两个向量共线

两条直线重合或共面 与 两个向量共线或共面 各有什么不同?

首先,直线重合说明是同一条直线,共面说明两条在同一平面上,而直线还有一个关系是异面。而向量却不一样,向量,通常称的是自由向量,即方向不变,起点不点,所以所有的向量都是共面的(因为可以把起点放在同一点),而共线则说明方向相同或相反,即可以把起点放在同一点,在同一条直线上。
善士六合2023-05-14 15:35:521

怎么证明两个向量共线

两个向量共线是指表示它们的有向线段互相平行,通俗的说就是同向或反向的向量叫共线向量,又叫平行向量。有一个特殊情况,就是规定:零向量可以与任何向量共线。定理:向量a、b(b≠0)共线的充要条件是存在实数λ使a=λb。所以,要证明两个向量共线,只须证明它们之间有一个倍数关系即可。例:已知e1、e2是不共线的单位向量,向量a=e1+2e2,b=-2e1+e2,c=4e1+3e2,求证明:a与b+c共线。证明:因为b+c=(-2e1+e2)+(4e1+3e2)=2e1+4e2=2(e1+2e2)=2a,所以a与b+c共线。
苏萦2023-05-14 15:35:521

两个向量共线的公式

两个向量共线的公式:向量m=(a,b),向量n=(c,d);两者共线时ad=bc。若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数)。向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0。更一般的,平面内若a=(p1,p2),b=(q1,q2),a∥b的充要条件是p1·q2=p2·q1。向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0。更一般的,平面内若a=(p1,p2),b=(q1,q2),a∥b的充要条件是p1·q2=p2·q1。拓展:1、两向量共线公式:2、(1)a,b共线则a=kb(k∈R,且k≠0)。3、(2)向量a=(x1,y1);b=(x2,y2);a//b,则x1*y2=x2*y1。4、方向相同或相反的非零向量叫平行向量。表示为a∥b任意一组平行向量都可移到同一直线上,因此平行向量也叫向量共线。共线向量也是平行向量,方向相同或相反的非零向量称为平行向量,用a∥b、 任何一组平行向量都可以移动到同一直线上,因此称为共线向量。共线向量的基本定理表明,如果≠0,则向量b与a共线的充要条件是存在唯一实数λ,使得b=λa。
铁血嘟嘟2023-05-14 15:35:521

如果两个向量共线可得出什么结论?

可以的出来他们线性相关,存在k1*e1+k2*e2=0;因为0向量和任意共线,所以不能得到更强的结论一个向量可以被另外一个表示!
北境漫步2023-05-14 15:35:521

若两个向量共线.则可以得到什么公式

如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。一、证明:(1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。(2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 _b_=m_a_。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=-λa。如果b=0,那么λ=0。(3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。二、向量m=(a,b),向量n=(c,d),两者共线时 ad=bc量共线的充要条件:若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数).向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使 λa+μb=0更一般的,平面内若a =(p1,p2) b =(q1,q2),a∥b 的充要条件是p1·q2=p2·q1。扩展资料:一、推论1两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。证明:(1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。(2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。证毕。二、推论2两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。证明:(1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。(2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。证毕。参考资料来源:百度百科-共线向量基本定理
无尘剑 2023-05-14 13:59:331

两个向量共线和两个向量是共线向量是否相同?

有一些区别两个向量共线就是指两个平行的向量经过平移后可以共线两个向量是共线向量指这两个向量本来就是在一条线上
FinCloud2023-05-14 13:59:332

请问题目中经常讲两个向量共线或是不共线能得到什么结论?

个人理解,共线就平行,不共线就相交或异面
Ntou1232023-05-14 13:59:323

两个向量共线的充要条件是什么啊?

