化学中薛定谔方程是是什么
描述原子中电子运动的方程豆豆staR2023-05-25 22:20:424
薛定谔方程怎么解?
.在给定的初始条件(系统的初状态)和边界条件下.解微分方程;有数据才好解.附薛定谔方程Schrodinger equation 量子力学的基本方程.它反映了微观系统的状态随 时间变化的规律.微观系统的状态由波函数 ψ(r,t)描 写,薛定谔方程是波函数ψ(r,t)的一个微分方程,它的形式为iξ(δψ)/(δt)=-ξ^2/2μΔ^2Ψ+U(r,t)ψ. 式中μ是粒子的质量,U(r,t)是粒子所在力场的势函数. 薛定谔方程是E.薛定谔在1926年提出来的.在给定 的初始条件(系统的初状态)和边界条件下,即可解出 系统的波函数ψ(r,t).量子力学要求,波函数ψ(r,t)不 单是满足薛定谔方程,还必须满足以下条件:波函数在 变量变化的全部区域内是单值的,除有限个点外是有限 的和连续的.这个条件常被称为波函数的标准条件. 当势函数 U(r,t)与时间t无关时,薛定谔方程的解就可以写成ψ(r,t)=ψ(r)^(-iEt/ξ) 的形式.式中ψ(r)满足定态薛定谔方程小菜G的建站之路2023-05-25 22:20:421
为何我们经常会说薛定谔不懂“薛定谔方程”呢?
因为这个是后人进行总结的,只不过是以他的名义来命名的,他自己并没有直接命名黑桃花2023-05-25 22:20:425
薛定谔方程的使用方法
薛定谔的猫西柚不是西游2023-05-25 22:20:422
什么是薛定谔方程?解得的函数有什么物理意义?
schrödinger"sequation分为含时和定态,这个形式可以wikipedia或百度百科就能找到,简言之该方程是关于波函数的微分方程,要更好的理解这个方程的意义,需要你先了解一下线性代数。波函数的物理意义就是在某时刻某坐标出现的概率幅,其模的平方表示对应的概率。下面是我的想法,不一定准确。你们高中什么化学键用到波函数,个人感觉其实就是变相的给薛定谔方程套了个马甲而已,定态为例,hy=ey(y是波函数,规范写法应该是罗马字符,ipad上面打不出来。h是哈密顿算符,里面包含了动能项和势能项,e是一个能量常数,叫做能量本征态)。我理解的在化学键上面用这个,应该是来计算电子被束缚在两个原子中间(反映在哈密顿算符中的势能里面)的概率。换句话说,就是先写出来势能的函数,然后带回该微分方程中去写,这样就解出来的波函数的模平方为电子随坐标的分布概率情况。FinCloud2023-05-25 22:20:422
薛定谔方程适用于什么物理现象
物理含义这是一个描述一个粒子在三维势场中的定态薛定谔方程。所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。其中,E是粒子本身的能量;U(x,y,z)是描述势场的函数,假设不随时间变化。薛定谔方程有一个很好的性质,就是时间和空间部分是相互分立的,求出定态波函数的空间部分后再乘上时间部分e^(-t*i*E*2π/h)以后就成了完整的波函数了。详见!http://baike.baidu.com/link?url=8zX9nnfqz0xhEC0ZqvpAiz84siZIyIAEphlX5WMkoyQI84RAyIH30QjL12qKF5utduSoHeCmqZgzpndadlkzgq水元素sl2023-05-25 22:20:423
薛定谔方程的意义是什麽?
薛定谔方程是量子力学的基本方程,它揭示了微观物理世界物质运动的基本规律,它是原子物理学中处理一切非相对论问题的有力工具,在原子、分子、固体物理、核物理、化学等领域中被广泛应用。小菜G的建站之路2023-05-25 22:20:422
薛定谔方程高几学的
大二或者大三薛定谔方程(Schr_dinger equation)又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。凡尘2023-05-25 22:20:421
各种薛定谔方程的算符表达式都有哪些?
字母太难写了。不考虑相对论效应的薛定谔方程就是http://baike.baidu.com/albums/551078/551078/0/0.html#0$a836271234eedd13f919b81d里边中间的那一个式子。这个式子不算是算符表达式。算符表达式是:[p^2/(2m)]ψ=[E-U]ψ其中,p是动量算符,E是能量算符,U是势能算符。北营2023-05-25 22:20:421
谁能帮忙推导一下二维势箱的薛定谔方程?
【外行痴语,不必当真】你说的是推导方程,意思是想得到这个方程的具体形式,不需要解方程,对吧?二维势箱,是不是在一个矩形里粒子势能为0,在外面为无穷大?如果是,那么箱子外波函数为0,里头的波函数设为ψ(x,y),代入薛定谔方程,为-(h/2π)²/2m·(ə²ψ/əx²+ə²ψ/əy²)=Eψ水元素sl2023-05-25 22:20:422
薛定谔方程解决了什么问题?
