤|x2-α|+|x1-α|<4∴|f(x1)-f(x2)|<4.
2023-07-05 04:44:081

已知f[g(x)]的定义域求f(x)的定义域

已知f(x)的定义域 求f[g(x)]的定义域 令g(x)属于f(x)的定义域,解不等式,得到x的范围。已知f[g(x)]的定义域 求f[h(x)]的定义域先解除当x属于f[g(x)]的定义域时,g(x)的取值范围,比如记做A.再令h(x)属于A,解不等式,得到x的范围
2023-07-05 04:44:217

已知函数f(x)是定义在r上的奇函数,对任意的x属于r都有f(x+2)=f(x-1)

∵对任意的x∈R都有f(x+2)=f(x)+f(1)成立 ∴f(-1+2)=f(-1)+f(1)=0即f(1)=0 ∴f(x+2)=f(x)即函数f(x)是周期为2的函数 ∴f(2011)=f(2×1005+1)=f(1)=0 故选A.
2023-07-05 04:44:421

已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k<0,且f(x)在区间[0,2]的表达式为f(x)=

简单计算一下即可,答案如图所示
2023-07-05 04:44:491

已知f(x)是定义在R上的不恒为零的函数,且对任意x,y,f(x)都满足f(xy)=yf(x)+xf(y).(1)求f

解答:解 (1)因为对定义域内任意x,y,f(x)满足f(xy)=yf(x)+xf(y),所以令x=y=1,得f(1)=0,令x=y=-1,得f(-1)=0;(2)令y=-1,有f(-x)=-f(x)+xf(-1),代入f(-1)=0得f(-x)=-f(x),所以f(x)是(-∞,+∞)上的奇函数.
2023-07-05 04:45:421

已知函数f(x)的定义域是(0,+∞),且满足f(xy)=f(x)+f(y),f(1/2)=1,如果对于0

f(xy)=f(x)+f(y)f(1)=f(1*1)=f(1)+f(1)=2f(1)f(1)=0f(1)=f(2*1/2)=f(2)+f(1/2)=f(2)+f(1/2)=0f(2)=-1f(-x)+f(3-x)=f(x^2-3x)>=-2=2*(-1)=2*f(2)=f(2*2)=f(4)所以x^2-3x<=4(x-4)(x+1)<=0-1<=x<=4又由定义,不等式的解是:-1<=x<0
2023-07-05 04:46:002

已知f(x)。。。。。急啊

既然单调递增那直接看 x^2-x 和 x+3就可以了另两式相等得 x=6;x=-1(舍去)=》f(x^2-x)>f(x+3)在 x∈(6,+∞)上成立
2023-07-05 04:46:131

已知f(x)是定义在R上的奇函数,f(3)=2,对一切实数x,均有f(x+2)=-1/f(x),则f(2005)=

-2 考察周期性,这题估计很老了,05年的题吧
2023-07-05 04:46:202

suffer from是什么意思

经受 忍受
2023-07-05 04:40:105

读万卷书,行万里路,有什么现实意义吗?

首先 ,行万里路可以实践万卷书。万卷书中的世界是要靠实践来的,而不是读出来的。我们都看过电影《刘三姐》中刘三姐与秀才们对山歌的精彩镜头。秀才们饱读诗书,出口成章,根本没把一介民女放在眼里,刘三姐没读过书论学问,当然不可同日而语,但是目不识丁的刘三姐八岁从小就为贫穷的家庭上山打柴,青年时还到过附近山村交流山歌,刘三姐以她丰富的实践经验在把秀才们搏的是威风扫地,狼狈不堪,败得一塌糊涂。 论其原因还在于秀才们们不懂得读书的真谛是实践,他们空有一身学问却对生活事宜茫然无知。而刘三姐却又智慧和巧妙地利用了这方面优势将对手击得体无完肤,骂得痛快淋漓,直至大获全胜。从而体现出了才赋五车的秀才进士在现实生活中不如胸无点墨的乡村妇女的一面。 从而反映出行万里路的实用性。   其次,行万里路可以检验万卷书。古往今来有了无数先人行万里路的实践奉献,才有了浩瀚如海的万卷图书,才能让后世的人们体会到“秀才不出门,竟知天下事”的风采。但所谓的“秀才”所掌握的只不过是书中肤浅的内容,而不是其中真正的奥秘。 西汉末年的王莽饱读诗书,生活俭朴,结交贤士,声名远播可谓是读书人的楷模,他在初始元年接受孺子婴禅让后称帝,改国号为新,他仿照周朝的制度推行新政。屡次修改制度先是削夺刘氏贵族的权利,引发豪强的不满,之后又赋役繁重,刑政苛暴失去民心。 尽管王莽雄心勃勃,大有一扫汉室晦气改革弊政的决心和勇气,但缺乏经验刻意效仿周朝《礼制》不知对症下药,而且未能处理好内部矛盾又为转移矛盾开始输出战争,导致内忧外患从而死于民兵起义之下。班固在《汉书 王》对他的评价是“昔秦燔《诗》、《书》以立私议,莽诵《六艺》以文奸言,同归殊途,俱用灭亡,最后闹了个以“伪”,“逆”,“祸”的评价遗臭万年”。   最后, 行万里路可以发展万卷书。知识能够普及靠的是发展,知识想要发展靠的是传播,知识想要传播靠的就是行万里路。书本经过万里路的传播之后,才能发挥作用,产生力量,进一步发展人类文明的进步。 今天的人类文明靠的就是无数先人对行走万里路的拼搏和执着,才能达到这样的高度的。其中唐代先人唐三藏,也就是被后人称颂的玄奘法师就曾经跋山涉水,历经层层磨难,前往未知的西方求取真经。其间他记录下了路过各国的风土人情, 让中土唐人知道了外面未知的世界开阔了视野。 他游学整整十二年,习得佛家真理, 以回国普渡众生。他带回百尊经像舍利,请回佛经数百梵文原典。回国翻译,将天竺国的文化与知识的理解带回祖国,交流学习。依此经历,玄奘口述他的所见所感,完成了深深影响后世发展的《大唐西域记》,对那时还相对模糊的佛家真经进行了很好的完善,造福了后世信佛人士,让人们真正了结了佛学的高深,让佛教巩固了中国第一宗教的地位。
2023-07-05 04:40:131

