矩阵的特征值和特征向量

矩阵的特征值和特征向量

几乎所有的向量在乘以矩阵 AA 后都会改变方向,某些特殊的向量 xx 和 AxAx 位于同一个方向,它们称之为特征向量。Ax=λxAx=λx数字 λλ 称为特征值。它告诉我们在乘以 AA 后,向量是怎么被拉伸、缩小、反转或者不变的。 λ=0λ=0 意味着特征向量存在于矩阵的零空间中。任意向量都是单位矩阵的特征向量,因为 Ix=xIx=x,其特征值为 1。要计算特征值的话,我们只需要道 det(A−λI)=0det(A−λI)=0 即可。
苏萦2023-05-24 22:50:081

对称半正定矩阵的特征值和特征向量有什么性质

实对称矩阵的特征值都是实数属于不同特征值的特征向量正交k重特征值有k个线性无关的特征向量
苏萦2023-05-24 18:38:032

如何理解矩阵的特征值和特征向量

矩阵特征向量是置换相抵下的不变量,,,简单点说就是一个线性变换作用在向量上,可以把矩阵看作那个线性变换的线性算子,,,这个作用不改变这个向量的方向,只改变这个向量的大小,而特征值就是那个改变的倍数,,,,特征值在控制理论中有广泛的应用,,,因为它的性质非常好,,,,,,
陶小凡2023-05-24 18:38:002

实对称矩阵的特征值和特征向量各有什么特殊性质?

实对称矩阵的特征值都是实数属于不同特征值的特征向量正交k重特征值有k个线性无关的特征向量
大鱼炖火锅2023-05-24 18:37:591

矩阵可逆条件下矩阵的特征值和特征向量怎样判断呢?

当A可逆时, 若 λ是A的特征值, α 是A的属于特征值λ的特征向量;则 |A| / λ 是 A*的特征值, α 仍是A*的属于特征值 |A| / λ 的特征向量。设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。设A是数域P上的一个n阶矩阵,λ是一个未知量,称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解  ,  称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。 扩展资料:性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根),则:性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。如将特征值的取值扩展到复数领域,则一个广义特征值有如下形式:Aν=λBν其中A和B为矩阵。其广义特征值(第二种意义)λ 可以通过求解方程(A-λB)ν=0,得到det(A-λB)=0(其中det即行列式)构成形如A-λB的矩阵的集合。其中特征值中存在的复数项,称为一个“丛(pencil)”。若B可逆,则原关系式可以写作  ,也即标准的特征值问题。当B为非可逆矩阵(无法进行逆变换)时,广义特征值问题应该以其原始表述来求解。如果A和B是实对称矩阵,则特征值为实数。这在上面的第二种等价关系式表述中并不明显,因为  A矩阵未必是对称的。参考资料:百度百科——矩阵特征值
无尘剑 2023-05-24 18:37:581

矩阵的特征值和特征向量是什么?

|A| = 1 · 2 · 3 = 6A* = |A|A^(-1) = 6A^(-1)(A*)^2 + E = 36A^(-2) + E 的特征值分别是36 · 1^2 + 1 = 3736 / 2^2 + 1 = 10 36 / 3^2 + 1 = 5 最大特征值 37简介矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
无尘剑 2023-05-24 18:37:572

求下列矩阵的特征值和特征向量{0 0 0 1} {0 0 1 0} {0 1 0 0}{0 0 0 1}

设矩阵A的特征值为λ那么|A-λE|=-λ 0 0 10 -λ 1 00 1 -λ 01 0 0 -λ r1+r4 *λ ,r2+r3 *λ=0 0 0 1-λ^20 0 1-λ^2 00 1 -λ 01 0 0 -λ解得1-λ^2=0即λ=1或 -1即矩阵有2重特征值特征值1和-1λ=1时,A-E=-1 0 0 10 -1 1 00 1 -1 01 0 0 -1 r1+r4,r2+r3,交换行次序~1 0 0 -10 1 -1 00 0 0 00 0 0 0得到特征向量(0,1,1,0)^T和(1,0,0,1)^Tλ=-1时,A+E=1 0 0 10 1 1 00 1 1 01 0 0 1 r4-r1,r3-r2~1 0 0 10 1 1 00 0 0 00 0 0 0得到特征向量(0,1,-1,0)^T和(1,0,0,-1)^T
水元素sl2023-05-23 19:24:113

