微积分极限求值公式和导数求导公式及例题
经济数学团队为你解答,满意请采纳!水元素sl2023-06-06 07:55:491
请教数学微积分里关于购彩注数计算法
彩票注数应该和组合数学中的组合数或排列数有关,和积分微分等没有关系hi投2023-06-06 07:54:532
微积分中导数的定义运用问题
根据导数的定义式lim(h->0)f(x+h)-f(x)/h式中注意两点:3个h必须一样且可以->0+和0-f(x)为确定的函数值据此分析选项就可以了Alim(1-cosh)f(1-cosh)(1-coosh)/(1-cosh)h1-cosh只能->0+C和A一样的错误D中没有f(0)这一项补充定义是为了凑出导数的定义式lim[sinf(x)-sinf(a)]/(x-a)=[sinf(x)]′|x=a这样写的前提是sinf(x)在a点可导由补充的定义知f(x)在x=a处可导所以sinf(x)在x=a处可导肖振2023-06-04 09:20:431
微积分和导数有什么关系?
这个问题早先来自两个不同的问题:导数——切线;积分——面积。后来,牛顿和莱布尼兹分别发现了这两个不同问题的联系,即导数跟积分是逆运算,比如函数y=3x的导数y"=3,那么对函数u=3的不定积分结果是3x+C,C是一个常数,如果是定积分,则限定了函数的区域,那么就有了确定的结果,至于推导方法有很多。再后来,柯西对极限进行了严格的定义,奠定了微积分的基础。具体可参考柯朗写的《什么是数学》,M·克莱因写的《古今数学思想》更深入的教材可以看柯朗写的《微积分和数学分析引论》或者别的高等数学或数学分析教材,均大同小异。Ntou1232023-06-04 09:18:351
导数和微积分有什么关系?
微分的"过程"就是求导数凡尘2023-06-04 09:18:3311
导数和微积分有什么关系?
导数是微积分中的基本概念,而极限是微积分的基石。导数就是微积分计算的工具。导数也叫作微商,是函数因变量的微分与自变量的微分的商,而积分的过程说白了就等价于已知某函数的导数求这个函数的运算。导数是微积分中的重要基础概念。当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。扩展资料常用导数公式:1、y=c(c为常数) y"=02、y=x^n y"=nx^(n-1)3、y=a^x y"=a^xlna,y=e^x y"=e^x4、y=logax y"=logae/x,y=lnx y"=1/x5、y=sinx y"=cosx6、y=cosx y"=-sinx7、y=tanx y"=1/cos^2x8、y=cotx y"=-1/sin^2x9、y=arcsinx y"=1/√1-x^210、y=arccosx y"=-1/√1-x^2大鱼炖火锅2023-06-04 09:18:271
微积分的反导数练习题!!
LuckySXyd2023-06-04 09:15:241
高等数学 微积分 导数练习题
好等价变换就OK。NerveM 2023-06-04 09:15:201
由陌生到认识——微积分
你好,微积分,希望可以认识你... 呃!同学,你好,你想认识我,得先认识导数和积分,我其实是导数和积分的合体。 嗯!好吧!那我先了解一下什么是导数吧! 导数是用来分析变化的一种工具。 那么,什么是变化率呢?首先变化就是变化的意思。例如孙悟空的七十二变,有七十二般变化。变化率是指在某一变化过程中的变化势头(是激烈还是缓慢),比如自行车爬坡的速度,从坡谷到坡顶的过程中,速度会随着功率输出和坡度的不同有不同的变化,速度变化最激烈是那一个点呢? 坡度也会变化,最陡最峭的是那一段呢? 这些,用导数就可以数值化表示。 现实生活中可以通过导数来推导很多变化趋势,及早规防、准备将进行的事,例如天气预报、股票分析、图像处理,又或者预测某人有无喝醉了酒,等等。 求导数即是求变化率,比较形象的计算方法是计算一条斜坡的斜率,假如这个坡没有高低起伏,像一条斜线,则它的斜率是恒定的,计算也很简单,从中(a)取一段距离(x),用x距离后的位置减取x时的位置除以x就是计算这段距离的斜率的方法,写成公式: 。 求导,里面有一个称为“极限”的东西,什么是“极限”呢? 比如做俯卧撑,一直做下去,总有一个数是你不能达到,但又可以无限接近的,这个数就是你做俯卧撑的极限,当你无限接近这个极限时你会出现什么情况,这个情况就是“导数”,千万不要把手都撑断了。 的斜率可以这样表示: 这个公式叫做函数f(a)的导函数,意思是: 当x无限接近0时,变化的结果是什么。 导函数可以用 表示,读做“f撇a”。 完整的导函数式: 这个公式称为基本求导公式 导数还有另外一种表示方法,对函数f(x)关于x的求导,可以表示为: 也可以表示为: 以可以表示为: 这里的d是英语“derivative(导数)"的第一个字母,上面几种方法表示对分子中的函数求关于分母中的变量的导数,与f撇的写法区别是,它明确表示出关于什么求导。 到此,大概也认识了导数,通过多点练习去加深印象吧,下面我们说说积分。 Hello,大家好,轮到我积分出场了,我这个积分可不是大家在某场所消费后获得的分数呵! 积分是导数的逆运算,二者就像硬币正反面,也像镜外的实体和镜中的影像。利用积分可以求出变化的规律和不规则图形的面积。 哈哈! 积分最早就是用来求圆形的面积的。 用符号 表示积分,这个符号和 有点相似, 笔画比 少了一小点,大家还记得导数的符号吗? 导数的符号 , 它比 多了一点,导数积分的中分正是原函数。 通过式子可以知道,求关于什么的积分,这个“什么”就要写 后面,例如上面求关于x时写成 。 积分是导数的逆运算,逆运算是倒过来算的意思,如果要计算 , 只需要考虑“ 关于x求导得到f(x)的函数是什么 ",就可以算出积分。 来点例子? 但是 求导后得到 的函数可不止 ,例如 , 等等的原函数,经过求导后得到的也是 , 因为对常数项求导等于0, 上面公式: 。 所以,如果只说求积分,我们可以得到很多答案,为此,人们想出了一种汇集所有答案的表示方法: 重点:含有积分常数的积分叫做不定积分。 因为常数有无限多个,所以用“不定”来表达。 很少会有求不定积分的题目,都说了“不定”,无法求出具体答案的,求积分时,通常要增设一些条件,通过条件巧妙地把积分常数C消掉,固定了条件的积分称为“定积分”。 定积分和不定积分看起来相似,其实存在很大的差异。首先不定积分是之前介绍的“求导得到f(x)的函数”。假设原函数写成F(x), 则F(x)是“ ...... + C(C为积分常数)” 这样的形式。 而定积分呢? 它比不定积分多了一项运算,该运算写成: 假如有一个表示当天股价的函数 k(x), “ " 意思是 。 例如: 表示 假设 f(x) 的不定积分为 F(x), 结合上面示例,定积分的表示为: 例如: F(x) = 3x + 771, 将a、b代入上式进行减法运算 由此可见,1.不定积分的积分会消掉, 2.定积分的结果不是函数,而是常数。 好吧,导分和积分大概就是这样子的了,想继续深入就要背公式和做练习啦! 来到最后,我们的主角“微积分”要登场了,它是导数和积分的合体,下面看看它的真面目是怎样的 这个算式称为“ 微积分基本定理”。 公式供我们先认识一下,原理则留待下次再解释。因为我还没有弄懂!小菜G的建站之路2023-06-04 09:15:071
微积分,急!
