判断一个数是否是素数,为什么除到其平方根就可以了?
因为如果一个数不是素数是合数, 那么一定可以由两个自然数相乘得到, 其中一个大于或等于它的平方根,一个小于或等于它的平方根。并且成对出现。韦斯特兰2023-05-19 20:17:242
数学家哈代是否证明了素数定理?
无法证明,也不需要证明,因为这个命题不成立。对n=1,2,3 ...100 进行验证,有40多个结果不是素数。见下图:同时附上验证计算的fortran代码:水元素sl2023-05-19 20:17:121
素数定理的初等证明
素数定理有些初等证明只需用数论的方法。第一个初等证明由1949年由匈牙利数学家保罗·厄多斯(另译埃尔德什、艾狄胥、“爱尔多斯”,或“爱尔多希”)和挪威数学家阿特利·西尔伯格合作得出。 在此之前一些数学家不相信能找出不需借助艰深数学的初等证明。像英国数学家哈代便说过素数定理必须以复分析证明,显出定理结果的「深度」。他认为只用到实数不足以解决某些问题,必须引进复数来解决。这是凭感觉说出来的,觉得一些方法比别的更高等也更厉害,而素数定理的初等证明动摇了这论调。Selberg-艾狄胥的证明正好表示,看似初等的组合数学,威力也可以很大。 但是,有必要指出的是,虽然该初等证明只用到初等的办法,其难度甚至要比用到复分析的证明远为困难。可桃可挑2023-05-19 20:17:051
用素数造句(大约30个左右)
1、它们和对素数取模一样不太好用,而且所需的额外计算可能还会消除2的幂的散列表所带来的性能优势。 2、整数1只能被它本身整除 所以不是素数. 3、现代物理将使元素数的人工合成生产成为可能. 4、考察了由3个素数和1个殆素数构成的等差数列。 5、我们经常只用圆法去处理堆垒素数问题,包括本文的课题。 6、利用解析数论工具证明了算术级数数列中素数幂分布的若干结果,这些结果在提供RBIBD设计与PMD设计的渐近存在性定理的精确定界时具有重要作用。 7、使用像素数码技术允许存放了大量的象素,以提供高清晰度的打印质量。 8、已有结论表明:素数集中存在任意长的算术级数。 9、注意,同一个素数在因数分解中可以出现多次。 10、空间光调制器的像素数和相位量化调制特性限制了其波束指向精度。 11、过滤偏移的可变数字。偏移是给定的像素数。 12、如今搜索任何东西,无论是超新星还是素数,都成为一件巨大的分工协作的事情。 13、在这以后 晚餐桌上多了关于奇偶数、素数和哥德巴赫猜想的讨论. 14、在人类,提高大脑中血清素数量的抗抑郁药物确有一些与性有关的副作用。 14、lishixinzhi原创和收集优质句子 使您在造句的同时 还能学到有用的知识. 15、解决了三素数定理推广到素数取自算术级数的问题。 16、在我们书生气十足的要为字体的像素数惊醒大辩论的之前,且听我说,我暂且将此按下不表。 17、这些像素数提高平均帧速率,提高了动态范围。 18、本文先介绍跳马步系列的有关概念及性质,然后用跳马步系列研究奇素数阶规则完美幻方的个数。 19、存储位图的磁盘文件通常包含一个或多个信息块,信息块中存储了如每像素位数、每行的像素数以及数组中的行数等信息。 20、介绍了用计算机程序实现任意位数大整数四则运算的基本算法思想,给出了利用我们的算法得到的两个大素数。 21、一个正整数,如果能被并且只能被1和它本身整除,那么这个数就是一个素数。 22、xDelta变量将存储结果,它表示每个温度点之间的像素数。 23、春情勃发的原因:春天开始,白天的日照比较长,阳光下的脑部视束交叉细胞核 *** 松果腺,减少其制造降黑素(性抑制剂),降黑素数量减少,便是情欲挑起。黄爱东西 24、我已经将list元素设置为左缩进30px,假如你要顶端对齐,则将缩进像素数归零。 25、从理论上推导了采用该算法时静态图像相邻两帧间图像明像素数的最大差异,并使用基准图形进行了测试。 26、跟据古希腊数学家欧几里德的理论,我们知道,我们可以找到拥有任意多位数的素数。 27、科学家们分析了340,000年的横跨东南极洲的三个冰芯地址的氢氧同位素数据,并与同位素启用整体循环模式系统得出的结果。 28、如果是负数,这个数字指定的是选取的文字要低于基础的像素数。 29、作为此问题的推广,本文还建立了一个类似的数值结果:可表为两个素数的平方和两个2的方幂之和的大偶数具有正密度。 30、随后,摄像机的位置和视角可定义一个单位在屏幕上所占的像素数。大鱼炖火锅2023-05-19 20:17:041
世界上最大的素数是多少?
