罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒定理中值定理,
前面每一个是后面的一个特例,通过前一个的定理可以证明后一个定理。罗尔中值定理能推出拉格朗日中值定理和柯西中值定理,反过来拉格朗日中值定理和柯西中值定理也可以推出罗尔中值定理.泰勒中值定理是由柯西中值定理推出来的.泰勒中值定理在一阶导数情形就是拉格朗日中值定理.罗比达法则是柯西中值定理在求极限时应用.北营2023-07-26 13:24:121
罗尔中值定理、拉格朗日中值定理、柯西中值定理、泰勒定理中值定理,
前面每一个是后面的一个特例,通过前一个的定理可以证明后一个定理。罗尔中值定理能推出拉格朗日中值定理和柯西中值定理,反过来拉格朗日中值定理和柯西中值定理也可以推出罗尔中值定理.泰勒中值定理是由柯西中值定理推出来的.泰勒中值定理在一阶导数情形就是拉格朗日中值定理.罗比达法则是柯西中值定理在求极限时应用.苏萦2023-07-26 13:24:102
罗尔中值定理,柯西中值定理和拉格朗日中值定理怎么区别
罗尔是拉格朗日的特殊情况,即端点处函数值相等的拉格朗日;柯西是参数方程形式的拉格朗日。适用范围:柯西>拉格朗日>罗尔肖振2023-07-26 13:22:191
泰勒中值定理、柯西中值定理、罗尔中值定理、拉格朗日中值定理、罗比达法则几个之间的关系
高数辅导书看看就行了,不是一时半会说清的,推荐《高等数学辅导》同济六版我去年就是用的这个,不错的wpBeta2023-07-26 13:20:212
为什么现在高中不教柯西不等式?
教材改编了。CarieVinne 2023-07-06 08:19:446
什么是拉格朗日定理、积分中值定理和柯西中值定理?
三个中值定理的公式:罗尔定理:如果函数f(x)满足在闭区间[a,b]上连续;在开区间(a,b)内可导;在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b)内至少有一点ξ(a<ξ<b),使得f"(ξ)=0。柯西定理:如果函数f(x)及F(x)满足在闭区间[a,b]上连续;在开区间(a,b)内可导;(3)对任一x∈(a,b),F"(x)≠0那么在(a,b)内至少有一点ξ,使等式[f(b)-f(a)]/=f"(ξ)/F"(ξ)成立。拉格朗日定理:如果函数f(x)满足在闭区间[a,b]上连续;在开区间(a,b)内可导。那么在(a,b)内至少有一点ξ(a<ξ<b),使等式f(b)-f(a)=f′(ξ)(b-a)成立。积分中值定理:积分中值定理,是一种数学定律。分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。这个定理的几何意义为:若f(x)≥0,x∈[a,b],则由x轴、x=a、x=b及曲线y=f(x)围成的曲边梯形的面积等于一个长为b-a,宽为f(ξ)的矩形的面积。左迁2023-06-29 09:31:261
柯西不等式的公式是什么?
1、二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2等号成立条件:ad=bc2、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]等号成立条件:ad=bc3、向量形式:|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)等号成立条件:β为零向量,或α=λβ(λ∈R)。4、一般形式:(∑ai^2)(∑bi^2)≥(∑ai·bi)^2等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。1.柯西不等式的特点:左边是平方和的积,简记为方和积,右边是乘积和的平方。2.柯西不等式的直接应用。例:已知x,y满足x+3y=4,求4x2+y2的最小值。分析:方法一,大家看到该题后的直接想法可能是换元,把关于x,y的双元变量变换为关于x或y的一元变量问题,再借助于二次函数的思想可以解决。方法二,由于其结构特征与柯西不等式的形式非常相似。韦斯特兰2023-06-10 07:52:041
柯西数列定义问题
图里的条件相当于固定了p之后再让n变化,这样p实际上就是一个有界的量然而在Cauchy收敛定理的条件里p的变化与n无关FinCloud2023-06-08 08:00:252
服从柯西分布的随机变量x的分布函数是F(x)=A+Barctanx,求常数A,B,P{X绝对值小
