矩阵的转置

什么情况下矩阵的转置矩阵等于其逆矩阵,能证明下吗?

A^{-1}=A^T <=> AA^T=A^TA=I,这个就是正交矩阵的定义,对于一般的n阶正交阵而言没有更简单的条件了
北营2023-05-24 18:38:255

矩阵的转置和本身的关系

1、如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。2、一阶矩阵的转置不变。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。  正交矩阵的一个重要性质就是它的转置矩阵就是它的逆矩阵
北有云溪2023-05-24 18:38:251

分块矩阵的转置是什么?

分块矩阵的转置等于先将分块矩阵的行列互换,再将每个子块转置。对矩阵进行适当分块,可使高阶矩阵的运算可以转化为低阶矩阵的运算,同时也使原矩阵的结构显得简单而清晰,从而能够大大简化运算步骤,或给矩阵的理论推导带来方便。有不少数学问题利用分块矩阵来处理或证明,将显得简洁、明快。分块矩阵的性质:1、同结构的分块上(下)三角形矩阵的和(差)、积(若乘法运算能进行)仍是同结构的分块矩阵。2、数乘分块上(下)三角形矩阵也是分块上(下)三角形矩阵。3、分块上(下)三角形矩阵可逆的充分必要条件是的主对角线子块都可逆;若可逆,则的逆阵也是分块上(下)三角形矩阵。
墨然殇2023-05-24 18:38:251

求矩阵的转置公式?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
苏萦2023-05-24 18:38:251

如何求一个矩阵的转置?

a×a的转置等于AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。|A|=|A"|。转置矩阵的行列式等于原矩阵的行列式。而乘积矩阵的行列式等于行列式的乘积。|AA"|=|A||A"|。所以。|AA"|=|A||A"|=|A||A|=|A|²。性质:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
再也不做站长了2023-05-24 18:38:241

求矩阵的转置矩阵?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
黑桃花2023-05-24 18:38:241

初等矩阵的转置矩阵公式

初等矩阵的转置矩阵公式:Eij(k)逆=Eij(-k)。设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b。矩阵a"经过初等列变换之后,可化为下三角矩阵c,则a"等价于c。b的转置矩阵b"=c,矩阵a与矩阵a的转置矩阵的特征值相同。三种变换类型 (1) 交换矩阵的两行(对调i,j,两行记为ri,rj)。(2) 以一个非零数k乘矩阵的某一行所有元素(第i行乘以k记为ri×k)。(3) 把矩阵的某一行所有元素乘以一个数k后加到另一行对应的元素(第j行乘以k加到第i行记为ri+krj)。类似地,把以上的“行”改为“列”便得到矩阵初等列变换的定义,把对应的记号“r”换为“c”。
大鱼炖火锅2023-05-24 18:38:241

什么矩阵的转置会等于它本身?

这是因为很多文献里默认正定阵为实对称正定阵
拌三丝2023-05-24 18:38:245

矩阵与矩阵的转置相乘

使用二维数组作为矩阵的存储结构,根据转置矩阵的特点,很容易得到转置矩阵。矩阵相乘的特点: (1)当矩阵A的列数等于矩阵B的行数时,A与B才可以相乘。 (2)乘积C的第m行第n列的元素等于矩阵A的第m行的元素与矩阵B的第n列对应元素乘积之和。 (3)矩阵C的行数等于矩阵A的行数,C的列数等于B的列数。两矩阵转置后相乘与相乘后转置不相等。证明如下:把矩阵A的行换成相应的列,得到的新矩阵称为A的转置矩阵,记作A^T或A"。根据基本性质(A±B)"=A"±B";(A×B)"=B"×A";(A")"=A;(λA")"=λA;det(A")=det(A)。所以转置后相乘和相乘后转置,也就是(A"×B")和A"×B"一般是不相等的。必须是转置后相乘和相乘后转置两个之间的左右乘位置对调才相等;即(A"×B")和B"×A"才是相等的。而B"×A"和A"×B"一般是不相等的,矩阵乘法一般不满足乘法交换律。扩展资料:矩阵转置的应用:如果AA^T=E(E为单位矩阵,A^T表示“矩阵A的转置矩阵”)或A^TA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是正规矩阵。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。正交矩阵的一个重要性质就是它的转置矩阵就是它的逆矩阵。
黑桃花2023-05-24 18:38:241

矩阵的转置公式有哪些?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
九万里风9 2023-05-24 18:38:231

矩阵的转置和本身的关系

如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。2、一阶矩阵的转置不变。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。  正交矩阵的一个重要性质就是它的转置矩阵就是它的逆矩阵。
韦斯特兰2023-05-24 18:38:232

什么情况下矩阵的转置等于矩阵的逆?