设a=(x1,y1),b=(x2,y2),如果x2/x1=y2/y1,也就是x1y2=x2y1,则共线。分四种情况:①横坐标都为0的两个向量共线。②纵坐标都为0的俩个向量共线。③0向量(横、纵坐标都是0)与任何向量共线。④横坐标之比等于纵坐标之比的两个向量共线(其中,比值为正则同向,比值为负则反向)。平面向量:a=(a1,a2),b=(b1,b2),则 a//b <=> a1b2 = a2b1 。空间向量:a=(a1,a2,a3),b=(b1,b2,b3),则 a//b <=> 存在实数 x、y 使 xa = yb ,用坐标写出来就是 a1/b1 = a2/b2 = a3/b3 。当然这个成比例是有一个前提,就是它们非零。如果有0,则对应的也为0扩展资料向量的线性运算、向量的数量积与向量积的计算方法:向量的加法向量的加法满足平行四边形法则和三角形法则。向量的加法OB+OA=OC.向量的减法如果a、b是互为相反的向量。那么a=-b,b=-a,a+b=0.0的反向量为0向量的数量积定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π。
Chen2023-05-14 13:59:321

如果两个向量共线可得出什么结论?

两个向量共线是同一向量
瑞瑞爱吃桃2023-05-14 13:59:323

两个向量共线公式

两个向量共线公式:向量m=(a,b),向量n=(c,d),两者共线时ad=bc。若向量a与向量b(b为非零向量)共线,则a=λb(λ为实数)。向量a与向量b共线的充要条件是,a与b线性相关,即存在不全为0的两个实数λ和μ,使λa+μb=0。更一般的,平面内若a=(p1,p2),b=(q1,q2),a∥b的充要条件是p1·q2=p2·q1。
无尘剑 2023-05-14 13:59:311

若两个向量共线.则可以得到什么公式

如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。证明:1)充分性:对于向量 a(a≠0)、b,如果有一个实数λ,使 b=λa,那么由实数与向量的积的定义 知,向量a与b共线。2)必要性:已知向量a与b共线,a≠0,且向量b的长度是向量a的长度的m倍,即 ∣b∣=m∣a∣。那么当向量a与b同方向时,令 λ=m,有 b =λa,当向量a与b反方向时,令 λ=-m,有 b=-λa。如果b=0,那么λ=0。3)唯一性:如果 b=λa=μa,那么 (λ-μ)a=0。但因a≠0,所以 λ=μ。推论1两个向量a、b共线的充要条件是:存在不全为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,不妨设μ≠0,则由 λa+μb=0 得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,已知向量a与b共线,若a≠0,则由共线向量基本定理知,b=λa,所以 λa-b=0,取 μ=-1≠0,故有 λa+μb=0,实数λ、μ不全为零。若a=0,则取μ=0,取λ为任意一个不为零的实数,即有 λa+μb=0。证毕。推论2两个非零向量a、b共线的充要条件是:存在全不为零的实数λ、μ,使得 λa+μb=0。证明:1)充分性,∵μ≠0,∴由 λa+μb=0 可得 b=(λ/μ)a。由 共线向量基本定理 知,向量a与b共线。2)必要性,∵向量a与b共线,且a≠0,则由 共线向量基本定理 知,b=λa;又∵b≠0,∴λ≠0; 取 μ=-1≠0,就有 λa+μb=0,实数λ、μ全不为零。证毕。推论3如果a、b是两个不共线的向量,且存在一对实数λ、μ,使得 λa+μb=0,那么λ=μ=0。证明:(反证法)不妨假设μ≠0,则由 推论1 知,向量a、b共线;这与已知向量a、b不共线矛盾,故假设是错的,所以λ=μ=0。证毕。推论4如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一实数λ,使得向量PC=(1-λ)向量PA+λ向量PB。(其中,向量AC=λ向量AB)。证明:∵三点P、A、B不共线,∴向量AB≠0,由 共线向量基本定理 得,点C在直线AB上 <=> 向量AC 与 向量AB 共线 <=> 存在唯一实数λ,使 向量AC=λ·向量AB∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,∴向量AC=λ·向量AB <=> 向量PC-向量PA=λ·(向量PB-向量PA) <=> 向量PC=(1-λ)向量PA+λ·向量PB。证毕。推论5如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在唯一一对实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)证明:在推论4 中,令 1-λ=μ ,则λ+μ=1,知:三点P、A、B不共线 <=> 点C在直线AB上的充要条件是:存在实数λ、μ,使得向量PC=λ向量PA+μ向量PB。(其中,λ+μ=1)下面证唯一性,若 向量PC=m向量PA+n向量PB,则 m向量PA+n向量PB=λ向量PA+μ向量PB,即,(m-λ)向量PA+(n-μ)向量PB=0,∵三点P、A、B不共线,∴向量PA 与 向量PB 不共线,由 推论3 知,m=λ,n=μ。证毕。推论6如果三点P、A、B不共线,那么点C在直线AB上的充要条件是:存在不全为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。证明:1)充分性,由推论5 知,若三点P、A、B不共线,则 点C在直线AB上 <=> 存在实数λ、μ,使得 向量PC=λ向量PA+μ向量PB(其中,λ+μ=1)。取ν=-1,则有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,且实数λ、μ、ν不全为零。2)必要性,不妨设ν≠0,且有:λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0,则 向量PC=(λ/ν)·向量PA+(μ/ν)·向量PB,(-λ/ν)+(-μ/ν)=1。由推论5 即知,点C在直线AB上。证毕。推论7点P是直线AB外任意一点,那么三不同点A、B、C共线的充要条件是:存在全不为零的实数λ、μ、ν,使得λ向量PA+μ向量PB+ν向量PC=0,λ+μ+ν=0。证明:(反证法)∵点P是直线AB外任意一点,∴向量PA≠0,向量PB≠0,向量PC≠0,且 向量PA、向量PB、向量PC两两不共线。由推论6 知,实数λ、μ、ν不全为零,1)假设实数λ、μ、ν中有两个为零,不妨设λ≠0,μ=0,ν=0。则 λ向量PA=0,∴向量PA=0。这与向量PA≠0。2)假设实数λ、μ、ν中有一个为零,不妨设λ≠0,μ≠0,ν=0。则 λ向量PA+μ向量PB=0,∴向量PA=(μ/λ)·向量PB,∴向量PA 与 向量PB共线,这与向量PA 与 向量PB不共线矛盾。证毕。
bikbok2023-05-14 13:59:313