函数F(x)当x趋向于负无穷大时趋向于0,趋向于正穷大时趋向于1,可求出A,B,arctanx---->-π/2,(x--->负无穷大)arctanx---->π/2,(x--->正无穷大)A-Bπ/2=0A+Bπ/2=1A=1/2B=1/πP{|x|<1}=F(1)-F(-1)=1/2f(x)=F"(x)=1/[π(1+x^2)]可桃可挑2023-05-26 08:18:361
柯西收敛准则六种形式
柯西收敛准则没有六种形式,只有一种形式,柯西极限存在准则又叫柯西收敛原理,给出了收敛的充分必要条件。柯西极限存在准则,又称柯西收敛准则,是用来判断某个式子是否收敛的充要条件(不限于数列),主要应用在以下方面:数列、数项级数、函数、反常积分、函数列和函数项级数每个方面都对应一个柯西准则,因此下文将按照不同的方面对准则进行说明。充分性由于数列的柯西收敛准则是实数连续性的体现之一,所以用实数公理——戴德金定理证明{xn}收敛。首先证明柯西序列是有界的。根据柯西序列的定义,对任意ε>0,存在正整数N,当m,n>N时,有|xn-xm|<ε。于是取m=N+1,则当n>N时,|xn-xN+1|<ε。解得xN+1-ε<xn<xN+1+ε,即当n>N时,{xn}既有上界又有下界,所以是有界的。余辉2023-05-25 18:51:511
柯西极限存在准则的介绍
柯西极限存在准则又叫柯西收敛原理,给出了数列收敛的充分必要条件。数列{Xn}收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有|Xn-Xm|<ε这个准则的几何意义表示,数列{Xn}收敛的充分必要条件是:该数列中足够靠后的任意两项都无限接近。凡尘2023-05-25 18:51:491
柯西留数定理内容?
在复分析中,留数定理是用来计算解析函数沿着闭曲线的路径积分的一个有力的工具,也可以用来计算实函数的积分。它是柯西积分定理和柯西积分公式的推广。假设U是复平面上的一个单连通开子集,a1、……、an是复平面上有限个点,f是定义在U {a1、……、an}的全纯函数。如果γ是一条把a1、……、an包围起来的可求长曲线,但不经过任何一个ak,并且其起点与终点重合,那么:如果γ是若尔当曲线,那么I(γ, ak) = 1,因此:在这里,Res(f, ak)表示f在点ak的留数,I(γ, ak)表示γ关于点ak的卷绕数。卷绕数是一个整数,它描述了曲线γ绕过点ak的次数。如果γ依逆时针方向绕着ak移动,卷绕数就是一个正数,如果γ根本不绕过ak,卷绕数就是零。在计算柯西分布的特征函数时会出现,用初等的微积分是不可能把它计算出来的。我们把这个积分表示成一个路径积分的极限,积分路径为沿着实直线从�6�1a到a,然后再依逆时针方向沿着以0为中心的半圆从a到�6�1a。取a为大于1,使得虚数单位i包围在曲线里面。路径积分为:由于eitz是一个整函数(没有任何奇点),这个函数仅当分母z2 + 1为零时才具有奇点。由于z2 + 1 = (z + i)(z �6�1 i),因此这个函数在z = i或z = �6�1i时具有奇点。这两个点只有一个在路径所包围的区域中。人类地板流精华2023-05-24 07:49:041
柯西古萨基本定理是充要的吗
柯西积分定理(或称柯西-古萨定理),是一个关于复平面上全纯函数的路径积分的重要定理。柯西积分定理说明。可桃可挑2023-05-24 07:49:046
试推导极坐标系中的柯西——黎曼方程
柯西-黎曼方程组推导如下:它包括两个方程:(1a)和(1b),主要是建立在u(x,y)和v(x,y)函数上。一般情况下,u和v取为一个复函数的实部和虚部:f(x + iy) = u(x,y) + iv(x,y)。如果u和v在开集C上是连续的,那么则f=u+iv是全纯的。这个方程组最初出现在达朗贝尔的著作中(d"Alembert 1752)。后来欧拉将此方程组和解析函数联系起来(Euler 1777)。 然后柯西(Cauchy 1814)采用这些方程来构建他的函数理论。 拓展资料:柯西--黎曼微分方程是提供了可微函数在开集中为全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。参考资料:百度百科-柯西-黎曼方程wpBeta2023-05-24 07:49:011
柯西积分定理与留数定理有什么联系
柯西积分公式就是留数定理的一阶极点的情况,柯西积分定理则代表封闭曲线完全解析,无极点的情况!hi投2023-05-24 07:49:004
柯西积分定理的条件
