线性代数复数特征值与特征向量的几何解释是什么?
特征向量确实有很明确的几何意义,矩阵乘以一个向量的结果仍 是同维数的一个向量。因此矩阵乘法对应了一个变换,把一个向量变成同维数的另一个向量,变换的效果与矩阵的构造有密切关系,比如可 以取适当的二维方阵,使得这个变换的效果就是将平面上的二维向量逆时针旋转30度。meira2023-06-16 19:46:102
线性代数:特征值与特征向量,如何确定未知量。也就是最后那个式子是怎么来的??
其实这种表示方式并不科学,也很少用,因为它选定了x2作为自由变量来表达结果,实际上,针对这个方程,选择任何一个变量为自由变量都可以。比如选x3为自由变量,结果就可以表示为 x2=x3,x1=-x3。完整的情况,应该表达为向量的形式,即(x1,x2,x3)T = k(-1,1,1)T,知道了向量的形式,各个未知量之间的关系显而易见。黑桃花2023-06-12 06:34:593
求矩阵A的特征值与特征向量。 详见问题补充
单位矩阵e的特征值为n重的1,而xy^t是两个非0向量乘积,其秩为1,其特征值为一个2和(n-1)重的0那么a=e+xy^t就把e和xy^t的特征值相加得到的特征值是:(n-1)重的1和1个3形式为{3,1,1,1,1,.....,1}而属于特征值3的特征向量为x:∵ax=(e+xy^t)x=x+x(x^t*y)^t=x+2x=3x属于特征值1的特征向量:e-a=-xy^t求xy^t的基础解系即求特征向量,若设y={y1,y2,...,yn}则有n-1重特征向量:(-y2,y1,0,0,...,0);(-y3,0,y1,0,0,...,0);(-y4,0,0,y1,0,0,....,0)........(-yn,0,0,...,0,y1)kikcik2023-05-15 13:53:041
特征值与特征向量的直接求法
特征向量特征向量的几何意义,确实有一个非常明确的几何意义矩阵(特征向量的问题,因为讨论,当然是方形的,这里不讨论广义特征向量的概念,一般特征向量)乘以一个向量具有相同维数的向量,矩阵乘法对应于一个转换时,到另一个向量具有相同维数的向量,那么变换的效果是什么呢?,当然,正方形的结构密切相关,例如,可以采取二维正方,使这一转变的效果是在平面上逆时针旋转30度的二维矢量,那么我们可以问一个问题,有没有在这个变换的矢量的方向不会改变?可以考虑一下,除了零矢量,是不改变方向的情况下,没有其他向量可以旋转30度,在平坦的表面,所以该变换矩阵对应的(或化装)的特征向量(注意:特征向量不能是零向量)变换的特征向量是一个向量,它是不变的,但这个特殊的转型后保持方向和长度拉伸(然后想想的原始定义的特征向量组ax=cx,你突然意识到见cx为方阵a变换向量x后的结果,但很明显相同的方向cxx),x是特征向量,斧头的特征向量(一个标量不包括零),因此,所谓的特征矢量不是一个向量,而是一个向量族此外,特征值简单地反映在变换它的倍数的膨胀和收缩的特征向量,特征向量表示的方向,变换是很重要的价值,其特征在于,还没有如此重要,虽然我们问这两个量,首先找到的特征值,特征向量是更重要的事情!/>/>如平面上的转换,将一个矢量在水平轴线上的镜面对称的,相同的横坐标保持一个向量,但变换中的垂直轴的相反数,这代表一个矩阵[100-1],分号包装,很显然,[00-1]*[ab]=[ab]",其中上标"转置,这是正是我们想要的效果,你现在可以猜测,矩阵的特征向量是什么?想什么向量在这个变换,改变方向,很明显的是,在此变换向量在水平轴线上,改变的方向(表示为活在这个变换是镜像对称变换,反射镜表面(水平轴)的矢量,当然,这并不改变),所以你能猜到它的特征向量是(一)[0]",以及其他?即,载体的纵向轴线,则变换后,其方向反向,但它仍然是同一轴线上,它被认为是方向不发生变化,所以并[b]"(b是不为0),特征向量,求矩阵特征向量[10;0-1]知道吧!zzquentan博客无尘剑 2023-05-15 13:53:041
线性代数求特征值与特征向量
|λE-A| =|λ-1 1||-2 λ-4|= λ^2-5λ+6 = (λ-2)(λ-3)特征值 λ = 2,3。对 λ = 2,λE-A =[1 1][-2 -2]初等行变换为[1 1][0 0]特征向量为 (1, -1)^T;对 λ = 3,λE-A =[2 1][-2 -1]初等行变换为[2 1][0 0]特征向量为 (1, -2)^T.gitcloud2023-05-14 17:28:141
由特征值与特征向量,如何求对应的矩阵
这个是不行的 要加条件条件是:n个特征值一定要对应n个线性无关的特征向量,一定是n个特征向量.那么 可以将n个特征值排列在对角线上,构成n阶的对角阵B.将特征值对应的特征向量作为列向量排列成矩阵P,即P={x1,x2,x3....xn},这里的特征向量排列顺序要与特征值的顺序一致.然后原矩阵就是A=P逆BP.若不加n个特征向量这个条件,从步骤上构造不出矩阵P.而且对应的原矩阵A也不是唯一的了.善士六合2023-05-14 17:28:141
特征值与特征向量?