答:我曾经答过一样的题。原式=∫(x^2+1)/[2(x^4+1)]dx-∫(x^2-1)/[2(x^4+1)]dx=1/2∫(1+1/x^2)/(x^2+1/x^2)dx-1/2∫(1-1/x^2)/(x^2+1/x^2)dx=1/2∫d(x-1/x)/[(x-1/x)^2+2]-1/2∫d(x+1/x)/[(x+1/x)^2-2]=1/4∫d(x-1/x)/[(x-1/x)^2/2+1]-1/2∫d(x+1/x)/[(x+1/x+√2)(x+1/x-√2)]=√2/4*arctan[(x-1/x)/√2]-1/4∫d(x+1/x)/(x+1/x+√2)-1/4∫d(x+1/x)/(x+1/x-√2)=√2/4*arctan[(x-1/x)/√2]-1/4*ln|x+1/x+√2|-1/4*ln|x+1/x-√2| +C北有云溪2023-06-04 09:15:062
如何在微积分中求导 4种方法来在微积分中求导
目录方法1:显微分1、如果一边的y表达式已经有了,用显导数解。2、把等式代入[f(x + dx) - f(x)]/dx。3、把因子展开成[dx(2x + dx)]/dx。4、以下是类似形式的导数式。方法2:隐微分1、若写不出y只在一边的的表达式,就要用隐微分来求导了。2、例子中 xy + 2y = 3x + 2y,把y 替换成 f(x),提醒你y是一个函数。3、要求导此4、再把 f(x) 换成 y 。5、解出f"(x)。方法3:高阶求导1、一般情况下求高阶导数意思是求导数的导数(即二阶求导)。方法4:链式法则1、当y是 z的微分方程,z是x的微分方程,y是x的复合方程。导数可以用来获得一个曲线图的很多信息,包括最大、最小、峰值、谷值、斜率等等。甚至可以用导数来画出复杂方程!不幸的是,算导数的过程一般挺冗长,但是这篇文章会教你怎么简单来做。方法1:显微分1、如果一边的y表达式已经有了,用显导数解。2、把等式代入[f(x + dx) - f(x)]/dx。如 y = x,代入后[(x + dx) - x]/dx.3、把因子展开成[dx(2x + dx)]/dx。 把上下两个dx消去。得到2x + dx,让dx 趋近 0, 得到2x。这表示任何y = x 曲线的斜率是 2x。代入x,得到一个点的斜率4、以下是类似形式的导数式。任何次数的导数都是次数乘以原方程-1次。比如x 的导数是 5x, x 导数是 3.5x。若x前已有数字,直接和次数相乘就行。如3x 求导得12x。任何常数的导数是0。 8 的导数是0和的导数是导数的和。比如 x + 3x 求导得3x + 6x积的导数是第一项乘以后一项的导数加上后一项乘以前一项的导数。如 x(2x + 1) 得 x(2) + (2x + 1)3x,即8x + 3x商的导数是(假设是 f/g形式) [g(f导数) - f(g导数)]/g。(x + 2x - 21)/(x - 3) 求导得 (x - 6x + 15)/(x - 3)。方法2:隐微分1、若写不出y只在一边的的表达式,就要用隐微分来求导了。即便硬要把y写到一边,用 dy/dx 求导也很麻烦。下面例子告诉你如何解决这类问题2、例子中 xy + 2y = 3x + 2y,把y 替换成 f(x),提醒你y是一个函数。然后就会变成xf(x) + 2[f(x)] = 3x + 2f(x) 。3、要求导此方程,求等式两侧的关于x的微分(求导的专业术语),得到:xf"(x) + 2xf(x) + 6[f(x)]f"(x) = 3 + 2f"(x).4、再把 f(x) 换成 y 。注意不要对f"(x)也替换,因为这东西和f(x)不一样。5、解出f"(x)。之后答案就会变成(3 - 2xy)/(x + 6y - 2)。方法3:高阶求导1、一般情况下求高阶导数意思是求导数的导数(即二阶求导)。如果叫你求三阶导数,意思是求导数的导数的导数。有的例子高阶导数会是0.方法4:链式法则1、当y是 z的微分方程,z是x的微分方程,y是x的复合方程。y关于x的导数 (dy/dx) 就是 (dy/du)*(du/dx)。链式法则可以用于复合次数项的等式,比如 (2x - x)。要求导,只要类似求积法则,把整个等式乘以次数,把整个等式的次数减一。然后把整个等式乘以内部项的导数,(这里是 2x - x)。答案就是3(2x - x)(8x - 1)。小提示无论何时看到一个很复杂的求导问题,不要担心,只要试试用乘积法则、商法则把方程切成尽量小的小块,然后各项求导。多练习练习乘积法则、商法则、链式法则,以及特别要注意的隐微分,这些东西在微积分中是难点。要熟悉计算器使用。试试计算器不同的功能来解出导数。尤其要知道怎么用切线、导数函数来解题(如果有这功能的话)要把基本的三角函数求导原理和使用方法记住。警告不要忘了商法则中减号是在f[g"(x)]前的。很多人犯这个错。mlhxueli 2023-06-04 09:15:041
微积分:根据导数定义,求函数导数练习①y=3x+2 ②y=1/x
y"=3y"=-1/x^2余辉2023-06-04 09:15:022
导数与微积分练习题
因为1-2cos2x与1/2*(2x)^2=2x^2等阶,所以limxf(x)除以(1-cos2x)=limf(x)/2x=1,因为f(0)=0,所以可用洛比达法则,即:limf(x)/2x=limf"(x)/2=1,其中x趋近于0,所以f"(0)=2可桃可挑2023-06-04 09:15:021
微积分 极限 导数 连续的关系
微积分、极限、导数、连续它们的关系是某个函数的各自变量对应变化区域与因变量所连续积累变化情况中它们之间几何占位关系。各个自变量的连续性是微分的具备性,微小变化的区域占有性,是函数可导的极限限制性,微分可导极限的连续性自然形成了积分的几何性。使用重积分导出圆锥体积公式可以看出这一点铁血嘟嘟2023-06-03 14:32:524
微积分学中极限、导数、不定积分、定积分之间的内在联系
不定积分没有积分区间,定积分有积分区间,就想出这些啦~Ntou1232023-06-03 14:32:343
导数、定积分和微积分之间是什么关系啊。求助啊
极限是微分、导数、不定积分、定积分的基础,最初微积分由牛顿、莱布尼茨发现的时候,没有严格的定义,后来法国数学家柯西运用极限,使微积分有了严格的数学基础。极限是导数的基础,导数是极限的化简。微分是导数的变形,两相基本是同一个东西,相当于一个穿衣服,一个没穿衣服。积分是微分的逆运算,就象乘法一除法一样的关系。定积分是积分的特例,加上了区间,消除了常数C。北有云溪2023-06-03 14:30:531
请列举出大学微积分需要用到的所有求导公式
谁言寸草心,kikcik2023-06-03 14:30:4510
微积分怎么求导
微积分怎么求导微积分求导的基本方法是根据链式法则计算函数的导数,也就是使用微分的定义式来进行求导。首先需要找出函数的表达式,然后使用微分的定义式来计算函数的导数。此外,也可以使用极限法来求导,即不一定要找出函数的表达式,而是根据自变量x的极限情况来求导。如果是复杂的多元函数,可以使用偏导数来求出各自变量对函数值的导数。可桃可挑2023-06-03 14:30:242
微积分跟导数的区别是什么?
1、历史发展不同:微分的历史比积分悠久。希腊时期,人类讨论「无穷」、「极限」以及「无穷分割」等概念是微分的来源基础。而积分是由德国数学家波恩哈德·黎曼于19世纪提出的概念。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。2、数学表达不同:微分:导数和微分在书写的形式有些区别,如y"=f(x),则为导数,书写成dy=f(x)dx,则为微分。积分:设F(x)为函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数),叫做函数f(x)的不定积分,数学表达式为:若f"(x)=g(x),则有∫g(x)dx=f(x)+c。墨然殇2023-06-03 14:29:402
导数和微积分的区别是什么
导数是一种计算,微积分是一门课程,包含导数铁血嘟嘟2023-06-03 14:29:322
导数和微积分的区别是什么
导数是个名词微积分是个科目导数是属于微积分里的一个基本词条。wpBeta2023-06-03 14:29:314
定积分、不定积分、微分、微积分、导数各有什么不同(区别)?
微积分包括微分和积分 积分包括不定积分和定积分 其中 不定积分没有积分上下限 所得原函数后面加一个常数C 定积分是在不定积分的基础上 加上了积分上下限 所得的是数 dy/dx 叫导数 将dx乘到等式右边 就是微分再也不做站长了2023-06-03 14:29:241
微积分:方向导数是如何推导的
楼主真不幸,为楼主惋惜,为楼主不平!从这一页的讲义来看,很明显,编写讲义者,有两个特色:1、概念乱七八糟;2、喜欢乱起炉灶。没有办法,这种低劣档次的教师、教授,是我们的教学主流;也恰恰是因为它们的存在,我们的天才扼杀殆尽,钱学森才临终死不瞑目。下面的两张图片解答中,第一张图片,证明了方向导数的公式,运用的是导数中值定理;第二张图片,给予了国际惯用的符号表示法(notation)。每张图片均可点击放大,放大后的图片更加清晰。北有云溪2023-06-03 14:24:391
微积分怎么学?如何反导数???