你好~~矩阵a的转置矩阵a^t等于a的逆矩阵a^-1那么aa^t=aa^-1=e设a=(α1,α2,α3,...,αn)^t,其中αi为n维列向量,那么a^t=(α1,α2,α3,...,αn),α1^tα1,α1^tα2,α1^tα3,...,α1^tαnα2^tα1,α2^tα2,α2^tα3,...,α2^tαn那么aa^t=(...............)=e,...............αn^tα1,αn^tα2,αn^tα3,...,αn^tαn那么||αi^tαi||=1,||αi^tαj||,i≠j,也就是说a的每一个列向量的长度等于1并且每两个行向量相互正交同理设a=(α1,α2,α3,...,αn)时用a^ta=e可以证明a的每一个行向量的长度等于1并且每两个行向量相互正交这样的矩阵叫做正交矩阵,也就是说a必须是单位矩阵才满足a^t=a^-1还有没不明白的,欢迎追问~~
康康map2023-05-24 18:38:231

请问矩阵的转置公式是什么?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
真颛2023-05-24 18:38:231

实对称矩阵的转置怎么求?

解: |A-λE|=|2-λ 2 -2||2 5-λ -4||-2 -4 5-λ|r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)|2-λ 2 -2||2 5-λ -4||0 1-λ 1-λ|c2-c3|2-λ 4 -2||2 9-λ -4||0 0 1-λ|= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)= (1-λ)(λ^2-11λ+10)= (10-λ)(1-λ)^2.扩展资料:如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),而且该矩阵对应的特征值全部为实数,则称A为实对称矩阵。主要性质:1.实对称矩阵A的不同特征值对应的特征向量是正交的。2.实对称矩阵A的特征值都是实数,特征向量都是实向量。3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。参考资料:百度百科——实对称矩阵
善士六合2023-05-24 18:38:231

线性代数中的矩阵的转置和矩阵的逆矩阵有什么区别和联系?

没有关系。转置是把行和列交换,逆是相乘等于E,一般用初等变换法
韦斯特兰2023-05-24 18:38:234

矩阵的转置怎么算?

设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b矩阵a"经过初等列变换之后,可化为下三角矩阵c,则a"等价于c显然,b的转置矩阵b"=c因为,转置之后对角线上的元素不变,所以,b和c的对角线元素相等。因为,三角形行列式的值等于对角线上元素的乘积又因为,|λi-a|=|λi-b|=对角线上元素的乘积,|λi-a"|=|λi-c|=对角线上元素的乘积所以,|λi-a|=|λi-a"|所以,矩阵a与矩阵a的转置矩阵的特征值相同扩展资料:化成三角形行列式法:先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点:1、各行元素之和相等; 2 各列元素除一个以外也相等。充分利用行列式的特点化简行列式是很重要的。根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。参考资料来源:百度百科-矩阵转置
苏萦2023-05-24 18:38:231

怎么把矩阵的转置运算公式推导一下呢?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
肖振2023-05-24 18:38:231

矩阵的转置怎么算?

设矩阵a经过初等行变换之后,化为上三角矩阵b,则a等价于b矩阵a"经过初等列变换之后,可化为下三角矩阵c,则a"等价于c显然,b的转置矩阵b"=c因为,转置之后对角线上的元素不变,所以,b和c的对角线元素相等。因为,三角形行列式的值等于对角线上元素的乘积又因为,|λi-a|=|λi-b|=对角线上元素的乘积,|λi-a"|=|λi-c|=对角线上元素的乘积所以,|λi-a|=|λi-a"|所以,矩阵a与矩阵a的转置矩阵的特征值相同化成三角形行列式法:先把行列式的某一行(列)全部化为 1 ,再利用该行(列)把行列式化为三角形行列式,从而求出它的值,这是因为所求行列式有如下特点:1、各行元素之和相等; 2 各列元素除一个以外也相等。充分利用行列式的特点化简行列式是很重要的。根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。
苏萦2023-05-24 18:38:221

如何求一个矩阵的转置?