999999999kikcik2023-05-19 20:17:0315
素数的分布
《素数个数的边界公式》素数个数边界公式的特点:线性函数的主线清晰,上下边界波动范围较小,边界最大误差为2n+2。优点:完全归纳法证明,严谨!创新点:找到解析式的性质:周期性、互补性、延伸性;把素数波动范围设为一个二维变量,找到不等式组,大家循环递推,从0开始,到正负无穷大;可以是整数,也可以是小数。数小时,可以举例;数大时可用完全归纳法证明。水元素sl2023-05-19 20:17:012
素数分布的介绍
质数的分布规律数学家找了二千多年都说素数没有分规律,现在被中国人发现了。将自然数划分成以72为基数的三角数为界的一个个区间,即:6(6N^2+6N),质数的分布规律就明确地显示出了。质数的个数以波浪形式渐渐增多,区间越大质数越多,只有个别的区间比前面的少,造成波动的原因是有性合数的多因子和质数对区间的不整除之故。孪生质数也有相同分布规律。以下10个区间内质数和孪生质数的统计数。S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)S2区间73——216,有素数27个,孪生素数7对。S3区间217——432,有素数36个,孪生素数8对。S4区间433——720,有素数45个,孪生素数7对。S5区间721——1080,有素数52个,孪生素数8对。S6区间1081——1512,有素数60个,孪生素数9对。S7区间1513——2016,有素数65个,孪生素数11对。S8区间2017——2592,有素数72个,孪生素数12对。S9区间2593——3240,有素数80个,孪生素数10对。S10区间3241——3960,有素数91个,孪生素数18对。S11区间3961——4752,有素数92个,孪生素数17对。S12区间4752——5616,有素数98个,孪生素数13对。S13区间5617——6552,有素数108个,孪生素数14对。S14区间6553——7560,有素数113个,孪生素数19对。S15区间7561——8640,有素数116个,孪生素数14对。肖振2023-05-19 20:17:012
孪生素数猜想的进展
作者:善良的宋兰 时间:2017-12-14 19:52:40一个清晰的数学公式中国预印本.数学序号:1286第86-92页,给出了哥德巴赫猜想的证明(证明了一个比"哥猜"强很多的命题).另外还给出了证明孪生素数猜想的一个清晰的数学公式及其简单高效的计算方法.如果连续使用此公式不断计算下去就可一个不漏的得到所有的孪生素数对.学数学的人都知道:数学是没有国界的,也是不讲私情的,对就是对,错就是错.数学史告诉我们,那怕你是世界顶级的高手也无法改变这条真理.作者欢迎全数学界的朋友来质疑,评论和使用这个公式.作者还想在此表示一个歉意,从2012年9月11日起中国预印本.数学曾以序号: 669, 775,1112,1199,1200(英文),1286 多次发表<<一个挑战世界难题的数学模型>>,每次都有一些进歩,但也还存在一些明显的打印错误和容易纠错的表述.若某位行家能发现"无法纠错的缺陷",则文章就被否定了,因为不能经得起历史检验的文章就是垃圾.作者:善良的宋兰 时间:2018-04-17 16:08:52善良的宋兰介绍吕渊的一篇短文挑战法国人贺欧夫各特先生我们是中国预印本.数学序号1200(英文),1286(中文)<<一个挑战世界难题的数学模型>>一文的作者,很高兴在中国互联网百度看到您证明哥德巴赫猜想的情况介绍.我们知道哥德巴赫有两个猜想.每一个大于2的偶数都可以写成两个素数的和(强哥德巴赫猜想),每一个大于5的奇数都可以写成三个素数的和(弱哥德巴赫猜想).据中国互联网报导您彻底破解了每一个大于5的奇数可以写成三个素数的和.证明由两部分组成.(1).小于10的30次方时由计算机完成.(2).其它部分由证明完成.我们自信地认为我们在中国预印本上的文章可以挑战您的工作.理由如下:(1)文章证明得到了一个比强哥德巴赫猜想更强的结果,由这个结果可以推得强哥德巴赫猜想,并可推得您的结果.(2)可推得孪生素数猜想.(3)我们的证明不需要借助计算机的帮助,数学归纳法(或称超限归纳法)就可以得到所需要的结果.只用人工方法,这种一般性证明看得见,摸得着,有几何意义,可代数验证(即 任何大于6的偶数2a若满足大于Pn的平方,小于Pn+1的平方,则 必存在0<k<4Pn,使2a=(a-k)+(a+k),其中(a-k)和(a+k)是不同的素数,Pn和Pn+1是任意相邻的奇素数).