反导数,即不定积分的求法,是求导数的逆过程当你学了求导数后,就会求积分了不定积分的主要求法:第一换元法:包括显式代入法和隐式代入法显式代入法,即令t = ... g(x),dt = ... g(x) dx这种的形式,主要是化简积分式子隐式代入法,即凑微分法,利用微分的原理进行隐性代入例如∫ √(1 + x) dx = ∫ √(1 + x) d(1 + x),过程中可看到dx变为d(1 + x)这是微分法,d(1 + x) = (1)"dx + (x)"dx = 0 + (1)dx = dx第二换元法:主要是用三角函数代入法以达到消除根号的效果对于√(a² - x²)、1/√(a² - x²)、√(a² - x²)/x等等,令x = a*sinθ 或 x = a*cosθ对于√(a² + x²)、1/√(a² + x²)、√(a² + x²)/x等等,令x = a*tanθ 或 x = a*cotθ对于√(x² - a²)、1/√(x² - a²)、√(x² - a²)/x等等,令x = a*secθ 或 x = a*cscθ如果被积函数中有复杂的三角函数,如sinθ/(sin²θ + cos³θ),可考虑用万能代换u = tan(x/2)但要注意第三个代入法,即令x = a*secθ 或 x = a*cscθ,他们的反函数都是断续的,需分区间讨论分部积分法:这是透过导数的乘法法则而来的即∫ vdu = uv - ∫ udv的形式,目地是能对复杂部分的被积函数求导以进行化简通常第一步是凑微分,例如∫ xcosx dx = ∫ x dsinx = xsinx - ∫ sinx dx但有些则直接用,例如∫ lnx dx = xlnx - ∫ x d(lnx) = xlnx - ∫ dx根据规则反对幂指三来做,即反三角函数:arcsin(x),arctan√[x - √(1 - x²)],arcsec(x/2)等对数函数:lnx,ln[x + √(1 + x²)],log_7(8x)等幂函数:x³,x^(8a),x^(17)等指数函数:e^(6x),a^(5x)等三角函数:sinx,tan(8x),sec(7x)反三角函数最复杂,所以做v,而三角函数最简单,所以做u有些积分会出现循环现象,只需移位即可,例如∫ e^x*cosx dx = ∫ e^x dsinx = e^x*sinx - ∫ sinx de^x = e^x*sinx - ∫ e^x*sinx dx= e^x*sinx - ∫ e^x d(-cosx) = e^x*sinx + e^x*cosx - ∫ cosx de^x= e^x*sinx + e^x*cosx - ∫ e^x*cosx dx,可见∫ e^x*cosx dx与原先的积分重复了,所以移到等号左边2∫ e^x*cosx dx = (sinx + cosx)*e^x,移到左边相加,然后两边都除以常数,使左边变回原式样子∫ e^x*cosx dx = (1/2)(sinx + cosx)*e^x + C,C为任意常数有理积分法:即利用部分分式和待定系数法原理,将一个大分式拆解为数个小分式进行化简例如求∫ dx/[(x + 1)(x² + 1)],这样的形式很难求,于是采用有理积分法设1/[(x + 1)(x² + 1)] = A/(x + 1) + (Bx + C)/(x² + 1),分子比分母少一次指数右边通分得1/[(x + 1)(x² + 1)] = [A(x² + 1) + (Bx + C)(x + 1)]/[(x + 1)(x² + 1)]分母相同,只看分子:1 ≡ A(x² + 1) + (Bx + C)(x + 1),这是个恒等式,无论x代入什么数字,两边都相等解法一:代入x = -1,1 = A(2) + 0,得出A = 1/2 代入x = 0,1 = A + C = 1/2 + C,得出C = 1/2 代入x = 1,1 = (1/2)(2) + (B + 1/2)(2) = 1 + 2B + 1,得出B = -1/2即1/[(x + 1)(x² + 1)] = 1/[2(x + 1)] + (- x + 1)/[2(x² + 1)]所以∫ dx/[(x + 1)(x² + 1)] = (1/2)∫ dx/(x + 1) + (1/2)∫ (- x + 1)/(x² + 1) dx解法二:1 ≡ A(x² + 1) + (Bx + C)(x + 1),拆开括号1 = Ax² + A + Bx² + Cx + Bx + C,再将同类项组起0x² + 0x + 1 = (A + B)x² + (B + C)x + (A + C),再比较两边的系数,得A + B = 0B + C = 0A + C = 1解方程,得:A = 1/2,B = -1/2,C = 1/2所以1/[(x + 1)(x² + 1)] = 1/[2(x + 1)] + (- x + 1)/[2(x² + 1)]要用的公式其实还有许多,有数百条,但上面的方法已经足够解一般的题目了。求完不定积分,记住别忘了常数C,这个代表任意常数,要在题目给定足够的条件才能求得例如给了一个坐标,再代入结果,就找到常数C的值了。北境漫步2023-06-03 14:24:201
微积分数学题+百分比递减?
设 n 为需要扎的针数:(.95)^n = 1-0.90取对数解 n: n = ln0.1/ln.95 = 44.9 ~ 45 针苏萦2023-05-29 09:40:161
利用傅里叶变换的微积分特性,求图所示信号的频谱函数。
该函数图像可看做将单位阶跃函数u(t)图像关于原点对称后,再向右平移一个单位得到的。令g(t)为u(t)图像关于原点对称的函数,即g(t)=-u(-t)。根据相似性定理,g(t)的傅里叶变换g(w)=-u(-w),u(w)为u(t)的傅里叶变换=(1/jw)+πδ(w),又因为δ(w)为偶函数,所以g(w)=(1/jw)-πδ(w)。因为f(t)=g(t-1),根据位移性质,f(t)的傅里叶变换f(w)=e^(-jw)*g(w)=-e^(-jw)*(πδ(w)-1/jw),即频谱。bikbok2023-05-26 08:17:461
微积分二阶常系数非齐次线性微分方程的题?
希望采纳。瑞瑞爱吃桃2023-05-25 18:52:352
大学微积分 第 3(4)题 详细解释。
不好意思,告诉你答案是在害您,为了您的学业成绩,我只能告诉您知识点 从整个学科上来看,高数实际上是围绕着极限、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算极限以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这样一梳理,整个高数的逻辑体系就会比较清晰。 极限部分: 极限的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要极限,泰勒公式,中值定理,夹逼定理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。 会计算极限之后,我们来说说直接通过极限定义的基本概念: 通过极限,我们定义了函数的连续性:函数在处连续的定义是,根据极限的定义,我们知道该定义又等价于。所以讨论函数的连续性就是计算极限。然后是间断点的分类,具体标准如下: 从中我们也可以看出,讨论函数间断点的分类,也仅需要计算左右极限。 再往后就是导数的定义了,函数在处可导的定义是极限存在,也可以写成极限存在。这里的极限式与前面相比要复杂一点,但本质上是一样的。最后还有可微的定义,函数在处可微的定义是存在只与有关而与 无关的常数使得时,有,其中。直接利用其定义,我们可以证明函数在一点可导和可微是等价的,它们都强于函数在该点连续。 以上就是极限这个体系下主要的知识点。 导数部分: 导数可以通过其定义计算,比如对分段函数在分段点上的导数。但更多的时候,我们是直接通过各种求导法则来计算的。主要的求导法则有下面这些:四则运算,复合函数求导法则,反函数求导法则,变上限积分求导。其中变上限积分求导公式本质上应该是积分学的内容,但出题的时候一般是和导数这一块的知识点一起出的,所以我们就把它归到求导法则里面了。能熟练运用这些基本的求导法则之后,我们还需要掌握几种特殊形式的函数导数的计算:隐函数求导,参数方程求导。我们对导数的要求是不能有不会算的导数。这一部分的题目往往不难,但计算量比较大,需要考生有较高的熟练度。 然后是导数的应用。导数主要有如下几个方面的应用:切线,单调性,极值,拐点。每一部分都有一系列相关的定理,考生自行回顾一下。这中间导数与单调性的关系是核心的考点,考试在考查这一块时主要有三种考法:①求单调区间或证明单调性;②证明不等式;③讨论方程根的个数。同时,导数与单调性的关系还是理解极值与拐点部分相关定理的基础。另外,数学三的考生还需要注意导数的经济学应用;数学一和数学二的考生还要掌握曲率的计算公式。 积分部分: 一元函数积分学首先可以分成不定积分和定积分,其中不定积分是计算定积分的基础。对于不定积分,我们主要掌握它的计算方法:第一类换元法,第二类换元法,分部积分法。这三种方法要融会贯通,掌握各种常见形式函数的积分方法。熟练掌握不定积分的计算技巧之后再来看一看定积分。定积分的定义考生需要稍微注意一下,考试对定积分的定义的要求其实就是两个方面:会用定积分的定义计算一些简单的极限;理解微元法(分割、近似、求和、取极限)。至于可积性的严格定义,考生没有必要掌握。然后是定积分这一块相关的定理和性质,这中间我们就提醒考生注意两个定理:积分中值定理和微积分基本定理。这两个定理的条件要记清楚,证明过程也要掌握,考试都直接或间接地考过。至于定积分的计算,我们主要的方法是利用牛顿—莱布尼兹公式借助不定积分进行计算,当然还可以利用一些定积分的特殊性质(如对称区间上的积分)。一般来说,只要不定积分的计算没问题,定积分的计算也就不成问题。定积分之后还有个广义积分,它实际上就是把积分过程和求极限的过程结合起来了。考试对这一部分的要求不太高,只要掌握常见的广义积分收敛性的判别,再会进行一些简单的计算就可以了。 会计算积分了,再来看一看定积分的应用。定积分的应用分为几何应用和物理应用。其中几何应用包括平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算,曲线弧长的计算,旋转曲面面积的计算。物理应用主要是一些常见物理量的计算,包括功,压力,质心,引力,转动惯量等。其中数学一和数学二的考生需要全部掌握;数学三的考生只需掌握平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算。这一部分题目的综合性往往比较强,对考生综合能力要求较高。 这就是高等数学整个学科从三种基本运算的角度梳理出来的主要知识点。除此之外,考生需要掌握的知识点还有多元函数微积分,它实际上是将一元函数中的极限,连续,可导,可微,积分等概念推广到了多元函数的情况,考生可以按照上面一样的思路来总结。另外还有两章:级数、微分方程。它们可以看做是对前面知识点综合的应用。比如微分方程,它实际上就是积分学的推广,解微分方程就是求积分。而级数则是对极限,导数和积分各种知识的综合应用。小白2023-05-25 18:52:261