对称阵不同的特征值对应的特征向量是相互正交的。命题应该是实对称矩阵不同的特征值对应的特征向量是相互正交的.证明如下:设λ1,λ2是两个A的不同特征值,α1,α2分别是其对应的特征向量,有A * α1 = λ1 * α1,A * α2 = λ2 *α2分别取转置,并分别两边右乘α2和α1,得α1" * A" * α2 =λ2 * α1" * α2,α2" * A" * α1 =λ1 * α2" * α1对应相减并注意到α2" * A" * α1=(α2" * A" * α1)"= α1" * A" * α2所以 (λ1 - λ2) α1" * α2 = α1" * A" * α2 - α2" * A" * α1 = α1" * A" * α2 - α1" * A" * α2 =0而 λ1 - λ2≠ 0,因此 α1" * α2 = 0即 α1与α2 正交.扩展资料:求特征值设A是n阶方阵,如果数λ和n维非零列向量x使关系式Ax=λx成立,那么这样的数λ称为矩阵A特征值,非零向量x称为A的对应于特征值λ的特征向量。式Ax=λx也可写成( A-λE)X=0。这是n个未知数n个方程的齐次线性方程组,它有非零解的充分必要条件是系数行列式| A-λE|=0。设A是数域P上的一个n阶矩阵,λ是一个未知量,系数行列式|A-λE|称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。meira2023-05-14 17:28:141
如何求解特征值与特征向量
想想特征向量的原始定义Ax= cx,你就恍然大悟了,看到了吗?cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同),而且x是特征向量的话,ax也是特征向量(a是标 量且不为零),所以所谓的特征向量不是一个向量而是一个向量族, 另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已gitcloud2023-05-14 17:28:141
求矩阵的特征值与特征向量
对于任意方阵A,首先求出方程|λE-A|=0的解,这些解就是A的特征值,再将其分别代入方程(λE-A)X=0中,求得它们所对应的基础解系,则对于某一个λ,以它所对应的基础解系为基形成的线性空间中的任意一个向量,均为λ所对应的特征向量善士六合2023-05-14 17:28:141
特征值与特征向量之间有什么关系?
一个特征值只能有一个特征向量,(非重根)又一个重根,那么有可能有两个线性无关的特征向量,也有可能没有两个线性无关的特征向量(只有一个).不wpBeta2023-05-14 17:28:141
如何求矩阵的特征值与特征向量?
求n阶矩阵A的特征值的基本方法:根据定义可改写为关系式E为单位矩阵,要求向量x具有非零解,即求齐次线性方程组有非零解的值λ,即要求行列式解次行列式获得的λ值即为矩阵A的特征值。将此值回代入原式求得相应的x,即为输入这个行列式的特征向量。扩展资料求矩阵的全部特征值和特征向量的方法:1、计算的特征多项式;2、求出特征方程的全部根,即为的全部特征值;3、对于的每一个特征值,求出齐次线性方程组的一个基础解系,则的属于特征值的全部特征向量是其中是不全为零的任意实数。CarieVinne 2023-05-14 17:28:131
特征值与特征向量之间有什么关系
一个特征值只能有一个特征向量,非重根;有一个重根,可有两个线性无关的特征向量,也可没有两个线性无关的特征向量,不可能多于两个;如果有两个,则可对角化,如果只有一个,不能对角化;矩阵可对角化的条件:有无数个线性无关的特征向量;不同的特征值,对应线性无关的特征向量;重点分析重根情况,无数重根如果有无数个线性无关的特征向量,也可对角化。水元素sl2023-05-14 17:28:131
如何求解特征值与特征向量
想想特征向量的原始定义Ax= cx,你就恍然大悟了,看到了吗?cx是方阵A对向量x进行变换后的结果,但显然cx和x的方向相同),而且x是特征向量的话,ax也是特征向量(a是标 量且不为零),所以所谓的特征向量不是一个向量而是一个向量族, 另外,特征值只不过反映了特征向量在变换时的伸缩倍数而已meira2023-05-14 17:28:131
矩阵特征值与特征向量是什么?