我们是爱好数学,尊重科学的平凡中国人,但我们不懂法语,希望有懂法语的专家学者或师生能将我们对贺欧夫各特先生的挑战传达给他,我们将以尊重科学的态度及时回答他的任何质疑和评论.同时也欢迎全数学界关注我们的讨论.更多信息可搜索百度"善良的宋兰".哥德巴赫猜想为什么难以破解回顾哥德巴赫猜想的证明历程,可以回答猜想为什么难以破解.(1). 历史上中外数学家都是在数域和自然数公理系统PA范围内进行的,选择好的数学研究方向是很要紧的.从中国预印本.自然科学.数学序号: 1286文章的证明方佉和所用理论可知,哥猜是整数环及其商环和列向量集合Gn的幂集代数(或称布尔代数)范围内的问题.文章提出的两条对列向量集合Gn进行分类的定义将自然数公理系统PA和集合论公理系统ZFC链接起来构成一个更大更强的统一协调的公理体系,在数学模型Gn-圆内部进行讨论,而历史上所用的方法是在Gn-圆外部讨论,研究方向不同,所得结论不同,这也就不奇怪了.(2). 详细研究过预印本.数学序号:1286文章的学者可以看出哥猜的解是一个集合(即: 非一个解),所以是否用集合论公理讨论也是一个研究方向问题.方向不对再复杂的数学手段也行不通,将复杂的数学问题简单化才是好的方法.我们将文章投给中国预印本的目的有两个,第一让全数学界质疑评论文章的思路方法是否有效可行,第二是让中国预印本成长为美国预印本arXiv一样的学术讨论平台.(3). 历史上数学家哥德尔发现了哥猜在自然数公理系统PA内是不可证明也不可证否的,但其他的数学家没有引起重视,走了弯路.亊实上在数学模型Gn-圆上先证明对每一个偶数2a都存在一个满足大于等于1,小于等于4Pn整数k使: 2a=(a-k)+(a+k) 其中(a-k)和(a+k)对应的是素向量(注: 素向量对应的整数不一定是素数,见定义).这是Gn-圆上的一个全称命题.再由推理规则(或称UG规则)推出一个比哥猜更强的结论,这是一个特称命题.然后用数学归纳法证明此结论对每一个大于6的偶数都成立.(4). 许多证明对哥猜的直覌理解有一定价值,看到了问题所在.但还有人总是抓住初等方法不放,请问"初等方法"的定义是什么?关键是要站在前人的肩膀上,使用已有的成果和数学专业术语.不要过多发明自己的数学术语(万不得已,也得严格定义).这就是很多人看到了,写不出,写出来了,别人也看不懂.比如说,数学爱好者要看懂预印本.数学序号:1286文就必须研究过离散数学和数论的相关内容,要把自己的思路写成一篇好文章不读相关数学书是不可能的.有人一口气推出十几个数学命题,俗话说得好,伤其十指不如断其一指,人生苦短,能在前人的肩膀上跨一小歩,也就足已了.哥德巴赫猜想为什么难以破解---------两个重要的数学概念"关系和函数"在互联网栏目"哥德巴赫猜想已经证明到什么程度了"中有人报导过王元先生说:"离散问题用离散方法处理为妥."[2] 的覌点.中国预印本.数学序号:1286文的参考文献[2]的第二篇集合论中的第六章关系和第七章函数介绍了两个重要的概念-------关系和函数.这是文章证明用到的重要数学工具.文章提出了两个用数学概念"关系"定义的数学术语"列向量分量同余及非分量同余, 哥氏向量的分量同余及非分量同余."这也是两条"非逻辑公理".实质上是给出了对数学模型Gn-圆上的元素进行分类的方法(注:本栏目无法给出复杂的数学符号,要看懂本短文,请参考原文).文章既用到了函数的概念(即:从集合Gn到集合Gn(*)的映射).又用到了关系的概念(即: 哥氏向量集合Gn(*)元素之间的非分量同余关系,转化为列向量集合Gn元素之间的非分量同余关系,注意到这种转化涉及到Gn一个子集的元素与另一个子集的元素之间的对应,一般情况是多个元素与多个元素之间的对应,也存在一个元素与多个元素之间的对应.这种对应是不满足函数定义的,但是满足关系定义的对应可以解释在Gn-圆上对任意的偶数2a,至少存在一个k,使2a=(a-k)+(a+k).并知道(a-k)和(a+k)在什么情况下对应的均为素数(一般情况下有若干对).同时也可解释(a-k)和a+k)在什么情况下分别为:素数+合数; 合数+素数; 合数+合数.在什么情况下是不可判定的).如果有一个适当的学术平台才可以说清楚每一个细节.总结一句话,王元老前辈如果真的说过:"离散问题用离散方法处理为妥",那么对他的学生和相当一批人的研究方向都是有指导意义的.哥德巴赫猜想为什么难以破解的另一个原因是没有引起世界数学界的广泛讨论.虽然中国人在全数学界的话语权份量不足,但是数学是没有国界的,是属于全人类的.