在线急求一道微积分:关于定积分的性质~~~~~~
倒数第二行就是式子取a到b的积分 最后一行就是求定积分的啊小菜G的建站之路2023-05-25 18:52:154
高数 微积分 定积分 椭圆 周长 泰勒公式 无限级数
,你试试:先对 f 的积分上限函数F(x) = ∫[0,x]f(t)dt = sqr(1+x^2)-1展开成Miclaurin级数,再求导陶小凡2023-05-25 18:52:001
微积分/无穷级数/敛散判别
你是来测智商的吗……meira2023-05-25 18:52:004
函数微积分关于极限的定义
在高等数学中,极限是一个重要的概念。 极限可分为数列极限和函数极限,分别定义如下。 首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.1416 数列极限: 定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式 |Xn - a|<ε 都成立,那么就成常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。记为lim Xn = a 或Xn→a(n→∞) 数列极限的性质: 1.唯一性:若数列的极限存在,则极限值是唯一的; 2.改变数列的有限项,不改变数列的极限。 几个常用数列的极限: an=c 常数列 极限为c an=1/n 极限为0 an=x^n 绝对值x小于1 极限为0 函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∽时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1+1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。参见 http://baike.baidu.com/view/17644.htm人类地板流精华2023-05-25 18:51:351
微积分--极限定义
在高等数学中,极限是一个重要的概念。 极限可分为数列极限和函数极限,分别定义如下。 首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An 1<A<An 2[(An 1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.1416 数列极限: 定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式 |Xn - a|<ε 都成立,那么就成常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。记为lim Xn = a 或Xn→a(n→∞) 数列极限的性质: 1.唯一性:若数列的极限存在,则极限值是唯一的; 2.改变数列的有限项,不改变数列的极限。 几个常用数列的极限: an=c 常数列 极限为c an=1/n 极限为0 an=x^n 绝对值x小于1 极限为0 函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a, ∞)内有定义,如果当x→ ∽时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于 ∞时函数f(x)的极限。记作lim f(x)=A ,x→ ∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0 limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x) g(x))=limf(x) limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1 1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。 参见 http://baike.baidu.com/view/17644.htmCarieVinne 2023-05-25 18:51:351
微积分里的极限的定义和理论是什么?
微积分里的极限的定义和理论是什么在高等数学中,极限是一个重要的概念。 极限可分为数列极限和函数极限,分别定义如下。 首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.1416 数列极限: 定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式 |Xn - a|<ε 都成立,那么就成常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。记为lim Xn = a 或Xn→a(n→∞) 数列极限的性质: 1.唯一性:若数列的极限存在,则极限值是唯一的; 2.改变数列的有限项,不改变数列的极限。 几个常用数列的极限: an=c 常数列 极限为c an=1/n 极限为0 an=x^n 绝对值x小于1 极限为0 函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∽时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1+1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。CarieVinne 2023-05-25 18:51:342
微积分可以从光滑流形上的积分,开始建立起来吗?
可以此后故乡只2023-05-24 12:09:064
对多元函数的偏导,为什么明明是一个方法,很多微积分教师却
呵呵,您这样问,我们都汗颜啊ardim2023-05-24 12:08:251
多元微积分和偏微分的区别
多元微积分和偏微分是微积分的两个不同分支。多元微积分研究的是多元函数(也称为向量函数)的微积分,即有多个变量的函数的微积分;而偏微分则是研究函数在一个自变量有变化时的变化率对其他自变量微小变化的趋势,通常应用于研究物理学、工程学和经济学等问题。多元微积分主要包括偏导数、方向导数、梯度、散度和旋度等概念,它们是多元函数微积分的基础。偏微分主要用于解决含多个自变量的函数的微积分和偏微分方程问题,是现代数学和物理学中的基础学科。北营2023-05-24 07:49:251
关于微积分黎曼和的求解,不明白左右中黎曼和是什么意思,希望给个步骤和解析过程,例如下题。
求黎曼和的原理就是将函数与x轴围成的面积做划分,然后求和,然后将划分无限细化,求极限的过程ardim2023-05-23 22:47:482
大学微积分:什么函数既是凸函数又是凹函数?
在曲线上任取两点A,B设其坐标分别为(x1,y1),(x2,y2),y=f(x)取AB的中点C(x,y),若:(y1+y2)/2<f[(x1+x2)/2]则称函数为凸函数(向上凸)若:(y1+y2)/2>f[(x1+x2)/2]则称函数为凹函数(向下凹注(x1+x2)/2为C点的横坐标tt白2023-05-23 19:25:192
大学微积分:什么函数既是凸函数又是凹函数?
在曲线上任取两点A,B设其坐标分别为(x1,y1),(x2,y2),y=f(x)取AB的中点C(x,y),若:(y1+y2)/2<f[(x1+x2)/2]则称函数为凸函数(向上凸)若:(y1+y2)/2>f[(x1+x2)/2]则称函数为凹函数(向下凹注(x1+x2)/2为C点的横坐标瑞瑞爱吃桃2023-05-23 19:25:161
微积分中什么是内点,什么是外点,什么是聚点?
内点:指的是存在一个该点的领域被包含在所给点集,则称该点是该点集的内点外点:指的是存在一个该点的领域完全在所给点集之外,则称该点为外点边界点:指的任做该点的领域,领域内都同时有外点和内点,则称该点为边界点聚点:聚点一定包括内点,但并不一定包括所有的边界点。有些边界点是孤立点,它就不属于聚点。 不考虑外点,内点和边界点互相对立,聚点和孤立点互相对立。开集指的点集内全是内点闭集指的是集合内的点既有内点还有边界点。连通集可以直观的理解为没有被分割开的一个独立的点集;而如果该连通集同时还是开集,则成为区域或开区域;对应的,该连通集如果同时还是闭集则成为闭区域。有界集可以理解为有限大的点集,无界集则相反。扩展资料:微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。参考链接:百度百科_微积分tt白2023-05-23 12:58:511
微积分中什么叫内点、什么叫外点、什么叫边界点?
内点:指的是存在一个该点的领域被包含在所给点集,则称该点是该点集的内点外点:指的是存在一个该点的领域完全在所给点集之外,则称该点为外点边界点:指的任做该点的领域,领域内都同时有外点和内点,则称该点为边界点聚点:聚点一定包括内点,但并不一定包括所有的边界点。有些边界点是孤立点,它就不属于聚点。 不考虑外点,内点和边界点互相对立,聚点和孤立点互相对立。开集指的点集内全是内点闭集指的是集合内的点既有内点还有边界点。连通集可以直观的理解为没有被分割开的一个独立的点集;而如果该连通集同时还是开集,则成为区域或开区域;对应的,该连通集如果同时还是闭集则成为闭区域。有界集可以理解为有限大的点集,无界集则相反。扩展资料:微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。参考链接:百度百科_微积分余辉2023-05-23 12:58:511
微积分中内点和外点的区别是什么?
内点:指的是存在一个该点的领域被包含在所给点集,则称该点是该点集的内点外点:指的是存在一个该点的领域完全在所给点集之外,则称该点为外点边界点:指的任做该点的领域,领域内都同时有外点和内点,则称该点为边界点聚点:聚点一定包括内点,但并不一定包括所有的边界点。有些边界点是孤立点,它就不属于聚点。 不考虑外点,内点和边界点互相对立,聚点和孤立点互相对立。开集指的点集内全是内点闭集指的是集合内的点既有内点还有边界点。连通集可以直观的理解为没有被分割开的一个独立的点集;而如果该连通集同时还是开集,则成为区域或开区域;对应的,该连通集如果同时还是闭集则成为闭区域。有界集可以理解为有限大的点集,无界集则相反。扩展资料:微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。参考链接:百度百科_微积分凡尘2023-05-23 12:58:511
微积分中的聚点和内点、外点有什么联系和区别?