在上述条件下 ,若 L=L0+…+L即D由L0,,…,L所围成,作为柯西积分定理的应用,有同样可作为解析函数充要条件的柯西积分公式:f(z)在上连续 ,在D内解析的充要条件是。柯西积分定理指出,如果全纯函数的闭合积分路径没有包括奇点,那么其积分值为0;如果包含奇点,则外部闭合路径正向积分的值等于包围这个奇点的内环上闭合路径的正向积分值。柯西积分公式是证明一系列解析函数重要性质的工具,首先是证明了圆盘上的解析函数一定可展为幂级数 ,从而证明了 A.-L.柯西与K.魏尔斯特拉斯关于解析函数两个定义的等价性 ,其次证明了解析函数是无限次可微的,从而其实部与虚部也是无限次可微的调和函数。柯西积 分定理 已推广到沿同 伦曲线或沿同调链 积分的形式。柯西积分公式在多复变函数中也有许多不同形式. 简单的说,定义如下:设C是一条简单闭曲线,函数f(z)在以C为边界的有界区域D内解析,那么有:f(z)对曲线的闭合积分值为零。 (注:f(z)为复函数)(上述定义直接证明是比较困难的 在加上f(z)的导数在c上连续这个条件后,黎曼于1851年运用格林公式给出了简明的证明过程 1900年古萨给出了正式的证明)U是单连通的条件,意味着U没有“洞”,例如任何一个开圆盘U= {z: |z−z0 | <r}都符合条件,这个条件是很重要的,考虑以下路径它是一个单位圆,则路径积分不等于零;这里不能使用柯西积分定理,因为f(z) = 1/z在z = 0处没有定义。西柚不是西游2023-05-24 07:49:001
柯西黎曼方程是什么?
柯西-黎曼微分方程是提供了可微函数在开集中为全纯函数的充要条件的两个偏微分方程,以柯西和黎曼得名。这个方程组最初出现在达朗贝尔的著作中。后来欧拉将此方程组和解析函数联系起来。 然后柯西采用这些方程来构建他的函数理论。黎曼关于此函数理论的论文于1851年问世。扩展资料几何上,这样的一个矩阵总是一个旋转和一个缩放的复合,从而是保角(保持角度不变)的。因此,满足柯西-黎曼方程的有非零导数的函数保持平面曲线的角度不变。也即,柯西-黎曼方程是函数成为共形映射的条件。柯西-黎曼方程是函数在一点可微的必要条件。通常,u和v取为一个复函数的实部和虚部:f(x+ iy) = u(x,y) + iv(x,y)。假设u和v在开集C上连续可微。则f=u+iv是全纯的,当且仅当u和v的偏微分满足柯西-黎曼方程组(1a)和(1b)。北营2023-05-23 22:47:491
泛函分析中:柯西点列一定是收敛点列的证明
这是完备空间的定义。如果在不完备的空间里,当然可以有柯西列不收敛,距离空间中任意收敛点列都是柯西列,但柯西列不一定收敛。设{x_n}是Cauchy点列。则满足任取e > 0,存在N,使得m, n >= N时,有x_m和x_n距离小于e。取e = 1,设m, n >= N0时,x_m和x_n距离小于1。此时取m = N0,则x_N0和x_n的距离小于1。说明N0之后的点都在以x_N0为球心,半径为1的球之内。而N0之前只有有限个点x_1, ..., x_{N0-1}。取M = max{x_N0到x_i的距离,i < N0},再取M1 = max{M, 1},于是X_N0到x_n(n是自然数)的距离都不超过M1,当然说明这个点列是有界的。扩展资料:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;(Ⅱ)(对称性)d(x,y)=d(y,x);(Ⅲ)(三角不等式)d(x,z)≤d(x,y)+d(y,z)则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。参考资料来源:百度百科-度量空间Ntou1232023-05-22 18:14:111
泛函分析中:柯西点列一定是收敛点列的证明
这是完备空间的定义。如果在不完备的空间里,当然可以有柯西列不收敛,距离空间中任意收敛点列都是柯西列,但柯西列不一定收敛。设{x_n}是Cauchy点列。则满足任取e > 0,存在N,使得m, n >= N时,有x_m和x_n距离小于e。取e = 1,设m, n >= N0时,x_m和x_n距离小于1。此时取m = N0,则x_N0和x_n的距离小于1。说明N0之后的点都在以x_N0为球心,半径为1的球之内。而N0之前只有有限个点x_1, ..., x_{N0-1}。取M = max{x_N0到x_i的距离,i < N0},再取M1 = max{M, 1},于是X_N0到x_n(n是自然数)的距离都不超过M1,当然说明这个点列是有界的。扩展资料:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有(I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当x = y;(Ⅱ)(对称性)d(x,y)=d(y,x);(Ⅲ)(三角不等式)d(x,z)≤d(x,y)+d(y,z)则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。参考资料来源:百度百科-度量空间左迁2023-05-22 18:14:093