数学的每一个分支都是从"不证自明的"简单公理出发推导出来的,是否正确不是个人感情能决定的.尽管数学界有个潜规则"世界顶尖专家的话,一句顶一万句".那是互联网不发达的历史造成的,近几十年来一流数学问题的破解和最后认可都离不开千千万万数学人士的公开貭疑和评论.组织这种学术讨论本身就是一项综合性的大工程.谁是这项工作的组织者和牵头人?哥德巴赫猜想为什么难以破解--------ZFC集合论公理体系什么方法"不可以破解哥德巴赫猜想"这是一个很难回答但又是一个值得讨论的非常有价值的问题.有两种覌点对数学界有很大影响.陶哲轩说:"我们可以把ZFC作为外在的推理体系来分析在皮亚诺箕术中什么是可判定的,什么是不可判定的."另一种说法是杨乐先生说的"如果靠加加减减和微积分去解决,无论花多少时间,也绝对搞不出哥德巴赫猜想." 如果数学界有谁能证明上述说法是"真命题".那么无论中科院有多少麻袋的证明文章,都可以在短时间内作出判定此证明是正确还是错误.因为这种判定方法涉及到对哥猜的研究方向是否正确,也能使别人心服口服.所谓"ZFC推理体系"就是集合论公理体系,所谓"加加减减和微积分"就是指自然数公理体系(或称皮亚诺算术)和微积分的运算方法.中国预印本.自然科学.数学序号:1286文章"第86页的定理1"就是在数学模型Gn-圆上构造列向量集合Gn和Gn(*), 并在它们的幂集代数中运用了ZFC集合论公理的运算方法推得的.整篇文章都是围绕这个核心命题.全数学界都难以回答的问题<<什么方法"不可以破解哥德巴赫猜想">>是该猜想难以破解的原因之一. 收起水元素sl2023-05-19 20:17:003
完全数的梅森素数
古希腊数学家欧几里得在名著《几何原本》中证明了素数有无穷多个,并论述完全数时提出:如果2^P-1是素数(其中指数P也是素数),则2^(P-1)(2^P-1)是完全数。瑞士数学家和物理学家欧拉证明所有的偶完全数都有这种形式。因此,人们只要找到2^P-1型素数,就可以发现偶完全数了。数学界将2^P-1型素数称为“梅森素数”(Mersenne prime),因为法国数学家和法兰西科学院奠基人梅森在这方面的研究成果较为卓著。梅森素数貌似简单,但探究难度却极大。它不仅需要高深的理论和纯熟的技巧,而且还需要进行艰巨的计算。到2013年2月6日为止,人类仅发现48个梅森素数。值得提出的是:在梅森素数的基础研究方面,法国数学家鲁卡斯和美国数学家雷默都做出了重要贡献;以他们命名的“鲁卡斯-雷默方法”是目前已知的检测梅森素数素性的最佳方法。此外,中国数学家和语言学家周海中给出了梅森素数分布的精确表达式,为人们寻找梅森素数提供了方便;这一研究成果被国际上命名为“周氏猜测”。 1……62……283……4964……8,1285……33,550,3366……8,589,869,0567……137,438,691,3288……2,305,843,008,139,952,1289……2,658,455,991,569,831,744,654,692,615,953,842,17610……191,561,942,608,236,107,294,793,378,084,303,638,130,997,321,548,169,21611……13,164,036,458,569,648,337,239,753,460,458,722,910,223,472,318,386,943,117,783,728,12812……14,474,011,154,664,524,427,946,373,126,085,988,481,573,677,491,474,835,889,066,354,349,131,199,152,128…………47 ……2^42643800 X (2^42643801-1)48 ……2^57885160 X (2^57885161-1)由于后面数字位数较多,例子只列到12个,第13个有314位。到第39个完全数有25674127位数,据估计它以四号字打出时需要一本字典大小的书。LuckySXyd2023-05-19 20:17:001
素数对称分布定律真的有证明吗
我觉得有u投在线2023-05-19 20:17:001
怎么用c语言判断一个数是不是素数
#include<stdio.h>#include<math.h>main(){int a,i;scanf("%d",&a);for(i=1;i<=sqrt(a);i++){if(a%i==0)i=i+12,printf("no");}if(i<=i)printf("yes");}Chen2023-05-19 20:16:589