如下:n阶方阵A,行列式|λE-A| [E是n阶单位矩阵,λ是变量。这是λ的n次多项式,首项系数是1] 叫做A的特征多项式,[f(λ)=|λE-A|].f(λ)=0的根(n个),都叫A的特征值。如果λ0是A的一个特征值,|λ0E-A|=0,(λ0E-A)为降秩矩阵,线性方程组(λ0E-A)X=0 [X=(x1,x2,……xn)′是未知的n维列向量] 必有非零解,每个非零解就叫矩阵A的关于特征值λ0的一个特征向量。在三维空间中,旋转矩阵有一个等于单位1的实特征值。旋转矩阵指定关于对应的特征向量的旋转(欧拉旋转定理)。如果旋转角是 θ,则旋转矩阵的另外两个(复数)特征值是 exp(iθ) 和 exp(-iθ)。从而得出 3 维旋转的迹数等于 1 + 2 cos(θ),这可用来快速的计算任何 3 维旋转的旋转角。3 维旋转矩阵的生成元是三维斜对称矩阵。因为只需要三个实数来指定 3 维斜对称矩阵,得出只用三个是实数就可以指定一个 3 维旋转矩阵。gitcloud2023-05-14 15:36:081
求矩阵的特征值与特征向量,并求正交矩阵,使得
设A的特征值为λ,那么行列式|A-λE|=2-λ 1 01 2-λ 00 0 1-λ =(1-λ)(1-λ)(3-λ)=0得到特征值λ=1,1,3而λ=1时,A-E=1 1 01 1 00 0 0 r2-r1~1 1 00 0 00 0 0得到特征向量(-1,1,0)^T和(0,0,1)^T而λ=3时,A-3E=-1 1 01 -1 00 0 0 r2+r1,r1*-1~1 -1 00 0 00 0 0所以得到特征向量(1,1,0)^T,然后再对特征向量单位化,即得到正交矩阵为-1/√2 0 1/√21/√2 0 1/√20 1 0小白2023-05-14 15:36:081
特征值与特征向量
特征向量特征向量的几何意义,确实有一个非常明确的几何意义矩阵(特征向量的问题,因为讨论,当然是方形的,这里不讨论广义特征向量的概念,一般特征向量)乘以一个向量具有相同维数的向量,矩阵乘法对应于一个转换时,到另一个向量具有相同维数的向量,那么变换的效果是什么呢?,当然,正方形的结构密切相关,例如,可以采取二维正方,使这一转变的效果是在平面上逆时针旋转30度的二维矢量,那么我们可以问一个问题,有没有在这个变换的矢量的方向不会改变?可以考虑一下,除了零矢量,是不改变方向的情况下,没有其他向量可以旋转30度,在平坦的表面,所以该变换矩阵对应的(或化装)的特征向量(注意:特征向量不能是零向量)变换的特征向量是一个向量,它是不变的,但这个特殊的转型后保持方向和长度拉伸(然后想想的原始定义的特征向量组Ax=CX,你突然意识到见Cx为方阵A变换向量x后的结果,但很明显相同的方向CXx),x是特征向量,斧头的特征向量(一个标量不包括零),因此,所谓的特征矢量不是一个向量,而是一个向量族此外,特征值简单地反映在变换它的倍数的膨胀和收缩的特征向量,特征向量表示的方向,变换是很重要的价值,其特征在于,还没有如此重要,虽然我们问这两个量,首先找到的特征值,特征向量是更重要的事情!/>/>如平面上的转换,将一个矢量在水平轴线上的镜面对称的,相同的横坐标保持一个向量,但变换中的垂直轴的相反数,这代表一个矩阵[100-1],分号包装,很显然,[00-1]*[AB]=[AB]",其中上标"转置,这是正是我们想要的效果,你现在可以猜测,矩阵的特征向量是什么?想什么向量在这个变换,改变方向,很明显的是,在此变换向量在水平轴线上,改变的方向(表示为活在这个变换是镜像对称变换,反射镜表面(水平轴)的矢量,当然,这并不改变),所以你能猜到它的特征向量是(一)[0]",以及其他?即,载体的纵向轴线,则变换后,其方向反向,但它仍然是同一轴线上,它被认为是方向不发生变化,所以并[b]"(b是不为0),特征向量,求矩阵特征向量[10;0-1]知道吧!ZZquentan博客陶小凡2023-05-14 15:36:071
线性代数 特征值与特征向量
线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非退化的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。设a为n阶矩阵,根据关系式ax=λx,可写出(λe-a)x=0,继而写出特征多项式|λe-a|=0,可求出矩阵a有n个特征值(包括重特征值)。将求出的特征值λi代入原特征多项式,求解方程(λie-a)x=0,所求解向量x就是对应的特征值λi的特征向量。左迁2023-05-14 15:36:071
A=3-11 201 1-12求特征值与特征向量
设矩阵A的特征值为λ,那么|A-λE|=3-λ -1 12 -λ 11 -1 2-λ r2-r1=3-λ -1 1λ-1 1-λ 01 -1 2-λ c1+c2=2-λ -1 10 1-λ 00 -1 2-λ 按第一列展开=(2-λ)^2 (1-λ)=0于是特征值λ=1,2,2那么在λ=1时,A-E=2 -1 12 -1 11 -1 1 r1-r2,r2-r3~0 0 01 0 01 -1 1 r3-r2,r3*-1,交换行次序~1 0 00 1 -10 0 0得到特征向量(0,1,1)^Tλ=2时,A-2E=1 -1 12 -2 11 -1 0 r1-r3,r2-2r3~0 0 10 0 11 -1 0 r1-r2,交换行次序~1 -1 00 0 10 0 0得到特征向量(1,1,0)^T苏州马小云2023-05-14 15:36:071
求矩阵的特征值与特征向量
解答如下图:拌三丝2023-05-14 15:36:073
特征值与特征向量
小白2023-05-14 15:36:072
矩阵的特征值与特征向量有什么关系吗?