matlab怎么计算矩阵的特征值和特征向量

[V, D]=eig(A)
bikbok2023-05-23 19:24:106

如何求矩阵的特征值和特征向量?

特征值是方阵的一种特殊性质,是数,与方阵本身相关。计算特征值的方法如下:1. 假设A是n阶方阵,其特征值为λ,特征向量为x;2. 因为特征向量与特征值相关,即Ax=λx,移项可得到(A-λE)x=0,其中E为n阶单位矩阵;3. 对于非零解,方程(A-λE)x=0有解当且仅当方程系数矩阵(A-λE)的行列式det(A-λE)=0;4. 解出方程det(A-λE)=0的解λ1,λ2,…,λn,即为矩阵A的n个特征值;5. 对于每个特征值λi,求解其对应的特征向量xi,即求解方程(A-λiE)xi=0,得到n个线性无关的特征向量。特征值和特征向量的计算是矩阵分析和线性代数中的重要概念,广泛应用于数学、物理学、工程学等领域。
陶小凡2023-05-22 22:49:311

矩阵的特征值和特征向量怎么算的?

题:矩阵a=0001001001001000求矩阵a的特征值与特征向量。解:特征矩阵te-a=t00-10t-100-1t0-100t|te-a|=(tt-1)^2注:这个可以用第一列进行代数余子式展开,看容易看出解来。也可以用第二三行用二阶子式及其余子式的乘积来计算,也很方便。于是其特征值有四个,分别是1,1,-1,-1特征矩阵te-a的四个解向量,就是相应的特征向量。略。
meira2023-05-22 22:49:311

求矩阵的特征值和特征向量

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。[1]矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。[2]英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。[1]1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具。[3]矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。
黑桃花2023-05-20 08:57:132

若当标准型与矩阵的特征值和特征向量有什么关系

■ 举例: A为(3×3)矩阵,故有3个特征值。对λ1(单根) → 求出特征向量p1;对λ2=λ3(二重根),设代数重数2﹥几何重数1,∴特征向量矩阵有一列0向量,由此判定该特征向量矩阵不可逆,矩阵相似变换等式(P逆)AP=Λ不成立,A不可能化简为对角阵Λ。我们退一步而求其次,A不能化简为对角阵,但可求出简单程度仅次于Λ的Jordan矩阵。现求特征向量p2及广义特征向量ξ3,令相似变换矩阵 G=( p1、p2、ξ3 ) 。于是有 (G逆).A.G=J ( J是Jordan矩阵 )。一般将对角阵Λ视为若当阵J之特例。这些知识在《线性系统理论》求解电路一阶线性微分方程组有实际应用。■ 广义特征向量怎么求?答: ①求对应λ2(=λ3)齐次方程组通解 ,设通解 (即特征向量) 为p2。②将特征向量视为常数项写入原方程组,求非齐次方程组之解,现令解为ξ3,ξ3 即所谓广义特征向量。MMA求解方法: 写出增广矩阵,用RowReduce命令化为行最简形,化简后常数项即变为方程组之解 ξ3。
北境漫步2023-05-20 08:57:131