读万卷书的下一句是什么

读万卷书,行万里路古人云“读万卷书,行万里路”,它告诉了我们一个朴素而深刻的道理,读书能让万里外之美景立于眼前,读书能跨越时空,让古今中外人的思想诉之于脑海;读书而有益,多读而博知。这是无数事业有成之人的经验之谈。杜甫云“读书破万卷,下笔如有神”,他以自己的实践告诉给人们一个万古不变的真理:要想能文,必先多读。  多读就多知,多读就能文,其实静心思考,也不尽然:  多读,要看如何读。曾见过这样一段文字:“读书原为自己受用,多读不能算是荣誉,少读也不能算是羞耻。少读如果彻底,必能养成深思熟虑的习惯,以至于变化气质;多读而不求甚解,譬如漫游‘十里洋场",虽珍奇满目,徒惹得眼花缭乱,空手而归。”这极为生动地告诉我们:多读固然有好处,但要看如何读,如“春风得意马蹄疾,一日看尽长安花”,贪多而嚼不烂,或者干脆贪多而不嚼,以多为贵,以多自豪而不顾成效,那只能是走入漫漫书海,最终却没有带回“一片云彩”。  多读,还要看读什么,有些人读侦探小说,手不释卷,读言情书籍,废寝忘食,读武侠传奇,通宵不眠;读时惊心动魄,刀光剑影,情意绵绵,读后在脑海中留下来的如狂风吹过的漫漫沙漠,平静无垠,空旷一片。读书要有选择,要读的书太多了,古代的书,现代的书,中国的书,外国的书。不管有多少种书,不外有两类,一类是激励上进,使人变得聪明和高雅;一类是使人颓废,把人搞得消沉和丑恶。读书就要读好书,读一本好书,不仅是一种美的享受,而且能使人更加完善和造就高尚的人格。“读一本好书,就是和高尚的心灵对话”,用纯正的心灵作一面明亮的镜子,能照出一个人是洁白无瑕,还是满身污垢。多读好书,才能使自己走向高尚。  多读,还要勤思考。“读”而不思则罔,书读的再多,如果不进行思考,也是毫无收获。最多只能成为书虫,移动的图书馆,贩卖的都是别人的东西,至多被别人赞为“活字典”而起的只是“传声筒”“留声机的作用。只有在读中深入进去,如蚕食桑叶一般,多多的吃,细细的嚼,静静消化,化为自己的东西,才能吐出闪亮的丝。只有在读的过程中,仔细分辨,提出问题,多多思考,才能把别人的精华化为自己的血液,成为助己成长的营养,催己奋斗的动力。  读书,要养成良好的习惯,变成自己的嗜好,鲁迅对读书有一生动形象的比喻,他在一次演讲中说:“我想,嗜好的读书,该如打牌的一样,天天打,夜夜打,连续地去打,有时被警察局捉去了,放出来之后还是打。”这样读书成瘾,就不可一日或缺,缺则心中惚惚若有所失,这样才能把闲谈的时间化为读书,把游戏的时间化为读书,这样才会见缝插针,长久与书相拥,与书为伴,让书似流水一样,常在身边流淌,让流淌着的书的激情,滋润自己的心田。
2023-07-05 04:40:071