数学为什么一定要以十进制为主?为什么没有人从不同进制研究素数 在数轴上的分布规律?
因为数学家清楚,素数的分布和进制是没有关系的。5 在十进制中是 素数,在二进制中也是素数,只不过把名字换成了 101 罢了。所谓二进制、十进制,实际上只是数的不同表示,就像物理中不同 的单位制一样。一个物体有多重就有多重,并不会因为单位从千克变为 盎司就有所改变。点击查看更多《1分钟物理》Ntou1232023-05-19 20:16:581
素数包括那些数
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。 最小的素数是2, 他也是唯一的偶素数。 最前面的素数依次排列为:2,3,5,7,11,13,17,...... 不是质数且大于1的正整数称为合数。 质数表上的质数请见素数表。 依据定义得公式: 设A=n2+b=(n-x)(n+y),除n-x=1以外无正整数。故有: y=(b+nx)/(n-x) (x<N-1)无正整数,则A为素数。 因为x<N-1,而且N-X必为奇数,所以计算量比常规少很多。 详见互动百科素数分布和不定方程 100以内的质数(素数):2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97 (共25个)水元素sl2023-05-19 20:16:571
n到2n间有素数的证明错误
素数分布的现象。2n和n都是连续的,这形成了素数分布的连续体系,该体系包含了所有素数。因为哥猜成立所以素数分布不可计算体系成立,并且与素数分布相关的连续体系也成立,因此该命题只能由哥猜成立而导出,其它任何证明均无效。因为从素数分布不可能证实哥猜,所以我们用该命题不可能证实哥猜。证明:1、因为哥猜成立,所以不可计算素数分布成立。2、因此哥猜素数分布连续体系成立。3、考察有限连续范围得到n至2n间(包括n)都存在素数。4、根据2得出结果是3的情形在无限域成立则该命题得证实。铁血嘟嘟2023-05-19 20:16:571
算术级数中的素数是不是均匀分布的
楼主的感觉很好啊!从前有个叫做Dirichlet(狄利克雷)的人,发现任意算数级数an+b(其中(a,b)=1)都有无穷多的素数,并且这个集合中小于自然数N的素数的个数π(N)大约是这么多:N/[φ(a)*lnN]其中φ(a)是Euler(欧拉)函数,代表小于a的自然数中与a互素的数的个数。上面说的“大约”其实说的是这两个值在N趋于无穷大时的比值是1.看的出来后面这个值N/[φ(a)*lnN]与b是无关的。所以不管是an+b还是an+c,虽然其中的素数不同,但个数在趋于无穷时都与N/[φ(a)*lnN]比值是1,所以它们之间做比也是趋于1的。这就说明这两个算术级数中的素数是差不多多的。不懂可以再问~NerveM 2023-05-19 20:16:571
素数有那些,那些数是素数
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。最小的素数是2,他也是唯一的偶素数。最前面的素数依次排列为:2,3,5,7,11,13,17,...... 不是质数且大于1的正整数称为合数。 质数表上的质数请见素数表。 依据定义得公式: 设a=n2+b=(n-x)(n+y),除n-x=1以外无正整数。故有: y=(b+nx)/(n-x)(x<n-1)无正整数,则a为素数。 因为x<n-1,而且n-x必为奇数,所以计算量比常规少很多。 详见互动百科素数分布和不定方程 100以内的质数(素数):2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97(共25个)gitcloud2023-05-19 20:16:562
素数分布的百分比
我相信素数有无穷多个。 在10以内,素数有4个:2,3,5,7。占40%在100以内,素数有25个,我可以全部写给你:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。占25% 在1000以内,素数有168个。占16.8% 在10000以内,素数有1229个。占12.29% 在100000以内,素数有9592个。占9.592% 可以看到,随着数的增大,素数所占的百分比在下降,是不是会存在这么一个数,比这个数大已经没有素数,从而得到素数只有有限多个的结论?如果真的那样,一定将轰动世界。墨然殇2023-05-19 20:16:561