求埃尔米特(Hermitian)矩阵的特征值和特征向量的C语言程序

搜一下:求埃尔米特(Hermitian)矩阵的特征值和特征向量的C语言程序
人类地板流精华2023-05-20 08:56:032

如何用R软件或excel来求矩阵的特征值和特征向量丫,跪求大神~

在R中,函数eigen(Sm) 用来计算矩阵Sm 的特征值和特征向量
左迁2023-05-15 13:53:052

怎么用Matlab求矩阵的特征值和特征向量

eig函数直接可以求特征值和特征向量在MATLAB中,计算矩阵A的特征值和特征向量的函数是eig(A),常用的调用格式有5种:E=eig(A):求矩阵A的全部特征值,构成向量E。[V,D]=eig(A):求矩阵A的全部特征值,构成对角阵D,并求A的特征向量构成V的列向量。[V,D]=eig(A,"nobalance"):与第2种格式类似,但第2种格式中先对A作相似变换后求矩阵A的特征值和特征向量,而格式3直接求矩阵A的特征值和特征向量。E=eig(A,B):由eig(A,B)返回N×N阶方阵A和B的N个广义特征值,构成向量E。[V,D]=eig(A,B):由eig(A,B)返回方阵A和B的N个广义特征值,构成N×N阶对角阵D,其对角线上的N个元素即为相应的广义特征值,同时将返回相应的特征向量构成N×N阶满秩矩阵,且满足AV=BVD。
北境漫步2023-05-15 13:53:042

怎么求复数矩阵的特征值和特征向量

Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。|mE-A|=0,求得的m值即为A的特征值。mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn同时矩阵A的迹是特征值之和:tr(A)=m1+m2+m3+…+mn如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以通过解方程g(m)=0求得。扩展资料:特征向量对应的特征值是它所乘的那个缩放因子。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。参考资料来源:百度百科-特征向量
人类地板流精华2023-05-15 13:53:042

已知一个矩阵的特征值和特征向量,怎么求出这个矩阵,

特征量作为列向量组成一个可逆矩阵P,相应的特征值作为对角线元素组成一个对角矩阵B,则AP=PB,所以A=PB(P逆),入18题如果矩阵A对称,则已知条件中的特征向量不必全部给出,根据不同特征值对应的特征向量是正交的,可以由已知特征值的特征向量求出未知特征值对应的特征向量,变成18题的形式,如19、20题
陶小凡2023-05-14 17:28:141

矩阵的特征值和特征向量怎么算的?

解: |A-λE| =1-λ 1 1 1 1 1-λ -1 -1 1 -1 1-λ -1 1 -1 -1 1-λri+r1, i=2,3,41-λ 1 1 12-λ 2-λ 0 02-λ 0 2-λ 02-λ 0 0 2-λc1-c2-c3-c4-2-λ 1 1 1 0 2-λ 0 0 0 0 2-λ 0 0 0 0 2-λ= -(2+λ)(2-λ)^3.所以, A的特征值为 2,2,2,-2.
阿啵呲嘚2023-05-14 17:28:142

知道矩阵的特征值和特征向量怎么求矩阵

例:已知矩阵A,有特征值λ1及其对应一个特征向量α1,特征值λ2及其对应一个特征向量α2,求矩阵A。∵ Aα1=λ1α1,Aα2=λ2α2∴ A[α1 α2]=[α1 α2] diag(λ1 λ2),其中矩阵[α1 α2]为由两个特征向量作为列的矩阵,diag(λ1 λ2)为由于特征值作为对角元的对角矩阵。记矩阵P=[α1 α2],矩阵Λ=diag(λ1 λ2),则有:AP=PΛ∴  A=PΛP逆将P,Λ带入计算即可。注:数学符号右上角标打不出来(像P的-1次方那样),就用“P逆”表示了,希望能帮到您
康康map2023-05-14 17:28:132

怎样求矩阵的特征值和特征向量?