内点:指的是存在一个该点的领域被包含在所给点集,则称该点是该点集的内点外点:指的是存在一个该点的领域完全在所给点集之外,则称该点为外点边界点:指的任做该点的领域,领域内都同时有外点和内点,则称该点为边界点聚点:聚点一定包括内点,但并不一定包括所有的边界点。有些边界点是孤立点,它就不属于聚点。 不考虑外点,内点和边界点互相对立,聚点和孤立点互相对立。开集指的点集内全是内点闭集指的是集合内的点既有内点还有边界点。连通集可以直观的理解为没有被分割开的一个独立的点集;而如果该连通集同时还是开集,则成为区域或开区域;对应的,该连通集如果同时还是闭集则成为闭区域。有界集可以理解为有限大的点集,无界集则相反。扩展资料:微积分(Calculus)是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。参考链接:百度百科_微积分再也不做站长了2023-05-23 12:58:511
在微积分中,内点,外点,边界点的含义是什么?
答:D图出来的两个概念能理解它的含义。 1,增量的概念:ΔX= X 2 - X 1,ΔY= Y2 - Y1 Δ是增量式的意义在这里,只要将减去的金额后面的前面增量调用无论正负。 2,无穷小的概念:当一个变量x,越来越趋向于一个值,这个过程往往是无止境的, x其中一个无限大的差异趋于0,说A是x的限制。 这种差别,我们称之为“无穷小”,这是越来越小的过程,成为到0无限的过程,它是一个不小的数字,而是一个过程趋于0 。 3,Δ一方面是增量的概念,如果x1和x2的差距是非常小的,这个小一点有限的。只是写出来,不管有多少位小数,只要你来写,只要你的笔停,只限于小。 当在减少无尽,无尽的接近,靠近的过程中,x1和x2 无休止接近0 x1和x2之间的差距。然后我们写DX,即Δx为仅限于少量的, dx是一个无穷小量。 4,D的来源,最初差=差距。当这种差距往往为0:00无尽分化的进化,它变得无限小的手段,所谓的“差。” “衍生物”是一个过程,是无止境的,“分裂”没完没了“的区别”的过程。 仔细考虑这方面是非常值得的,都应该写,是“数学分析”,这是一层厚厚的“微积分”了。审查房东有任何疑问,请嗨,我,我详细向你解释。Ntou1232023-05-23 12:58:502
微积分微分算子倒三角▽的作用
微积分微分算子倒三角的作用是因为所以的作用它起到了关键性的问题,所以你要好好回答。拌三丝2023-05-23 12:58:265
集合论 关系 微积分 数论 图论 组合数学 谓词逻辑 推理系统 群论 拓扑学 分形学 图形学 矩阵
都学最好,因为我计算机专业,这些课程都学过了u投在线2023-05-23 12:58:023
大学微积分的学习经验
认真听课,不玩手机,完成作业,这就够了。铁血嘟嘟2023-05-22 18:13:093
调和级数是关于数学哪方面的知识??属于微积分吗??
级数是无穷项相加它主要用于近似计算方面。你的数学用表就是用级数算出来的。要计算机应用上很方便应用特别广的是傅立叶级数。它在电磁学上有广泛应用。电学上经常要用到它微积分是它的基础。豆豆staR2023-05-22 18:12:571
费马对微积分诞生的贡献主要在于其发明的
费马对微积分诞生的贡献主要在于其发明的求值的方法。皮埃尔·德·费马(Pierre de Fermat,1601年8月17日~1665年1月12日),法国律师和业余数学家。他在数学上的成就不比职业数学家差,他似乎对数论最有兴趣,亦对现代微积分的建立有所贡献。被誉为“业余数学家之王”。皮耶·德·费马(Pierre de Fermat)是17世纪的法国一位律师,也是一位业余数学家。之所以称业余,是由于皮耶·德·费马具有律师的全职工作。根据法文实际发音并参考英文发音,他的姓氏也常译为“费尔玛”。费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王“。贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就。17世纪是杰出数学家活跃的世纪,而贝尔认为费马是17世纪数学家中最多产的明星。Chen2023-05-21 16:47:221
微积分中说函数极限的六种形式是哪六种
楼主的说法,一定是被误导了。1、如果有极限,直接代入,也就是“定式”,就是可以直接确定的极限表达式;2、如果直接代入,出现无法确定的情况没,需要经过特别处理才能确定最后结果,这样的情况有七种,七种不定式:(1)、无穷大减无穷大;(2)、无穷大乘无穷小;(3)、无穷大除无穷大;(4)、无穷小除无穷小;(5)、1的无穷大次幂;(6)、无穷大的无穷小次幂;(7)、无穷小的无穷小次幂。韦斯特兰2023-05-21 12:53:201
函数微积分关于极限的定义
在高等数学中,极限是一个重要的概念。 极限可分为数列极限和函数极限,分别定义如下。 首先介绍刘徽的"割圆术",设有一半径为1的圆,在只知道直边形的面积计算方法的情况下,要计算其面积。为此,他先作圆的内接正六边形,其面积记为A1,再作内接正十二边形,其面积记为A2,内接二十四边形的面积记为A3,如此将边数加倍,当n无限增大时,An无限接近于圆面积,他计算到3072=6*2的9次方边形,利用不等式An+1<A<An+2[(An+1)-An](n=1,2,3....)得到圆周率=3927/1250约等于3.1416 数列极限: 定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式 |Xn - a|<ε 都成立,那么就成常数a是数列|Xn|的极限,或称数列|Xn|收敛于a。记为lim Xn = a 或Xn→a(n→∞) 数列极限的性质: 1.唯一性:若数列的极限存在,则极限值是唯一的; 2.改变数列的有限项,不改变数列的极限。 几个常用数列的极限: an=c 常数列 极限为c an=1/n 极限为0 an=x^n 绝对值x小于1 极限为0 函数极限的专业定义: 设函数f(x)在点x。的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε 那么常数A就叫做函数f(x)当x→x。时的极限。 函数极限的通俗定义: 1、设函数y=f(x)在(a,+∞)内有定义,如果当x→+∽时,函数f(x)无限接近一个确定的常数A,则称A为当x趋于+∞时函数f(x)的极限。记作lim f(x)=A ,x→+∞。 2、设函数y=f(x)在点a左右近旁都有定义,当x无限趋近a时(记作x→a),函数值无限接近一个确定的常数A,则称A为当x无限趋近a时函数f(x)的极限。记作lim f(x)=A ,x→a。 函数的左右极限: 1:如果当x从点x=x0的左侧(即x〈x0)无限趋近于x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的左极限,记作x→x0-limf(x)=a. 2:如果当x从点x=x0右侧(即x>x0)无限趋近于点x0时,函数f(x)无限趋近于常数a,就说a是函数f(x)在点x0处的右极限,记作x→x0+limf(x)=a. 注:若一个函数在x(0)上的左右极限不同则此函数在x(0)上不存在极限 函数极限的性质: 极限的运算法则(或称有关公式): lim(f(x)+g(x))=limf(x)+limg(x) lim(f(x)-g(x))=limf(x)-limg(x) lim(f(x)*g(x))=limf(x)*limg(x) lim(f(x)/g(x))=limf(x)/limg(x) ( limg(x)不等于0 ) lim(f(x))^n=(limf(x))^n 以上limf(x) limg(x)都存在时才成立 lim(1+1/x)^x =e x→∞ 无穷大与无穷小: 一个数列(极限)无限趋近于0,它就是一个无穷小数列(极限)。 无穷大数列和无穷小数列成倒数。参见 http://baike.baidu.com/view/17644.htm苏州马小云2023-05-21 12:53:201
微积分的基本思想是极限
微积分的基本思想是极限思想。函数的连续性,导数以及定积分等等都是借助于极限来定义的。 所以可以说:微积分就是用极限思想来研究函数的一门学科。 极限的思想在刘徽割圆术就有了,但是仅仅是一种计算方法,而不是一个思维方式。在中国古代,刘徽,祖冲之计算圆周率用的割圆术就是典型的微积分方法,三国时期的刘徽在他的割圆术中提到的“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。微积分介绍:“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中。此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。以上是属于“极限”内涵通俗的描述,“极限”的严格概念最终由柯西和魏尔斯特拉斯等人严格阐述。肖振2023-05-20 22:09:411
极限思想与微积分有何关系
是微积分的理论基础...........ardim2023-05-20 22:09:412
什么是"拓扑学"和"微积分"?