解: |A-λE|=|2-λ 2 -2||2 5-λ -4||-2 -4 5-λ|r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)|2-λ 2 -2||2 5-λ -4||0 1-λ 1-λ|c2-c3|2-λ 4 -2||2 9-λ -4||0 0 1-λ|= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)= (1-λ)(λ^2-11λ+10)= (10-λ)(1-λ)^2.如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),而且该矩阵对应的特征值全部为实数,则称A为实对称矩阵。主要性质:1.实对称矩阵A的不同特征值对应的特征向量是正交的。2.实对称矩阵A的特征值都是实数,特征向量都是实向量。3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。扩展资料:把一个m×n矩阵的行,列互换得到的n×m矩阵,称为A的转置矩阵,记为A"或AT。矩阵转置的运算律(即性质):1.(A")"=A2.(A+B)"=A"+B"3.(kA)"=kA"(k为实数)4.(AB)"=B"A"若矩阵A满足条件A=A",则称A为对称矩阵。由定义知对称矩阵一定是方阵,而且位于主对角线对称位置上的元素必对应相等,即aij=aji对任意i,j都成立。(1)对称矩阵 在一个n阶方阵A中,若元素满足下述性质:则称A为对称矩阵。(2)对称矩阵的压缩存储 对称矩阵中的元素关于主对角线对称,故只要存储矩阵中上三角或下三角中的元素,让每两个对称的元素共享一个存储空间。这样,能节约近一半的存储空间。①按行优先顺序存储主对角线(包括对角线)以下的元素即按 次序存放在一个向量sa[0...n(n+1)/2-1]中(下三角矩阵中,元素总数为n(n+1)/2)。其中:sa[0]=a0,0sa[1]=a1,0……sa[n(n+1)/2-1]=an-1,n-1②元素aij的存放位置aij元素前有i行(从第0行到第i-1行),一共有:1+2+…+i=i×(i+1)/2个元素。在第i行上, 之前恰有j个元素,即ai0,ai1,…,ai,j-1 ,因此有:sa[i×(i+1)/2+j]=aij③aij和sa[k]之间的对应关系:若i≥j,k=i×(i+1)/2+j0≤k<n(n+1)/2若i<j,k=j×(j+1)/2+i0≤k<n(n+1)/2令I=max(i,j),J=min(i,j),则k和i,j的对应关系可统一为:k=i×(i+1)/2+j0≤k<n(n+1)/2(3)对称矩阵的地址计算公式LOC(aij)=LOC(sa[k])=LOC(sa[0])+k×d=LOC(sa[0])+[I×(I+1)/2+J]×d通过下标变换公式,能立即找到矩阵元素aij在其压缩存储表示sa中的对应位置k。因此是随机存取结构。参考资料:百度百科---实对称矩阵
九万里风9 2023-05-24 18:38:221

行列式和它的转置行列式相等,那矩阵的转置等于原矩阵吗

行列式和它的转置相等,行列式的行列对称了,行的性质对列也成立。 你自己先写个行列式,然后转置一下;再写出和它的转置相等的行列式; 马上就清楚了。 告诉你思路自己练习,比直接告诉你结果好一些。
无尘剑 2023-05-24 18:38:228

求已知矩阵的转置矩阵的简单方法

你好!求转置矩阵就是把原矩阵的第一行写为第一列,把原矩阵的第二行写为第二列,...,把原矩阵的最后一行写为最后一列。经济数学团队帮你解答,请及时采纳。谢谢!
u投在线2023-05-24 18:38:222

矩阵的转置矩阵的性质是什么?