令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值扩展资料:特征值和特征向量(characteristicvalueandcharacteristicvector)数学概念。若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩:σ(x)=aζ,则称x是σ的属于a的特征向量,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。若A是n阶方阵,I是n阶单位矩阵,则称xI-A为A的特征方阵,xI-A的行列式|xI-A|展开为x的n次多项式fA(x)=xn-(a11+…+ann)xn-1+…+(-1)n|A|,称为A的特征多项式,它的根称为A的特征值。若λ0是A的一个特征值,则以λ0I-A为系数方阵的齐次方程组的非零解x称为A的属于λ的特征向量:Ax=λ0x。L.欧拉在化三元二次型到主轴的著作里隐含出现了特征方程概念,J.L.拉格朗日为处理六大行星运动的微分方程组首先明确给出特征方程概念。特征方程也称永年方程,特征值也称本征值、固有值。固有值问题在物理学许多部门是重要问题。线性变换或矩阵的对角化、二次型化到主轴都归为求特征值特征向量问题。每个实对称方阵的特征根均为实数。A.凯莱于19世纪中期通过对三阶方阵验证,宣告凯莱-哈密顿定理成立,即每个方阵A满足它的特征方程,fA(A)=An-(a11+…+ann)An-1+…+(-1)n|A|I=0参考资料:特征值和特征向量
无尘剑 2023-05-14 17:28:131

如何理解矩阵的特征值和特征向量

A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A 的特征多项式。当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。然后写出A-λE,然后求得基础解系。拓展资料:特征值和特征向量的意义:1、矩阵基础矩阵是一个表示二维空间的数组,矩阵可以看做是一个变换。在线性代数中,矩阵可以把一个向量变换到另一个位置,或者说从一个坐标系变换到另一个坐标系。矩阵的“基”,实际就是变换时所用的坐标系。而所谓的相似矩阵,就是同样的变换,只不过使用了不同的坐标系。线性代数中的相似矩阵实际上就是要使这些相似的矩阵有一个好看的外表,而不改变其变换的功用。2、矩阵的特征方程式 AX = Xλ方程左边就是把向量x变到另一个位置;右边是把向量x作了一个拉伸;任意给定一个矩阵A,并不是对所有的向量x它都能拉长(缩短)。凡是能被矩阵A拉长(缩短)的向量就称为矩阵A的特征向量(Eigenvector);拉长(缩短)的量就是这个特征向量对应的特征值(Eigenvalue)对于实对称矩阵来说,不同特征值对应的特征向量必定正交;我们也可以说,一个变换矩阵的所有特征向量组成了这个变换矩阵的一组基;3、在层次分析法中(AHP) 最大特征根法确定权重特征根在一定程度上反映了 成对比较矩阵(正互反阵)的总体特征。所有的特征向量的集合构成了矩阵的基,特征向量是基,特征值反应矩阵在各个方向上的值,特征值的模则代表矩阵在每个基上的投影长度。不同的特征向量就是矩阵不同的特点,特征值就是这些特点的强弱。
康康map2023-05-14 17:28:131

如何求出一个矩阵的特征值和特征向量?

令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。设矩阵为A,特征向量是t,特征值是x,At=x*t,移项得(A-x*I)t=0,∵t不是零向量∴A-x*I=0,(2-x)(1-x)(-x)-4(2-x)=0,化简得(x-2)(x^2-x-4)=0,∴矩阵有三个特征值:2,(1±根号17)/2。把特征值分别代入方程,设x=(a,b,c),可得到对于x=2,b=0,a+c=0,对应x=2的特征向量为(-1,0,1)(未归一化),其它x的一样做。求矩阵的全部特征值和特征向量:1、计算的特征多项式;2、求出特征方程的全部根,即为的全部特征值;3、对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数)[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。以上内容参考:百度百科-特征值
LuckySXyd2023-05-14 17:28:131

怎么求矩阵的特征值和特征向量

对于任意方阵A,首先求出方程|λE-A|=0的解,这些解就是A的特征值,再将其分别代入方程(λE-A)X=0中,求得它们所对应的基础解系,则对于某一个λ,以它所对应的基础解系为基形成的线性空间中的任意一个向量,均为λ所对应的特征向量.
hi投2023-05-14 17:28:131