几何拓扑学(Geometric Topology),是数学中研究流形以及它们的嵌入,俱代表性的主题有扭结理论和辫子群。几何拓扑学几乎等同于考虑2维,3维,或者4维的低维拓扑学。 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。 极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。kikcik2023-05-20 17:38:411
在今天,牛顿和菜布尼茨被誉为发明微积分的两个独立作者
1684年莱布尼茨发表第一篇微分论文,定义了微分概念,采用了微分符号dx,dy1686年他又发表了积分论文,讨论了微分与积分,使用了积分符号 ∫1674年11月11日他完成一套完整的微分学1667年牛顿手稿完成了代表了微积分发明的《流数法》(发表时间为1671年)从手稿完成的时间看,牛顿确是比莱布尼茨早了七年,但莱布尼茨的微积分发明比牛氏的更完善,而且囿于当年通迅条件和学术交流条件的限制,莱布尼茨完全是在独立的情况下发明微积分的。1695年英国学者宣称:微积分的发明权属于牛顿1699年又说:牛顿是微积分的“第一发明人”1712年英国皇家学会成立了一个机构,专门调查此案,1713年发布公告,确认了牛顿是微积分的“第一发明人”由于对牛顿的盲目崇拜,英国学者长期固守于牛顿的“流数术”,只用牛顿的“流数”符号,不屑采用莱布尼茨更优越的符号。以致英国的数学脱离了数学发展的时代潮流,这些无谓的争论,均是一些外面的学痞、学阀在瞎胡闹。事实上当事人牛顿和莱布尼茨两位,均是谦逊礼让。牛顿对他同时代的莱布尼茨,态度极为诚恳,他在《自然哲学的数学原理》一书的第一版中,毫不含糊地承认了莱布尼茨的天才。而莱布尼茨对牛顿的评价非常的高,1701年,在柏林宫廷的一次宴会上,普鲁士国王询问莱布尼茨对牛顿的看法,莱布尼茨说道“在从世界开始到牛顿生活的时代的全部数学中,牛顿的工作超过了一半”。这是一种说法,还有另外一种说法:1699年,移居英国的一名瑞士人一方面为了讨好英国人,另一方面由于与莱布尼茨的个人恩怨,指责莱布尼茨的微积分是剽窃自牛顿的流数术,但此人并无威望,遭到莱布尼茨的驳斥后,就没了下文。1704年,在其光学著作的附录中,牛顿首次完整地发表了其流数术。当年出现了一篇匿名评论,反过来指责牛顿的流数术是剽窃自莱布尼茨的微积分。 于是究竟是谁首先发现了微积分,就成了一个需要解决的问题了。1711年,苏格兰科学家、英国王家学会会员约翰·凯尔在致王家学会书记的信中,指责莱布尼茨剽窃了牛顿的成果,只不过用不同的符号表示法改头换面。同样身为王家学会会员的莱布尼茨提出抗议,要求王家学会禁止凯尔的诽谤。王家学会组成一个委员会调查此事,在次年发布的调查报告中认定牛顿首先发现了微积分,并谴责莱布尼茨有意隐瞒他知道牛顿的研究工作。此时牛顿是王家学会的会长,虽然在公开的场合假装与这个事件无关,但是这篇调查报告其实是牛顿本人起草的。他还匿名写了一篇攻击莱布尼茨的长篇文章。 当然,争论并未因为这个偏向性极为明显的调查报告的出笼而平息。事实上,这场争论一直延续到了现在。没有人,包括莱布尼茨本人,否认牛顿首先发现了微积分。说牛顿耍阴招应该是指第二种吧,当时牛顿比莱布尼茨的声望更高,影响更大,说是牛顿发明的也没错,从发明时间上看牛顿确实比莱布尼茨早,但他在莱布尼茨公布自己的发现之后才站出来,那时候交流不便,谁也说不清莱布尼茨有没有看过牛顿的手稿。我觉得在这场争论中更多的是国家力量,是英国的岛国心态在作祟,由于对牛顿的盲目崇拜,英国学者长期固守于牛顿的“流数术”,只用牛顿的“流数”符号,不屑采用莱布尼茨更优越的符号,最终导致英国的数学脱离了数学发展的时代潮流达一百多年,直到1820年才愿意承认其他国家的数学成果,重新加入国际主流。这其中各种纠结,具体如何已无答案。凡尘2023-05-20 17:38:351
如何理解微积分中的莱布尼茨法则?
莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿-莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。一般的,如果函数u=u(x)与函数v=v(x)在点x处都具有n阶导数,那么此时有 莱布尼茨公式是导数计算中会使用到的一个公式,它是为了求取两函数乘积的高阶导数而产生的一个公式。拓展资料: 微积分的创立者是牛顿和莱布尼茨,之所以说牛顿和莱布尼茨的创立者,事实上是因为他们把定积分与不定积分联系起来,从而建立了微分和积分相互联系的桥梁。牛顿莱布尼茨公式,经常也被称为“微积分学基本定理”莱布尼茨法则,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。莱布尼兹公式,也称为乘积法则,是数学中关于两个函数的积的导数的一个计算法则。不同于牛顿莱布尼茨公式,莱布尼茨公式用于对两个函数的乘积求取其高阶导数。 扩展资料 推导过程: 如果存在函数u=u(x)与v=v(x),且它们在点x处都具有n阶导数,那么显而易见的., u(x) ± v(x) 在x处也具有n阶导数,且 (u±v)(n) = u(n)± v(n) 至于u(x) × v(x) 的n阶导数则较为复杂,按照基本求导法则和公式,可以得到: (uv)" = u"v + uv" (uv)"" = u""v + 2u"v" + uv"" (uv)""" = u"""v + 3u""v" + 3u"v"" + uv真颛2023-05-20 17:38:341
微积分的形成
高三人教版数学书上有啊gitcloud2023-05-20 14:31:285
微积分的这几本书如何挑选?
其实都一样LuckySXyd2023-05-20 08:57:287
数学,(微积分,高数,calculus)(有余力数分)
高数初学者一开始不用学得那么全面,甚至不用去管极限的 (ε, δ)定义,而是要先观其大略地过它一遍、先入门,这并非是走马观花,而是要理解核心思想、掌握主干,等掌握了大略之后再深入细节会轻松很多, 托马斯, 斯图尔特差不多 菲赫金哥尔茨 数分 Simmons, George Finlay - Differential equations with applications and historical notes-Chapman and Hall CRC 微积分及其应用Calculus and Its Applications (9th Edition) Marvin L. Bittinger / David J. Ellenbogen / Addison Wesley 微积分及其应用(原书第8版) 微积分及其应用(英文版·第13版)/高等学校数学双语教学推荐教材 (Larry J. Goldstein P.Lax 最好的工科教材中文版 Calculus With Applications Peter Lax Multivariable 当我们在用一本书(或跟一门课)学习的时候,基本上不可能不在学习中产生疑问,除去我们自己的原因之外,也有书本的原因:正如人无完人一样,没有哪一本书是完美无瑕的,以至于能解决你在该科目学习过程中的所有问题(诺贝尔物理奖获得者 Gerard "t Hooft 和菲尔兹奖获得者 丘成桐 都表达过同样的观点:当你能够发现书里的不足之处时你就有不错的进步了),所以我强烈建议自学者除了选一本较好的教材作为学习主轴后也要再多找几本同类教材作参考书,以便一本书上的知识点讲解看不懂的时候可以看另一本上的来打开思路。若看书也不能解决问题,那么还可以把你的数学问题用英文写了发在 Mathematics Stack Exchange 这个网络社区里问一问,老外们乐于助人的品质、对数学的热情、认真负责的态度都很感染我——向他们学习!顺便一提:中学时期看不懂教材我们可以买很多参考书来看,但到大学来想找本参考书就不太容易了,原因之一我想是高等教育领域的应试教育市场经济不够繁荣所致。 Inside Interesting Integrals 小平邦彦写的应该是分三卷 Rudin的书的问题在于观点太高(当然这也是这本书的优点),对初学者不友好,可以作为研究者的精研用书。 菲赫金戈尔茨《微积分教程》翻译得很不好,读起来跟吃木头一样,当然里面各种算例实在是妙啊妙。 概念扫盲,只求感性理解,不求严谨证明。起码第一遍不求,后面可以酌情看那些高赞回答推荐的教材。 数学专业的学生有很多可以参考的,诸如菲赫金哥尔茨,托马斯,卓里奇,rudin 算法:==== 如何求解问题 Calculus: An Intuitive and Physical Approach (Second Edition) Calculus: Single & Multivariable, Hughes-Hallett, Gleason, McCallun et al. 菲赫金哥尔茨的《微积分学教程》(大神可以选择卓里奇),也可以看中科大的《数学分析教程》 吉米多维奇的书招式齐全,但不谈内力。 数学分析八讲 辛钦的书是精髓中的精髓,但内力稍弱的人要是只修炼这一本,常常难得要领,走火入魔也是有的。 微积分及其应用(原书第8版) 班纳的书是干货中的干货,贵在实在,但讲解集中在单变量微积分的范围内。 小平邦彦的这本书,名为《微积分入门》,实则是以数学分析的全局观去剖析微积分,思路流畅,讲解细致,范围涵盖了一元微积分和多元微积分。”老者笑道,“说到修炼内力,打通思路,这本书可算得上是思维中见招式,全局中看细节 托马斯微积分 斯图尔特微积分 微积分和数学分析引论(第一卷) Richard Courant / Fritz John 高等微积分(第3版修订版)高木贞治 解析概论 ROM的《微积分》 陈效群 微积分学习辅导 《微积分同步练习》清华大学出版社 陶哲轩数学分析 ①The Fundamentals of Mathematical Analysis, Volume 1, 1st Edition, G. M. Fikhtengol"ts(中译本:菲赫金哥尔茨《数学分析原理》)、 ②Richard Courant, Fritz John, Introduction to Calculus and Analysis(Reprint of the 1989 edition) 、 ③陈纪修、於崇华、金路的《数学分析》。 