根据黎曼猜想,可以得到素数分布公式吗
根据黎曼猜想是得不出素数分布公式的。因为他在研究素数定理仍是跟着髙斯、…阿达玛等人所证明的素数为依据的所以跳不出这个圈。他提出的二个论点都没有新方法所以都达不到满意的解决。只有我们找到新方法简单说就是分两次提取素数法。这研究过程中发现了一个完美的素数定理是:π(x)=x*(pi-1)!/pi!+i。所以大家可以看到这函数式与黎曼猜想是有根本不同。祥细要看我们的“终极素数定理的证明”论文。我们是瑞安市数论研究小组何世梁。gitcloud2023-05-19 20:16:561
有没有以是以36N(N+1)为单位的素数分布表,要n大于36以上的?
36n(n+1)是个合数,显然不是题主想要表达的意思。36n+1符合6k±1的素数分布规律。写了一段代码,求出n>1(包含n>36,从第一行的倒数第三个开始)的1000个素数。附:fortran代码,运行耗时1秒钟。小菜G的建站之路2023-05-19 20:16:561
素数分布规律
素数分布是数论中研究素数性质的重要课题。素数或称质数,是指一个大于1的整数,除1和它本身外,不能被其他的正整数所整除。研究各种各样的素数分布状况,一直是数论中最重要和最有吸引力的中心问题之一。关于素数分布性质,通过数值观察、计算和初步研究发现,素数分布是以黎曼公式为中心,高斯公式为上限的正态分布,这在现在来说是经验公式,待数学家给出严格证明之后才能成为数学定理。分布规律将自然数划分成6(6N²+6N)为界的一个个区间,就出现了素数分布规律,各区间的素数,以波浪形式渐渐增多,只有个别的区间比前面的少,造成这种现象的原因是,有性合数的因子多少和素数对区间的不整除之故。以下10个区间统计数据,S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算一对)S2区间73——216,有素数27个,孪生素数7对。S3区间217——432,有素数34个,孪生素数8对。S4区间433——720,有素数45个,孪生素数7对。S5区间721——1080,有素数52个,孪生素数9对。S6区间1081——1512,素数51个,孪生素数9对。S7区间1513——2016,素数63个,孪生素数10对。S8区间2017——2592,素数71个,孪生素数13对。S9区间2593——3240,素数78个,孪生素数11对。S10区间3241——3960,素数91个,孪生素数19对。S11区间3961——4752素数92个,孪生素数17对。S12区间4752——5616素数98个,孪生素数13对。S13区间5617——6552素数108个,孪生素数14对。S14区间6553——7560素数113个,孪生素数19对。S15区间7561——8640素数116个,孪生素数14对。可桃可挑2023-05-19 20:16:551
素数分布定律是否有初等证
素数分布定律有初等证明。素数定理有些初等证明只需用数论的方法。第一个初等证明由1949年由匈牙利数学家保罗·厄多斯(另译埃尔德什、艾狄胥、“爱尔多斯”,或“爱尔多希”)和挪威数学家阿特利·西尔伯格合作得出。 在此之前一些数学家不相信能找出不需借助艰深数学的初等证明。像英国数学家哈代便说过素数定理必须以复分析证明,显出定理结果的「深度」。他认为只用到实数不足以解决某些问题,必须引进复数来解决。这是凭感觉说出来的,觉得一些方法比别的更高等也更厉害,而素数定理的初等证明动摇了这论调。Selberg-艾狄胥的证明正好表示,看似初等的组合数学,威力也可以很大。 但是,有必要指出的是,虽然该初等证明只用到初等的办法,其难度甚至要比用到复分析的证明远为困难。素数分布是数论中研究素数性质的重要课题。素数或称质数,是指一个大于1的整数,除1和它本身外,不能被其他的正整数所整除。研究各种各样的素数分布状况,一直是数论中最重要和最有吸引力的中心问题之一。素数分布的特点包括:1、无规律性:素数在数轴上似乎没有明显的规律可言,不能被简单地预测。2、稀疏性:随着自然数的增长,素数的数量相对于自然数的比例越来越小。这意味着素数之间会有很多合数。3、聚集性:虽然素数看起来并不规律,但它们似乎更喜欢聚集在一些特殊的区域中。例如孪生素数(相差为2的素数)和双胞胎素数(相差为6的素数)等。4、随机性:尽管存在聚集性,但素数似乎具有某种随机性,因此它们难以被完全预测或理解。小菜G的建站之路2023-05-19 20:16:551
素数分布规律就是终极素数定理,素数分布是自然规律,永远固定不变,所以我们很快找到它,证明它存在?