转置矩阵的性质如下:1、(A^T)^T=A2、(A+)B^T=A^T+B^T3、(kA)^T=kA^T4、(AB)^T=B^TA^T一个矩阵的转置与本身相乘得到对称矩阵一个矩阵的逆矩阵与本身相乘得到单位矩阵行列式不等于零,矩阵可逆,反之不可逆满秩矩阵一定是可逆的。矩阵的性质1、乘法结合律: (AB)C=A(BC)2、乘法左分配律:(A+B)C=AC+BC3、乘法右分配律:C(A+B)=CA+CB4、对数乘的结合性k(AB)=(kA)B=A(kB)5、AA*=A*A,A和伴随矩阵相乘满足交换律。6、AE=EA,A和单位矩阵或数量矩阵满足交换律。以上内容参考 百度百科—转置矩阵
北营2023-05-24 18:38:221

A的转置矩阵的逆矩阵=A的逆矩阵的转置矩阵吗,为什么

等于,因为A的转制乘A逆的转制=(A逆乘A)的转制=E的转制=E,所以A的转制的逆等于A逆的转制
人类地板流精华2023-05-24 18:38:224

怎么判断矩阵的转置

解: |A-λE|=|2-λ 2 -2||2 5-λ -4||-2 -4 5-λ|r3+r2 (消0的同时, 还能提出公因子, 这是最好的结果)|2-λ 2 -2||2 5-λ -4||0 1-λ 1-λ|c2-c3|2-λ 4 -2||2 9-λ -4||0 0 1-λ|= (1-λ)[(2-λ)(9-λ)-8] (按第3行展开, 再用十字相乘法)= (1-λ)(λ^2-11λ+10)= (10-λ)(1-λ)^2.扩展资料:如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),而且该矩阵对应的特征值全部为实数,则称A为实对称矩阵。主要性质:1.实对称矩阵A的不同特征值对应的特征向量是正交的。2.实对称矩阵A的特征值都是实数,特征向量都是实向量。3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4.若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。参考资料:百度百科——实对称矩阵
小菜G的建站之路2023-05-24 18:38:221

为什么要做矩阵的转置

转置是矩阵的一种常规运算。例如对于正交矩阵 A,其逆矩阵等于转置矩阵,即A^(-1) = A^T。求逆矩阵很繁,但求转置矩阵较容易。
苏萦2023-05-24 18:38:211

矩阵的转置是什么?

矩阵的转置也就是转置矩阵,将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。矩阵的转置可能在实际生活中感受不到,但是在专业的工具中,尤其是图像处理的工具中可以经常用到的旋转功能,其实就是应用的矩阵转置,只是平时联想不到。性质:简单地说如果A是两个向量空间之间的线性映射在给定基下面的矩阵,那么A的转置矩阵就是向量空间的对偶空间上的线性映射关于这两组基对应的对偶基(坐标函数)的矩阵,出于方便起见我们假设以下所有向量空间都是n维的。对于每个两个向量空间空间之间线性映射,存在一个反向的在其对应的对偶空间上的线性映射,我们称之为它的转置映射。
此后故乡只2023-05-24 18:38:211

矩阵的转置怎么求

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。1、设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:A=a(i,j)。2、A的转置为这样一个n×m阶矩阵B,满足B=b(j,i),即 a(i,j)=b (j,i)(B的第i行第j列元素是A的第j行第i列元素),记A"=B。3、直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。
肖振2023-05-24 18:38:211

矩阵的转置公式是什么啊?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
苏萦2023-05-24 18:38:211

矩阵的转置公式是什么?

矩阵转置公式:(A^T)^T=A,(A+B)^T = A^T + B^T,(AB)^T = B^T*A^T。矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。最重要的一个公式,其余的每个都可以用这个来推导已知Y = AXB Y = A*X*BY=AXB那么有对X求导,公式(1)d Y d X = A TB T frac{dY}{dX} = A^T*B^TdXdY=ATBT和对X T X^TXT求导,公式(2)d Y d X T = BA frac{dY}{dX^T} = B*AdXTdY=BA下面我们来举例:如果要计算Y = XB Y = X*BY=XB中,d Y d X frac{dY}{dX}dXdY的值,我们可以令A = E A =EA=E代入公式(1),有d Y d X = B T frac{dY}{dX} = B^TdXdY=BT其他计算同理。有一个小窍门,平时在推导的时候,可以根据矩阵的行列数来判断。具体的规律可以自己私下尝试。
肖振2023-05-24 18:38:211

对角矩阵的转置矩阵原矩阵吗

是的。矩阵的转置是行列互换,主对角线上的元素转置后仍在主对角线上。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但是存在一种复正交矩阵,复正交矩阵不是酉矩阵。正交矩阵的一个重要性质就是它的转置矩阵就是它的逆矩阵。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
无尘剑 2023-05-24 18:38:201

如何求矩阵的转置矩阵?

a×a的转置等于AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。|A|=|A"|。转置矩阵的行列式等于原矩阵的行列式。而乘积矩阵的行列式等于行列式的乘积。|AA"|=|A||A"|。所以。|AA"|=|A||A"|=|A||A|=|A|²。性质:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
kikcik2023-05-24 18:38:201

分块矩阵的转置怎么求?