调和级数是柯西数列吗
调和级数是柯西数列吗?调和级数是柯西数列的。此后故乡只2023-05-22 18:13:001
关于欧拉和柯西的资料
欧拉 欧拉(Leonhard Euler 公元1707-1783年) 1707年出生在瑞士的巴塞尔(Basel)城,13岁就进巴塞尔大学读书,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导. 欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身". 欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年. 欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后, 也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法." 欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖的奖金后,他的父亲就不再反对他攻读数学了. 1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算慧星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了. 沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.在他完全失明之前,还能朦胧地看见东西,他抓紧这最后的时刻,在一块大黑板上疾书他发现的公式,然后口述其内容,由他的学生特别是大儿子A·欧拉(数学家和物理学家)笔录.欧拉完全失明以后,仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久. 欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题. 欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"欧拉是我们的导师." 欧拉充沛的精力保持到最后一刻,1783年9月18日下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我死了",欧拉终于"停止了生命和计算". 欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.〔欧拉还创设了许多数学符号,例如π(1736年),i(1777年),e(1748年),sin和cos(1748年),tg(1753年),△x(1755年),∑(1755年),f(x)(1734年)等. 欧拉是18世纪最优秀的数学家,也是历史上最伟大的数学家之一。 1707年4月15日,欧拉诞生于瑞士的巴塞尔。小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学。这在当时是个奇迹,曾轰动了数学界。小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。 欧拉大学毕业后到了俄国的首都彼得堡。在他26岁时,担任了彼得堡科学院的数学教授。1735年,年仅28岁的欧拉,由于要计算一个彗星的轨道,奋战了三天三夜,最后用他自己发明的新方法圆满地解决了这个难题。过度的工作,使欧拉得了眼病,就在那一年他右眼失明了。疾病没有吓倒他,他更加勤奋地工作,写出了几百篇论文,大量出色的研究成果,使他在欧洲科学界享有很高的声望。在他59岁时,仅剩的一只左眼视力衰退,只能模糊地看到物体,最后双目失明。但是工作就是他的生命,他决心用加倍的努力,来回答命运对他的挑战。眼睛看不见,他就口述,由他的儿子记录,继续写作。欧拉凭着他惊人的记忆力和心算能力,在黑暗中整整工作了17年。 1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁。欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲。hi投2023-05-19 20:19:341
什么是柯西判别法?
a到b上有2个连续函数,且2个函数的导数都存在,则有{f(b)—f(a)}/{g(b)—g(a)}=f"(ξ)/g"(η)其中ξ,η属于(a,b)FinCloud2023-05-19 11:01:423
如何证明柯西不等式的积分形式?