素数分布规律一直是人类探索素数的伟大目标。自欧拉、高斯到黎曼,许多数学家都做出了巨大努力和贡献。高斯发现的素数定理,表明素数分布与对数积分的关系,但对不大于给定数值的素数个数的预测结果,其准确率不高。揭示素数分布的秘密,找到一个可准确计算预测素数个数的普适公式,是当前素数研究的紧迫任务什么是素数。素数是我们小学就学习过的数学概念。素数是指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数。 否则称为合数。人们经常把它类比成化学中的基本元素,化学中有100多种基本元素,这些基本元素可以构成我们这个色彩缤纷的世界。比如 两个氢原子和一个氧原子可以构成水分子, 甲烷就是 一个碳原子和四个氢原子等等。同样的道理,一个大于1的自然数,要么是素数,要么是几个素数的乘积。在数论中,还有一个概念,任何一个合数,都可以分解成几个素数的乘积,而且合数的因数分解是唯一的。这个理论非常重要,它更加明确的确立了素数在数论体系中的地位,就像水分子只能分解为两个氢原子和一个氧原子,一个合数,只能分解为唯一的一组素数的乘积。比如 120 只能分解为 2*2*2*5*3。关于这个因数分解的唯一性的证明,可以参考 加州理工大学Tom Apostol 教授的数学分析,第二版的第六页。加州理工大学 Tom Apostol 教授的数学分析因数分解唯一性的 证明素数有多少呢?这问题早在约公元前300年时,就已被欧几里得解决。他发现素数有无穷多个。而且证明起来也非常巧妙。不妨假设我们目前发现了 m 个素数,(2, 3, 5, 。。。pm )现在考虑它们的积再加1 : (2 * 3 * 5 * … .. * pm + 1),这是一个比刚才已经发现的m 个素数都大的数,也是一个自然数。它是素数吗?如果是,那我们就得到一个新的素数。注意一下,这里构造出来的数 (2 * 3 * 5 * … .. * pm + 1),和刚刚已知的最大素数pm 之间其实还是会有其他素数的。比如 假设我们目前只知道2 , 3,5 这三个素数,通过刚刚的公式可以得到 2*3*5+1=31 , 31 是一个比我们已知的2 和3 还大的素数,但是在已知素数(2, 3,5)和求得的素数(31)之间,7,11, 13, 23,等等也是素数。如果不是,那么 既然这个数按照定义不能被 那些m 个素数整除,必然存在其他的素数,可以整除它,所以还是会存在新的没发现的素数。比如,目前我们发现2,3,5,7,11,13 这几个素数,然后通过 2x3x5x7x11x13+1=30031,我们发现30031 不是素数,但是30031不能被 2,3,5,7,11,13 整除,所以必然存在其他素数。结果我们发现 30031=59*509. 所以我们还是可以发现新的素数。meira2023-05-19 20:16:551
素数分布的猜想
不要用很小的数整来的公式代表一切。在很小的数,计算的误差很小,可以很满意。我在10万以内整的公式,误差在10个以内,用这个公式计算10^10,误差在5000以内,我重新研究计算10^10的新公式,误差在几百以内,可这个公式到了10^12,误差又跑到几百万了。素数的计算渐进公式,只有黎曼猜想的精度最高,不管在哪个指定的数量级别,它计算的总位数,从最高位往右数,总有一半的数字是精确的,其它的公式做不到,不信你计算到10^23看看。此后故乡只2023-05-19 20:16:552
素数的分布有规律吗?