如何求矩阵的特征值和特征向量。

【解答】对增广矩阵(A,b)做初等行变换1、求基础解系。令x3=5,得x1=-1,x2=3,x3=0,α=(-1,3,0,5)T2、求特解令x3=0,得x1=4/5,x2=3/5,x4=0,β=(4/5,3/5,0,0)T3、写出通解根据通解结构,得通解为β+kα,k为任意常数newmanhero         2015年5月23日22:32:45希望对你有所帮助,望采纳。
CarieVinne 2023-05-14 17:28:121

二阶矩阵的特征值和特征向量的求法

|A-xE|=2-x 32 1-x=(2-x)(1-x)-6=x^2-3x-4=(x+1)(x-4)所以特征值是-1,4-1对应的特征向量:(A+E)x=0的系数矩阵为3 3 2 2基础解系为[-1 1]",所以-1对应的特征向量为[-1 1]"4对应的特征向量:(A-4E)x=0的系数矩阵为-2 32 -3基础解系为[3 2]"所以4对应的特征向量为[3 2]"
苏萦2023-05-14 15:36:082

矩阵的特征值和特征向量?

使用数学软件求解矩阵的特征值与特征向量,具体运算过程如下:
黑桃花2023-05-14 15:36:073

如何求矩阵的特征值和特征向量?

【解答】对增广矩阵(A,b)做初等行变换1、求基础解系。令x3=5,得x1=-1,x2=3,x3=0,α=(-1,3,0,5)T2、求特解令x3=0,得x1=4/5,x2=3/5,x4=0,β=(4/5,3/5,0,0)T3、写出通解根据通解结构,得通解为β+kα,k为任意常数newmanhero         2015年5月23日22:32:45希望对你有所帮助,望采纳。
铁血嘟嘟2023-05-14 10:43:551

怎么求矩阵的特征值和特征向量

求矩阵的特征向量公式:|A-λE|=0。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。
再也不做站长了2023-05-14 10:43:541

知道矩阵的特征值和特征向量怎么求矩阵

以三阶矩阵为例:设A为三阶矩阵,它的三个特征值为m1,m2,m3,其对应的线性无关的特征向量为a1,a2,a3,则Aai=miai(i=1,2,3),所以A(a1,a2,a3)=(m1a1,m2a2,m3a3)=(a1,a2,a3)diag{m1,m2,m3}令P=(a1,a2,a3),B=diag{m1,m2,m3},则AP=PB,由a1,a2,a3线性无关可知P可逆,从而A=PBP^(-1)
黑桃花2023-05-14 10:43:531

如何求n阶矩阵的特征值和特征向量

令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。设矩阵为A,特征向量是t,特征值是x,At=x*t,移项得(A-x*I)t=0,∵t不是零向量∴A-x*I=0,(2-x)(1-x)(-x)-4(2-x)=0,化简得(x-2)(x^2-x-4)=0,∴矩阵有三个特征值:2,(1±根号17)/2。把特征值分别代入方程,设x=(a,b,c),可得到对于x=2,b=0,a+c=0,对应x=2的特征向量为(-1,0,1)(未归一化),其它x的一样做。求矩阵的全部特征值和特征向量:1、计算的特征多项式;2、求出特征方程的全部根,即为的全部特征值;3、对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数)[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。以上内容参考:百度百科-特征值
CarieVinne 2023-05-14 10:43:531

矩阵的特征值和特征向量是什么?