就是将原矩阵转置就行吧,和分块没有关系?
gitcloud2023-05-24 18:38:203

矩阵的转置的行列式

矩阵的行列式和其转置矩阵的行列式一定相等。证明要用到:1、交换排列中两个元素的位置,改变排列的奇偶性;2、行列式的定义可改为按列标的自然序,正负号由行标排列的奇偶性决定。扩展资料初等行变换1、以P中一个非零的数乘矩阵的某一行。2、把矩阵的某一行的c倍加到另一行,这里c是P中的任意一个数。3、互换矩阵中两行的位置。一般来说,一个矩阵经过初等行变换后就变成了另一个矩阵,当矩阵A经过初等行变换变成矩阵B时,一般写作A-B。可以证明:任意一个矩阵经过一系列初等行变换总能变成阶梯型矩阵。初等列变换同样地,定义初等列变换,即:1、以P中一个非零的数乘矩阵的某一列。2、把矩阵的某一列的c倍加到另一列,这里c是P中的任意一个数。3、互换矩阵中两列的位置。
肖振2023-05-24 18:38:201

(矩阵的转置乘矩阵)的秩=矩阵的秩。那么矩阵乘(矩阵的转置)的秩是什么?求证明

有没有一种可能,矩阵=矩阵的转置的转置
再也不做站长了2023-05-24 18:38:204

线性代数中的矩阵的转置和矩阵的逆矩阵有什么区别和联系?

这是两个完全不同的概念转置是行变成列列变成行,没有本质的变换逆矩阵是和这个矩阵相乘以后成为单位矩阵的矩阵这个是一个本质的变换,逆矩阵除了一些显然的性质以外还有一些很特殊的性质,例如无论左乘还是右乘原矩阵,都是单位矩阵。
wpBeta2023-05-24 18:38:201

两个向量相乘得到的矩阵的转置怎么求

既然求二者相乘得到的矩阵转置那么就先把两个向量写成可以相乘的矩阵形式只有 1*n和n*1向量相乘得到数值而n*1 和1*n向量相乘,得到n*n方阵
大鱼炖火锅2023-05-24 18:38:201

(线代)分块矩阵的转置有这公式?

对的
NerveM 2023-05-24 18:38:2013

矩阵的转置问题

注意到行列式的性质|A^T|=|A|且单位阵E是对称阵,则有|E-A^T|=|E^T-A^T|=|(E-A)^T|=|E-A|。
mlhxueli 2023-05-24 18:38:201

什么情况下矩阵的转置矩阵等于其逆矩阵,能证明下吗

A^T=A^{-1} <=> AA^T=I,也就是A是正交阵
Chen2023-05-24 18:38:194

矩阵的转置是什么呢?

矩阵的转置也就是转置矩阵,将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出,矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。矩阵的秩矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。以上内容参考 百度百科——矩阵的秩
ardim2023-05-24 18:38:191

如何求矩阵的转置

方法1:使用伴随矩阵的定义,先求出各元素,对应的代数余子式,再转置方法2:利用伴随矩阵(仅限可逆矩阵情况下),与行列式及逆矩阵的关系:先求出行列式|A|再使用初等行变换,求出逆矩阵根据公式
北境漫步2023-05-24 18:38:191

矩阵的转置是什么意思?

矩阵的转置也就是转置矩阵,将矩阵的行列互换得到的新矩阵称为转置矩阵,转置矩阵的行列式不变。矩阵的转置可能在实际生活中感受不到,但是在专业的工具中,尤其是图像处理的工具中可以经常用到的旋转功能,其实就是应用的矩阵转置,只是平时联想不到。矩阵分解将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积 ,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。在线性代数中,相似矩阵是指存在相似关系的矩阵,相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。
wpBeta2023-05-24 18:38:191

一个矩阵的转置是什么呢?