以72为基数的三角数为单位,以波浪形式渐渐增多。孪生素数也有相同的分布规律 。mlhxueli 2023-05-19 20:16:554
为什么素数的分布越到后来越稀疏
这是因为根据素数定理,从不大于n的自然数随机选一个,它是素数的概率大约是1/ln n由此可以发现,素数越到后面,越难发现,但确实存在无尘剑 2023-05-19 20:16:551
素数分布的百分比
我相信素数有无穷多个。在10以内,素数有4个:2,3,5,7。占40%在100以内,素数有25个,我可以全部写给你:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。占25%在1000以内,素数有168个。占16.8%在10000以内,素数有1229个。占12.29%在100000以内,素数有9592个。占9.592%可以看到,随着数的增大,素数所占的百分比在下降,是不是会存在这么一个数,比这个数大已经没有素数,从而得到素数只有有限多个的结论?如果真的那样,一定将轰动世界。再也不做站长了2023-05-19 20:16:551
埃拉托色尼筛选法求素数
列出大于等于2的自然数; 2,3,4,5,6,7,8,9,10,11,… 取第一个数2,删掉所有2的倍数; 2,3,5,7,9,11,13,14,15,… 取下一个数3,删掉所有3的倍数; 3,5,7,11,13,17,19,23,… 取下一个数5,……不断筛选下去,就可找出所有素数 2,3, 4 ,5, 6 ,7, 8 , 9 , 10 ,11, 12 ,13, 14 , 15 , 16 ,17, 18 , 19, 20 , 21 , 22 ,23, 24 , 25 , 26 , 27 , 28 ,29, 30 ,31, 32 , 33 , 34 , 35 , 36 ,37, 38 , 39 , 40 ,41, 42 ,43, 44 , 45 , 46 ,47, 48 , 49 , 50瑞瑞爱吃桃2023-05-19 20:16:541
什么叫奇素数啊?素数不都是奇数吗?(浪费好多时间了,现在想找回来)
除了2以外的素数都是奇素数北境漫步2023-05-18 09:40:053
什么是奇质数 什么是素数 什么是奇素数
补问的是。因为天之玉有回答错的地方。9只是奇数不是质数。整除就是正好除断。余数是零。应该是指自然数的范围。自然数就是0123456789....大概是这样。瑞瑞爱吃桃2023-05-18 09:40:046
什么是奇质数 什么是素数 什么是奇素数
奇数是指不能被2整除的数,像1、3、5、7、9、11……质数和素数是一个概念,都是指只能被1和它自身整除的数(1除外),如2、3、5、7、11……奇质数也就是奇素数,是指既是奇数又是质数(素数)的数,如3、5、7、11、13……所谓整除,就是被除数被除数除后没有余数如9被3除得3,没有余数,或者说余数为0,所以说9能被3整除10被3除得3,余数为1,所以10不能被3整除。拌三丝2023-05-18 09:40:041
什么是奇质数 什么是素数 什么是奇素数
补问的是。因为天之玉有回答错的地方。9只是奇数不是质数。整除就是正好除断。余数是零。应该是指自然数的范围。自然数就是0123456789....大概是这样。此后故乡只2023-05-18 09:40:016
素数是什么
素数又叫质数,指的是“大于1的整数中,只能被1和这个数本身整除的数”。素数也可以被等价表述成:“在正整数范围内,大于1并且只有1和自身两个约数的数”。中学数学常见的素数是20以内的素数:2、3、5、7、11、13、17、19。素数的相关知识小结:1、最小的素数是2,最小的合数是4。【注】最小的素数和最小的合数都是偶数。2、大于2的素数都是奇数,2是素数中唯一的偶数。3、1既不是素数也不是合数。4、大于1的正整数中,不是素数就是合数。5、素数不全是奇数,也可以是偶数,如:2。素数的数目计算:1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。2、存在任意长度的素数等差数列。3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为(1 + 5)。6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为(1 + 2)。mlhxueli 2023-05-18 09:39:451
什么叫质数,什么叫素数?质数,素数的定义是什么?–
质数就是素数,只能分解成1和它本身的乘积wpBeta2023-05-18 09:39:435