两个向量共线说明什么

两个向量共线说明两个向量是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。
hi投2023-05-14 13:59:301

怎么证明两个向量共线

若存在唯一实数λ使得向量a= λ向量b,则向量a平行向量b
陶小凡2023-05-14 13:59:302

两个向量共线,那么这两个向量一定线性相关吗

两个向量共线,那么这两个向量一定线性相关吗? 证明:如果a,b共线,则存在一个非零整数n使得a=nb,于是a-nb=0,于是a,b线性相关
可桃可挑2023-05-14 13:59:301

两个向量共线.能得出什么性质

平行向量就是共线向量 所以a=λb 或者 设向量a(x,y)向量b(x1,y1) 若向量a平行向量b 则xy1=yx1 (内向等于外向)
Jm-R2023-05-14 13:59:292

两个向量共线的含义

两个向量共线说明两个向量是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。 共线向量基本定理为如果a≠0,那么向量b与a共线的充要条件是:存在唯一实数λ,使得b=λa。
苏萦2023-05-14 13:59:182

两个向量共线..能得出什么性质啊?或什么定理吗?

平行向量就是共线向量所以a=λb或者设向量a(x,y)向量b(x1,y1)若向量a平行向量b则xy1=yx1(内向等于外向)
肖振2023-05-14 13:59:171

两个向量共线和垂直条件都是什么?

两个向量共线的条件是:1、可以写作:向量a=k(向量b),其中k为任意非零常数。2、向量ax向量b=0,即两个向量的向量积为0向量。两个向量垂直条件是:向量a*向量b=0,即两个向量的数量积为0。向量积,数学中又称外积、叉积,物理中称矢积、叉乘,是一种在向量空间中向量的二元运算。与点积不同,它的运算结果是一个向量而不是一个标量。并且两个向量的叉积与这两个向量的和垂直。
瑞瑞爱吃桃2023-05-14 13:59:122