各位学完如上面推荐的这种入门教材后,若要深入学习高数,可以看Richard Courant, Fritz John, Introduction to Calculus and Analysis(Reprint of the 1989 edition), Lay, Nagle, Saff & Snider, Linear Algebra and Differential Equations 对数学热爱书 Mathematics for the Nonmathematician 张景中的漫画数学,其二就是萧文强的数学证明(可能后来还可以加上martrix67 The problem with books like Thomas" Calculus or Stewart Calculus is that you won"t get a thorough understanding of the inner mechanics of calculus. As long as you don"t have a good prof or teacher, I would stay away from these books. If you want to understand what I mean, take a look at some arbitrary sections in these books. You"ll see a short paragraph, which serves as an intro, then some boxes with formulas, then a few workout examples and then a bunch of exercises. This means, you will only learn HOW to you the formulas instead of understanding the WHY! My advice is, visit YouTube, search for Michael Van Biezen, learn the techniques of Calculus 1–3 (ca. 17 hours), and then, to understand the inner mechanics of Calculus, read Tom Apostol. Biezen will serve as a shortcut for learning the techniques and Apostol will teach you the WHY. Alternatively you can search for Prof.Leonard on YouTube and watch his Calculus 1–3 lectures (ca 168 hours). He works through the books like Stewart Calculus but tries to teach you the sections in detail. Nevertheless, I would prefer the first way Biezen -> Apostol. To answer your question, ①The Fundamentals of Mathematical Analysis, Volume 1, 1st Edition, G. M. Fikhtengol"ts(中译本:菲赫金哥尔茨《数学分析原理》)、 ②Richard Courant, Fritz John, Introduction to Calculus and Analysis(Reprint of the 1989 edition) 、 ③陈纪修、於崇华、金路的《数学分析》。 Analysis by Its History Book by Ernst Hairer and Gerhard Wanner Mathematics and its History-by John Stillwell apostol calculus Elementary Calculus: An Infinitesimal Approach by Jerome Keisler good calculus book site://www.quora.com/ mathematics books to non-mathematicians. Mathematics: Its Content, Methods and Meaning by [A. D. Aleksandrov] Mathematics: From the Birth of Numbers 小平邦彦的微积分入门 best math book site://www.quora.com/ If you want to learn calculus just to apply it, get the typical popular textbooks (Stewart, Edwards, etc), the notation is much more modern and the progression is more in tune with the contemporary pedagogics of calculus. If you want to learn calculus like a mathematician, get the Spivak or the Courant, these are fantastic and have challenging problems and rigorous proofs of everything under the sun. 这位老哥很用心 https://www.cnblogs.com/iMath/p/9810722.html If you don"t want to buy a hardcopy you can get a comprehensive Calculus book from OpenStax where Gilbert Strang is one of the Authors. (see link below). I hope I could help you. I struggled a lot with the same question.bikbok2023-05-20 08:57:271
拉格朗日定理的微积分
微积分中的拉格朗日定理即(拉格朗日中值定理)设函数f(x)满足条件:(1)在闭区间[a,b]上连续;(2)在开区间(a,b)可导;则至少存在一点ε∈(a,b),使得f(b) - f(a)=f"(ε)(b-a)或者f(b)=f(a) + f "(ε)(b - a)[证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:1,G(a)=G(b);2.G(x)在[a,b]连续;3.G(x)在(a,b)可导.此即罗尔定理条件,由罗尔定理条件即证]人类地板流精华2023-05-20 08:56:441
微积分中什么是虚数,什么又是复数?
“虚数”这个名词是17世纪著名数学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。虚数轴和实数轴构成的平面称复平面,复平面上每一点对应着一个复数。复数由实数部分和虚数部分所组成的数。实数部分可以是零。如果虚数部分也允许是零,那么实数就是复数的子集。列如形为2+3i,4+5i的数都是复数。就如同实数可以在数轴上表示一样,复数可以在平面上表示,这种表示通常被称为阿干图示法,以纪念瑞士数学家阿干(J.R.Argand,1768-1822)。复数x+iy以坐标黑点(x,y)来表示如果两个复数的实部相等,虚部互为相反数,那么这两个复数称为共轭复数.再也不做站长了2023-05-20 08:55:541
微积分中无穷小阶 概念是?
条件是a(x)与b(x)均为无穷小,当lima(x)/b(x)=非零常数,则称a(x)与b(x)是同阶无穷小;当lima(x)/b(x)=1,则称a(x)与b(x)是等价无穷小;当lima(x)/bⁿ(x)=非零常数,则称a(x)是b(x)的n阶无穷小;当lima(x)/b(x)=0,则称a(x)是b(x)的高阶无穷小,b(x)为a(x)的低阶无穷小。例:x--->0时limsin³x/x=0,说明sin³x是x的高阶无穷小,x是sin³x的低阶无穷小;limsin³x/x³=1,说明sin³x是x的三阶无穷小,sin³x与x³是等价无穷小。肖振2023-05-19 11:02:251
什么是符号函数?什么是分段函数?它们在微积分有什么作用?
符号函数 就是y=sgn x 也是一个分段函数当x<0 y=-1,当x=0 y=0 当x>0,y=1【符号函数的性质】 对于任意的实数x,有:|x|=x*sgn(x), x=|x|*sgn(x). 【符号函数的功能】 寻找函数的零点====================================所谓分段函数通俗点就是在图像上分成两段的函数专业定义:分段函数;对于自变量x的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数.它是一个函数,而不是是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集.黑桃花2023-05-19 11:00:472
大学数学微积分基础知识
微积分是大学数学中研究函数的微分、积分以及有关概念和应用的数学分支。下面是我分享的大学数学微积分基础知识,一起来看一下吧。 历史 从微积分成为一门学科来说,是在17世纪,但是积分的思想早在古代就已经产生了。 积分学的早期史 公元前7世纪,古希腊科学家、哲学家泰勒斯就对球的面积、体积、与长度等问题的研究就含有微积分思想。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有积分学的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线所得的体积的问题中就隐含着近代积分的思想。中国古代数学家也产生过积分学的萌芽思想,例如三国时期的刘徽,他对积分学的思想主要有两点:割圆术及求体积问题的设想。 微积分产生 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。数学首先从对运动(如天文、航海问题等)的研究中引出了一个基本概念,在那以后的二百年里,这个概念在几乎所有的工作中占中心位置,这就是函数——或变量间关系——的概念。紧接着函数概念的采用,产生了微积分,它是继欧几里得几何之后,全部数学中的一个最大的创造。围绕着解决上述四个核心的科学问题,微积分问题至少被十七世纪十几个最大的数学家和几十个小一些的数学家探索过。其创立者一般认为是牛顿和莱布尼茨。在此,我们主要来介绍这两位大师的工作。 实际上,在牛顿和莱布尼茨作出他们的冲刺之前,微积分的大量知识已经积累起来了。十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费马、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 例如费马、巴罗、笛卡尔都对求曲线的切线以及曲线围成的面积问题有过深入的研究,并且得到了一些结果,但是他们都没有意识到它的重要性。在十七世纪的前三分之二,微积分的工作沉没在细节里,作用不大的细微末节的推理使他们筋疲力尽了。只有少数几个大数学家意识到了这个问题,如詹姆斯·格里高利说过:“数学的真正划分不是分成几何和算术,而是分成普遍的和特殊的”。而这普遍的东西是由两个包罗万象的思想家牛顿和莱布尼茨提供的。十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的.无穷小量,因此这门学科早期也称为无穷小分析,这正是现时数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿 牛顿在1671年写了《流数术和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。 莱布尼茨 德国的莱布尼茨(又译“莱布尼兹”)是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一篇说理也颇含糊的文章,却有划时代的意义。它已含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现今我们使用的微积分通用符号就是当时莱布尼茨精心选用的。 基本内容 数学分析 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。 微积分 微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。北有云溪2023-05-19 11:00:341
微积分是由牛顿和谁发明的?