薛定谔在一个时期共发表了6篇论文,奠定了波动力学的基础,宣告了量子力学中波动一支的诞生。薛定谔方程进一步解决了玻尔原子说中的困难,对氢原子的能级也给出了正确的结果。无尘剑 2023-05-25 22:20:421
薛定谔方程是什么
薛定谔方程(Schrdinger equation)是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。 在量子力学中,体系的状态不能用理学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率福,态函数)来确定,因此波函数称为量子力学研究的主要对象。力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当。 薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,它的正确性只能靠实验来检验。 薛定谔方程 量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。 薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。 .薛定谔提出的量子力学基本方程 。建立于 1926年。它是一个非相对论的波动方程。它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程为。在给定初始条件和边界条件以及波函数所满足的单值、有限、连续的条件下,可解出波函数Ψ(r,t)。由此可计算粒子的分布概率和任何可能实验的平均值(期望值)。当势函数V不依赖于时间t时,粒子具有确定的能量,粒子的状态称为定态。定态时的波函数可写成式中Ψ(r)称为定态波函数,满足定态薛定谔方程,这一方程在数学上称为本征方程,式中E为本征值,是定态能量,Ψ(r)又称为属于本征值E的本征函数。 量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。 薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。当计及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。 薛定谔方程具体介绍 2 �0�9 �0�3 �0�3 -—— —— ψ(x,t)+V(x)ψ(x,t)=i�0�9——ψ(x,t)=Hψ(x,t) 2 2m �0�3x �0�3x 其中H是哈密顿算符。 定态薛定谔方程: �0�9 2 �0�3 -—— [倒Δ] ψ(r,t)+V(r)ψ(r,t)=i�0�9——ψ(x,t)=Hψ(x,t) 2m �0�3x 薛定谔方程的数学表达形式 薛定谔波动方程数学形式 这是一个二阶线性偏微分方程,ψ(x,y,z)是待求函数,它是x,y,z三个变量的复数函数(就是说函数值不一定是实数,也可能是虚数)。式子最左边的倒三角是一个算符,意思是分别对ψ(x,y,z)的x,y,z坐标求偏导的平方和。 物理含义 这是一个描述一个粒子在三维势场中的定态薛定谔方程。所谓势场,就是粒子在其中会有势能的场,比如电场就是一个带电粒子的势场;所谓定态,就是假设波函数不随时间变化。其中,E是粒子本身的能量;U(x,y,z)是描述势场的函数,假设不随时间变化。薛定谔方程有一个很好的性质,就是时间和空间部分是相互分立的,求出定态波函数的空间部分后再乘上时间部分e^(-t*i*2π/h)以后就成了完整的波函数了。 薛定谔方程的解——波函数的性质 1.虽然任意给定的E都可以解出一个函数解,但只有满足一定条件的分立的一些E值才能给出有物理意义的波函数; 2.由于薛定谔方程是一个线性微分方程,所以任意几个解的线性组合还是薛定谔方程的解。善士六合2023-05-25 22:20:413
什么是薛定谔方程
薛定谔方程(Schrodinger Equation)是描述量子力学中粒子运动的基本方程之一,由奥地利物理学家薛定谔于1925年提出。它是描述量子力学中粒子的波函数随时间演化的方程,可以用来计算粒子在各种势场中的运动状态和能量。薛定谔方程的形式为:$$ihbarfrac{partial}{partial t}Psi(mathbf{r},t)=hat{H}Psi(mathbf{r},t)$$其中,$Psi(mathbf{r},t)$是粒子的波函数,$hat{H}$是哈密顿算符,$hbar$是普朗克常数除以$2pi$。薛定谔方程的物理意义是:粒子的波函数随时间的演化是由哈密顿算符所描述的物理过程所决定的。哈密顿算符包含了粒子的动能和势能,因此可以用来描述粒子在各种势场中的运动状态和能量。薛定谔方程的解可以用来计算粒子的波函数在不同时间和空间位置的取值。波函数的模的平方表示粒子在该位置的概率密度,因此可以用来预测粒子在不同位置的出现概率。薛定谔方程的解还可以用来计算粒子的能量谱,从而得到粒子在不同能级上的能量分布。薛定谔方程是量子力学中最基本的方程之一,它的提出标志着量子力学的诞生。薛定谔方程的解决了经典物理学无法解释的一系列现象,如原子光谱、量子隧穿效应等。薛定谔方程的成功应用也为量子力学的发展奠定了坚实的基础。gitcloud2023-05-25 22:20:411
薛定谔方程是什么
薛定谔方程(Schrödinger equation)又称薛定谔波动方程(Schrodinger wave equation),是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定。理解薛定谔方程的产生过程需要跟得上思想的跳跃,别不习惯,物理学就是这么构造出来的。薛定谔方程应用的巨大成功使得人们不再去纠缠其构造过程是否合理。扩展资料薛定谔给出的薛定谔方程能够正确地描述波函数的量子行为。在那时,物理学者尚不清楚如何诠释波函数,薛定谔试图以电荷密度来诠释波函数的绝对值平方,可并不成功。1926年,玻恩提出概率幅的概念,成功地诠释了波函数的物理意义。但是薛定谔与爱因斯坦观点相同,都不赞同这种统计或概率方法,以及它所伴随的非连续性波函数坍缩。爱因斯坦主张,量子力学是个决定性理论的统计近似。在薛定谔有生的最后一年,写给玻恩的一封信中,他清楚地表示他不接受哥本哈根诠释。 参考资料来源:百度百科-薛定谔方程苏州马小云2023-05-25 22:20:411