等于A^2。AA^T=AA^T=AA=A^2即矩阵A乘以A的转置等于A的行列式的平方。矩阵转置的主要性质实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。若入0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(入OE-A)=n-k,其中E为单位矩阵。a×a的转置介绍:a*a的转置可以表示为:AA^T= AA^T= AA|= A^2即矩阵A乘以A的转置等于A的行列式的平方。2、转置是一个数学名词。直观来看,将A的所有元素绕着一条从第1行第1列元素出发的右下方45度的射线作镜面反转,即得到A的转置。一个矩阵M,把它的第一行变成第一列,第二行变成第二列,等等。直到最末一行变为最末一列,从而得到一个新的矩阵N。这一过程称为矩阵的转置。即矩阵A的行和列对应互换。3、矩阵转置的主要性质:实对称矩阵A的不同特征值对应的特征向量是正交的。实对称矩阵A的特征值都是实数,特征向量都是实向量。n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。
西柚不是西游2023-05-24 18:38:191

矩阵的转置是什么意思,矩阵的转置怎么表示

1.矩阵的转置是矩阵的一种运算,在矩阵的所有运算法则中占有重要地位。 2. 设A为m×n阶矩阵(即m行n列),第i 行j 列的元素是a(i,j),即:把m×n矩阵A的行换成同序数的列得到一个n×m矩阵,此矩阵叫做A的转置矩阵。
黑桃花2023-05-24 18:38:191

矩阵的转置怎么求

方法1/3矩阵转置其实就是行列互换,根据字面意思,就是把行的内容换到列的内容,下面给大家举例介绍请点击输入图片描述2/3如图所示,将矩阵第一行的内容转换到第一列的位置请点击输入图片描述3/3以此类推,第二行内容转至第二列,第三行内容转至第三列,就完成矩阵转置了请点击输入图片描述
苏萦2023-05-24 18:38:191

矩阵的转置是什么

在求矩阵的转置的时候实际上就把每个第m行n列的元素都转移到第n行m列去得到的新矩阵就是矩阵的转置记为转置矩阵A^T
阿啵呲嘚2023-05-24 18:38:191

矩阵的转置怎么算

.现有两个矩阵,这两个矩阵的行数和列数都一样,将它们设为矩阵A与B,他们的行数与列...2.矩阵C既然为矩阵A与B的和矩阵,那么就等于矩阵A与B中的元素各自相加之后的结果。3.现我们找两个矩阵,而且这两个矩阵的行数和列数必须一样,否则就不能进行加减运算。4.按照矩阵加法的运算法则,我们先写出这两个矩阵相加时所对应的加法算式矩阵,...
CarieVinne 2023-05-24 18:38:192

矩阵的转置矩阵是什么意思

转置矩阵的性质如下:1、(A^T)^T=A2、(A+)B^T=A^T+B^T3、(kA)^T=kA^T4、(AB)^T=B^TA^T一个矩阵的转置与本身相乘得到对称矩阵一个矩阵的逆矩阵与本身相乘得到单位矩阵行列式不等于零,矩阵可逆,反之不可逆满秩矩阵一定是可逆的。矩阵的性质1、乘法结合律: (AB)C=A(BC)2、乘法左分配律:(A+B)C=AC+BC3、乘法右分配律:C(A+B)=CA+CB4、对数乘的结合性k(AB)=(kA)B=A(kB)5、AA*=A*A,A和伴随矩阵相乘满足交换律。6、AE=EA,A和单位矩阵或数量矩阵满足交换律。以上内容参考 百度百科—转置矩阵
肖振2023-05-24 18:38:191

矩阵的转置怎么求?

AA^T| = |A| |A^T| = |A||A| = |A|^2即矩阵A乘以A的转置等于A的行列式的平方。矩阵转置的主要性质:1、实对称矩阵A的不同特征值对应的特征向量是正交的(网易笔试题曾考过)。2、实对称矩阵A的特征值都是实数,特征向量都是实向量。3、n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。4、若λ0具有k重特征值 必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。扩展资料:线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。
可桃可挑2023-05-24 18:38:181