可以先证明欧几里德空间中的柯西–布尼亚科夫斯基不等式,然后将其一举应用到离散形式和积分形式。欧几里德空间是指带有内积运算的线性空间。对于其中任意两个元素α,β,定义一个二元实函数(α,β),具有性质:1.(α,β)=(β,α)2.(α+β,γ)=(α,γ)+(β,γ)3.(α,α)≥0,当且仅当α是零向量时取等号。需要注意的是内积运算到底怎么算并无规定,只要满足上述三条性质即可。因此这里说的是广义的内积。下面证明柯西–布尼亚科夫斯基不等式:|(α,β)|≤‖α‖‖β‖,其中‖α‖是√(α,α),即α的长度。置γ=α+kβ,其中k是待定系数。则(γ,γ)=(α,α)+2k(α,β)+k²(β,β)≥0现在取k=-(α,β)/(β,β)带入上式,得:(α,α)-2(α,β)²/(β,β)+(α,β)²/(β,β)从而(α,α)≥(α,β)²/(β,β)立得(α,β)²≤(α,α)(β,β)两边开方,不等式得证。现在马上令[a,b]上的全体连续函数的集合为一个线性空间,定义内积运算(f,g)=∫ f(x)g(x)dx显然这是一个欧几里德空间。利用柯西不等式,立即有积分结果。二维形式的证明:(a2+bB)=(c2+d2)=a2×2+b2×d2+a2×d2+b2×c2=(ac+bd)2+(ad-bc)22(ac+bd)2(a,b,c,dE R)等号在且仅在ad-bc=0即ad=bc时成立。三角形式的证明:(Va2 +b"+Vee+df)2=a2+b2+c2+d2+2Va2+b°×Vc+de≥a2+b2+C2+d2+2lac+bdl2a2-2ac+c2+b2-2bd+d2=(a-c02+(b-d)2两边开平方得:Va-+"+ve+df2(a-c)2+(0-d)。九万里风9 2023-05-18 13:56:071
求“柯西不等式”公式,知道的告诉一下…谢谢…
柯西不等式由a^2+b^2≥2ab(a∈ R,b∈ R)得a+b≥2√ ab(a>0,b>0)左迁2023-05-16 22:46:212
柯西不等式公式有哪些
1、二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2等号成立条件:ad=bc2、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]等号成立条件:ad=bc3、向量形式:|α||β|≥|α·β|,α=(a1,a2,?,an),β=(b1,b2,?,bn)(n∈N,n≥2)等号成立条件:β为零向量,或α=λβ(λ∈R)。4、一般形式:(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2等号成立条件:a1:b1=a2:b2=?=an:bn,或ai、bi均为零。扩展资料:不等式的特殊性质有以下三种:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变。常用定理①不等式F(x)< G(x)与不等式 G(x)>F(x)同解。②如果不等式F(x) < G(x)的定义域被解析式H( x )的定义域所包含,那么不等式 F(x)<G(x)与不等式F(x)+H(x)<G(x)+H(x)同解。③如果不等式F(x)<G(x) 的定义域被解析式H(x)的定义域所包含,并且H(x)>0,那么不等式F(x)<G(x)与不等式H(x)F(x)<H( x )G(x) 同解。④不等式F(x)G(x)>0与不等式同解;不等式F(x)G(x)<0与不等式同解。 排序不等式:对于两组有序的实数x1≤x2≤?≤xn,y1≤y2≤?≤yn,设yi1,yi2,?,yin是后一组的任意一个排列,记S=x1yn+x2yn-1+?+xny1,M=x1yi1+x2yi2+?+xnyin,L=x1y1+x2y2+?+xnyn,那么恒有S≤M≤L。当且仅当x1=x2=??=xn且y1=y2=??yn时,等号成立。参考资料来源:百度百科-柯西不等式余辉2023-05-16 22:46:211
柯西不等式公式是什么?
1、二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^22、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]3、向量形式:|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)4、一般形式:(∑ai^2)(∑bi^2)≥(∑ai·bi)^2不等式的特殊性质有以下三种:①不等式性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;②不等式性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;③不等式性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变。总结:当两个正数的积为定值时,它们的和有最小值;当两个正数的和为定值时,它们的积有最大值。小菜G的建站之路2023-05-16 22:46:191
柯西不等式公式有哪些
都被说了CarieVinne 2023-05-16 22:46:196
柯西不等式高中公式是什么?
1、二维形式:(a^2+b^2)(c^2 + d^2)≥(ac+bd)^2。等号成立条件:ad=bc。2、三角形式:√(a^2+b^2)+√(c^2+d^2)≥√[(a-c)^2+(b-d)^2]。等号成立条件:ad=bc。3、向量形式:|α||β|≥|α·β|,α=(a1,a2,…,an),β=(b1,b2,…,bn)(n∈N,n≥2)。等号成立条件:β为零向量,或α=λβ(λ∈R)。4、一般形式:(∑ai^2)(∑bi^2)≥(∑ai·bi)^2。等号成立条件:a1:b1=a2:b2=…=an:bn,或ai、bi均为零。相关信息:柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中与研究中非常重要,是高等数学研究内容之一。据说,法国科学院《会刊》创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能够到四页。柯西较长的论文因而只得投稿到其它地方。凡尘2023-05-16 22:46:181