如下:n阶方阵A,行列式|λE-A| [E是n阶单位矩阵,λ是变量。这是λ的n次多项式,首项系数是1] 叫做A的特征多项式,[f(λ)=|λE-A|].f(λ)=0的根(n个),都叫A的特征值。如果λ0是A的一个特征值,|λ0E-A|=0,(λ0E-A)为降秩矩阵,线性方程组(λ0E-A)X=0 [X=(x1,x2,……xn)′是未知的n维列向量] 必有非零解,每个非零解就叫矩阵A的关于特征值λ0的一个特征向量。在三维空间中,旋转矩阵有一个等于单位1的实特征值。旋转矩阵指定关于对应的特征向量的旋转(欧拉旋转定理)。如果旋转角是 θ,则旋转矩阵的另外两个(复数)特征值是 exp(iθ) 和 exp(-iθ)。从而得出 3 维旋转的迹数等于 1 + 2 cos(θ),这可用来快速的计算任何 3 维旋转的旋转角。特征向量是在矩阵变换下只进行“规则”变换的向量,这个“规则”就是特征值。特征向量反映了线性变换的方向,这这几个方向上线性变换只导致伸缩,没有旋转;特征值反映线性变换在这几个方向上导致的伸缩的大小。
苏州马小云2023-05-14 10:43:521

矩阵的特征值和特征向量是什么?

n阶方阵A,行列式|λE-A| [E是n阶单位矩阵,λ是变量。这是λ的n次多项式,首项系数是1] 叫做A的特征多项式,[f(λ)=|λE-A|].f(λ)=0的根(n个),都叫A的特征值。如果λ0是A的一个特征值,|λ0E-A|=0,(λ0E-A)为降秩矩阵,线性方程组(λ0E-A)X=0 [X=(x1,x2,……xn)′是未知的n维列向量] 必有非零解,每个非零解就叫矩阵A的关于特征值λ0的一个特征向量。旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。它们解决的是如何组合集合中的元素以达到某种特定的要求。
人类地板流精华2023-05-14 10:43:501

怎么求矩阵的特征值和特征向量?

求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。扩展资料求特征向量设A为n阶矩阵,根据关系式Ax=λx,可写出(λE-A)x=0,继而写出特征多项式|λE-A|=0,可求出矩阵A有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λiE-A)x=0,所求解向量x就是对应的特征值λi的特征向量。判断相似矩阵的必要条件设有n阶矩阵A和B,若A和B相似(A∽B),则有:1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵;2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。参考资料来源:百度百科-特征值
真颛2023-05-14 10:43:501

怎样求矩阵的特征值和特征向量?

令|A-λE|=0,求出λ值。A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。设矩阵为A,特征向量是t,特征值是x,At=x*t,移项得(A-x*I)t=0,∵t不是零向量∴A-x*I=0,(2-x)(1-x)(-x)-4(2-x)=0,化简得(x-2)(x^2-x-4)=0,∴矩阵有三个特征值:2,(1±根号17)/2。把特征值分别代入方程,设x=(a,b,c),可得到对于x=2,b=0,a+c=0,对应x=2的特征向量为(-1,0,1)(未归一化),其它x的一样做。求矩阵的全部特征值和特征向量:1、计算的特征多项式;2、求出特征方程的全部根,即为的全部特征值;3、对于的每一个特征值,求出齐次线性方程组:的一个基础解系,则的属于特征值的全部特征向量是(其中是不全为零的任意实数)[注]:若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。以上内容参考:百度百科-特征值
黑桃花2023-05-14 10:43:502

如何求矩阵的特征值和特征向量?

矩阵的特征多项式是:λE-A的行列式。λI-A称为A的特征矩阵;|λI-A|称为A的特征多项式;|λI-A|=0称为A的特征矩阵,而由些求出的全部根,即为A的全部特征值。对每一个求出特征值λ,求出齐次方程组(λI-A)x=o的基础解是&1,&2,&3...&s,则k1&1+k2&2+...ks&s即是A对应于 λ的全部特征向量(其中,k1...ks不全为零)。设A是数域P上的一个n阶矩阵,λ是一个未知量:系数行列式|A-λE|称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。¦(λ)=|λE-A|=λn+a1λn-1+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。以A的特征值λ0代入(λE-A)X=0,得方程组(λ0E-A)X=0,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=0必存在非零解,称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。
肖振2023-05-14 10:43:501