牛顿和莱布尼茨kikcik2023-05-19 11:00:344
微积分是什么?
微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。 极限和微积分的概念可以追溯到古代。到了十七世纪后半叶,牛顿和莱布尼茨完成了许多数学家都参加过准备的工作,分别独立地建立了微积分学。他们建立微积分的出发点是直观的无穷小量,理论基础是不牢固的。直到十九世纪,柯西和维尔斯特拉斯建立了极限理论,康托尔等建立了严格的实数理论,这门学科才得以严密化。 微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。 微积分学是微分学和积分学的总称。 客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。 微积分学的建立 从微积分成为一门学科来说,是在十七世纪,但是,微分和积分的思想在古代就已经产生了。 公元前三世纪,古希腊的阿基米德在研究解决抛物弓形的面积、球和球冠面积、螺线下面积和旋转双曲体的体积的问题中,就隐含着近代积分学的思想。作为微分学基础的极限理论来说,早在古代以有比较清楚的论述。比如我国的庄周所著的《庄子》一书的“天下篇”中,记有“一尺之棰,日取其半,万世不竭”。三国时期的刘徽在他的割圆术中提到“割之弥细,所失弥小,割之又割,以至于不可割,则与圆周和体而无所失矣。”这些都是朴素的、也是很典型的极限概念。 到了十七世纪,有许多科学问题需要解决,这些问题也就成了促使微积分产生的因素。归结起来,大约有四种主要类型的问题:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 十七世纪的许多著名的数学家、天文学家、物理学家都为解决上述几类问题作了大量的研究工作,如法国的费尔玛、笛卡尔、罗伯瓦、笛沙格;英国的巴罗、瓦里士;德国的开普勒;意大利的卡瓦列利等人都提出许多很有建树的理论。为微积分的创立做出了贡献。 十七世纪下半叶,在前人工作的基础上,英国大科学家牛顿和德国数学家莱布尼茨分别在自己的国度里独自研究和完成了微积分的创立工作,虽然这只是十分初步的工作。他们的最大功绩是把两个貌似毫不相关的问题联系在一起,一个是切线问题(微分学的中心问题),一个是求积问题(积分学的中心问题)。 牛顿和莱布尼茨建立微积分的出发点是直观的无穷小量,因此这门学科早期也称为无穷小分析,这正是现在数学中分析学这一大分支名称的来源。牛顿研究微积分着重于从运动学来考虑,莱布尼茨却是侧重于几何学来考虑的。 牛顿在1671年写了《流数法和无穷级数》,这本书直到1736年才出版,它在这本书里指出,变量是由点、线、面的连续运动产生的,否定了以前自己认为的变量是无穷小元素的静止集合。他把连续变量叫做流动量,把这些流动量的导数叫做流数。牛顿在流数术中所提出的中心问题是:已知连续运动的路径,求给定时刻的速度(微分法);已知运动的速度求给定时间内经过的路程(积分法)。 德国的莱布尼茨是一个博才多学的学者,1684年,他发表了现在世界上认为是最早的微积分文献,这篇文章有一个很长而且很古怪的名字《一种求极大极小和切线的新方法,它也适用于分式和无理量,以及这种新方法的奇妙类型的计算》。就是这样一片说理也颇含糊的文章,却有划时代的意义。他以含有现代的微分符号和基本微分法则。1686年,莱布尼茨发表了第一篇积分学的文献。他是历史上最伟大的符号学者之一,他所创设的微积分符号,远远优于牛顿的符号,这对微积分的发展有极大的影响。现在我们使用的微积分通用符号就是当时莱布尼茨精心选用的。 微积分学的创立,极大地推动了数学的发展,过去很多初等数学束手无策的问题,运用微积分,往往迎刃而解,显示出微积分学的非凡威力。 前面已经提到,一门科学的创立决不是某一个人的业绩,他必定是经过多少人的努力后,在积累了大量成果的基础上,最后由某个人或几个人总结完成的。微积分也是这样。 不幸的事,由于人们在欣赏微积分的宏伟功效之余,在提出谁是这门学科的创立者的时候,竟然引起了一场悍然大波,造成了欧洲大陆的数学家和英国数学家的长期对立。英国数学在一个时期里闭关锁国,囿于民族偏见,过于拘泥在牛顿的“流数术”中停步不前,因而数学发展整整落后了一百年。 其实,牛顿和莱布尼茨分别是自己独立研究,在大体上相近的时间里先后完成的。比较特殊的是牛顿创立微积分要比莱布尼词早10年左右,但是整是公开发表微积分这一理论,莱布尼茨却要比牛顿发表早三年。他们的研究各有长处,也都各有短处。那时候,由于民族偏见,关于发明优先权的争论竟从1699年始延续了一百多年。 应该指出,这是和历史上任何一项重大理论的完成都要经历一段时间一样,牛顿和莱布尼茨的工作也都是很不完善的。他们在无穷和无穷小量这个问题上,其说不一,十分含糊。牛顿的无穷小量,有时候是零,有时候不是零而是有限的小量;莱布尼茨的也不能自圆其说。这些基础方面的缺陷,最终导致了第二次数学危机的产生。 直到19世纪初,法国科学学院的科学家以柯西为首,对微积分的理论进行了认真研究,建立了极限理论,后来又经过德国数学家维尔斯特拉斯进一步的严格化,使极限理论成为了微积分的坚定基础。才使微积分进一步的发展开来。 任何新兴的、具有无量前途的科学成就都吸引着广大的科学工作者。在微积分的历史上也闪烁着这样的一些明星:瑞士的雅科布·贝努利和他的兄弟约翰·贝努利、欧拉、法国的拉格朗日、科西…… 欧氏几何也好,上古和中世纪的代数学也好,都是一种常量数学,微积分才是真正的变量数学,是数学中的大革命。微积分是高等数学的主要分支,不只是局限在解决力学中的变速问题,它驰骋在近代和现代科学技术园地里,建立了数不清的丰功伟绩。 微积分的基本内容 研究函数,从量的方面研究事物运动变化是微积分的基本方法。这种方法叫做数学分析。 本来从广义上说,数学分析包括微积分、函数论等许多分支学科,但是现在一般已习惯于把数学分析和微积分等同起来,数学分析成了微积分的同义词,一提数学分析就知道是指微积分。微积分的基本概念和内容包括微分学和积分学。 微分学的主要内容包括:极限理论、导数、微分等。 积分学的主要内容包括:定积分、不定积分等。 微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。Ntou1232023-05-19 11:00:331
万有引力的证明(用微积分的那种)
p瑞瑞爱吃桃2023-05-18 13:56:217
有没有一本书可以系统的介绍微积分,概率论,线性代数等数学知识
应该有的mlhxueli 2023-05-18 05:46:234
定积分和微积分有什么区别?
微积分是比较忙宽泛的表述,定积分只是其中的一部分。可桃可挑2023-05-18 05:43:379
什么叫微积分定积分?
什么叫微积分定积分?微积分定积分是一种数学中的概念,强调求解无穷多个函数积分的总和。它可以用来计算各种物理、化学和工程系统中曲线或面积的总和,从而给出问题机制的全貌。韦斯特兰2023-05-18 05:43:352
利用傅里叶变换的微积分特性,求图所示信号的频谱函数。
一题:步骤1:先把f(t)的函数形式表示出来:f(t)={0, t<=-2;t, -2<t<=-1;1, -1<t<=1;- t- 2, 1<t<=2;0, 2<t;步骤2: 再根据傅里叶变换的定义,把t分段即可计算出傅里叶变换所要的那个积分。计算那个积分时需要用到分部积分法来计算类似 k t e^(-iwt)的积分。二题:步骤1:先把f(t)的函数形式表示出来:f(t)={0, t<=-1;t, -1<t<1;0, 1<t;步骤2: 再根据傅里叶变换的定义,把t分段即可计算出傅里叶变换所要的那个积分。计算那个积分时需要用到分部积分法来计算类似 k t e^(-iwt)的积分。小白2023-05-17 16:59:031