概率的公理化定义是什么?
概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。1、这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理。2、根据概率的公理化定义,概率指的是满足如下三个特点的集合函数(亦即以集合为定义域的实值函数):(1)非负性。亦即概率的取值不能是负数。实际上,任何“测度”,例如长度、面积、体积、重量等,都不能取负数。因此,作为针对“可能性”的测度,概率自然也不能取负数。(2)正则性。亦即概率的取值不能超过1。相较于其它的测度,正则性是概率这种测度的特别之处。因为诸如长度、面积、体积以及重量之类的测度都没有取值上限这种约束。而概率的取值之所以要求不能超过1,实在是基于我们对“可能性”大小这一判断的经验(或习惯)做法。(3)(无限)可列可加性。亦即无限个互不相容集合(事件)的并的概率,等于无限个(与每一个集合相对应的)概率之和。 概率的可列可加性有两个含义:一是互不相容的集合的并的概率,等于其中每一个集合的概率之和。这一规定仍是基于现实的经验。二是要求在“可能性”的测度过程中不能出现无限个概率之和不存在的情况,因为这也是违背经验的事情。扩展资料:概率的无限可列可加性的应用:满足公理化定义的概率还具有连续性,亦即它既具有下连续性,也具有上连续性。基于概率的无限可列可加性,我们很容易推导出概率的有限可列可加性。但基于概率的有限可列可加性,我们并不能逆推出概率的无限可列可加性。在概率满足有限可列可加性的基础上,还必须再增加一个概率满足下连续的假设,才能推出这个概率函数满足无限可列可加性的结论。参考资料来源:百度百科 - 概率参考资料来源:百度百科 - 公理化方法LuckySXyd2023-05-26 08:18:191
标题条件概率是否满足概率的公理化定义?
概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。1、这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理。2、根据概率的公理化定义,概率指的是满足如下三个特点的集合函数(亦即以集合为定义域的实值函数):(1)非负性。亦即概率的取值不能是负数。实际上,任何“测度”,例如长度、面积、体积、重量等,都不能取负数。因此,作为针对“可能性”的测度,概率自然也不能取负数。(2)正则性。亦即概率的取值不能超过1。相较于其它的测度,正则性是概率这种测度的特别之处。因为诸如长度、面积、体积以及重量之类的测度都没有取值上限这种约束。而概率的取值之所以要求不能超过1,实在是基于我们对“可能性”大小这一判断的经验(或习惯)做法。(3)(无限)可列可加性。亦即无限个互不相容集合(事件)的并的概率,等于无限个(与每一个集合相对应的)概率之概率的可列可加性有两个含义:一是互不相容的集合的并的概率,等于其中每一个集合的概率之和。这一规定仍是基于现实的经验。二是要求在“可能性”的测度过程中不能出现无限个概率之和不存在的情况,因为这也是违背经验的事情。扩展资料:概率的无限可列可加性的应用:满足公理化定义的概率还具有连续性,亦即它既具有下连续性,也具有上连续性。基于概率的无限可列可加性,我们很容易推导出概率的有限可列可加性。但基于概率的有限可列可加性,我们并不能逆推出概率的无限可列可加性。在概率满足有限可列可加性的基础上,还必须再增加一个概率满足下连续的假设,才能推出这个概率函数满足无限可列可加性的结论。大鱼炖火锅2023-05-26 08:18:191
关于概率的公理化定义
概率,又称或然率、机会率、机率或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下: 对于随机试验的每一事件赋于一个实数,称为某事件的概率。阿啵呲嘚2023-05-26 08:18:181
概率的公理化定义
概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论)。其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了。这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的。概率,亦称“或然率”,它是反映随机事件出现的可能性(likelihood)大小。随机事件是指在相同条件下,可能出现也可能不出现的事件。例如,从一批有正品和次品的商品中,随意抽取一件,“抽得的是正品”就是一个随机事件。设对某一随机现象进行了n次试验与观察,其中A事件出现了m次,即其出现的频率为m/n。经过大量反复试验,常有m/n越来越接近于某个确定的常数(此论断证明详见伯努利大数定律)。该常数即为事件A出现的概率,常用P(A)表示。 第一个系统地推算概率的人是16世纪的卡尔达诺。记载在他的著作《Liber de Ludo Aleae》中。书中关于概率的内容是由Gould从拉丁文翻译出来的。 卡尔达诺的数学著作中有很多给赌徒的建议。这些建议都写成短文。然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由Chevvalier de Mere提出的问题。Chevvalier de Mere是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。问题主要是两个:掷骰子问题和比赛奖金分配问题。左迁2023-05-26 08:18:171
概率的公理化定义是什么?
概率的公理化包括两个方面:一是事件的公理化表示(利用集合论),二是概率的公理化表示(测度论).其次是建立在集合之上的可测函数的分析和研究,这就可以利用现代分析技术了. 这些工作是由前苏联数学家科尔莫格洛夫在1933年完成的.这里关于西格玛域(代数)等这些就不定义了,直接给出三条公理.肖振2023-05-26 08:18:171