特征值与特征向量之间关系:1、属于不同特征值的特征向量一定线性无关。2、相似矩阵有相同的特征多项式,因而有相同的特征值。3、设x是矩阵a的属于特征值1的特征向量,且a~b,即存在满秩矩阵p使b=p(-1)ap,则y=p(-1)x是矩阵b的属于特征值1的特征向量。4、n阶矩阵与对角矩阵相似的充分必要条件是:矩阵有n个线性无关的分别属于特征值1,2,3...的特征向量(1,2,3...中可以有相同的值)。特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设A是n阶方阵,如果存在数m和非零n维列向量 x,使得Ax=mx成立。扩展资料:求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组。若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。参考资料来源:搜狗百科——特征值参考资料来源:搜狗百科——特征向量wpBeta2023-05-14 15:36:061
特征值与特征向量?
这个问题太深沉了T^T墨然殇2023-05-14 15:36:062
特征值与特征向量之间有什么关系呢?
特征值与特征向量之间关系:1、属于不同特征值的特征向量一定线性无关。2、相似矩阵有相同的特征多项式,因而有相同的特征值。3、设x是矩阵a的属于特征值1的特征向量,且a~b,即存在满秩矩阵p使b=p(-1)ap,则y=p(-1)x是矩阵b的属于特征值1的特征向量。4、n阶矩阵与对角矩阵相似的充分必要条件是:矩阵有n个线性无关的分别属于特征值1,2,3...的特征向量(1,2,3...中可以有相同的值)。特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设A是n阶方阵,如果存在数m和非零n维列向量 x,使得Ax=mx成立。扩展资料:求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组。若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定.反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。参考资料来源:搜狗百科——特征值参考资料来源:搜狗百科——特征向量再也不做站长了2023-05-14 15:36:061
矩阵的特征值与特征向量有什么作用?
特征值用来求特征向量,特征向量和特征值可以确定矩阵AX=0的解的一组基。总之,他们就是用来求方程组的解的gitcloud2023-05-14 15:36:061
特征值与特征向量是?
特征值是线性代数中的一个重要概念,在数学、物理学、化学、计算机等领域有着广泛的应用。矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。相关信息:一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。“特征”一词来自德语的eigen。1904年希尔伯特首先在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为”自身的”、“特定于……的”、“有特征的”、或者“个体的”,这显示了特征值对于定义特定的线性变换的重要性。北营2023-05-14 15:36:041
特征值与特征向量是什么?
特征值和特征向量是数学概念。若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩:σ(x)=aζ,则称x是σ的属于a的特征向量,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。注意:求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式。第二步:求出特征方程的全部根,即为的全部特征值。第三步:对于的每一个特征值,求出齐次线性方程组。的一个基础解系,则的属于特征值的全部特征向量是,(其中是不全为零的任意实数)。NerveM 2023-05-14 15:36:041
高等代数理论基础48:特征值与特征向量
定义:设 是数域P上线性空间V的一个线性变换,若对于 ,存在一个非零向量 ,使 则称 为 的一个特征值, 称为 的属于特征值 的一个特征向量 注: 1.特征向量的方向经过线性变换后保持在同一直线上 2.特征向量不是被特征值唯一确定的,若 是线性变换 的属于特征值 的特征向量,则 的任一非零倍数 也是 的属于 的特征向量3.特征值被特征向量唯一确定,一个特征向量只能属于一个特征值 求法: 设V是数域P上n维线性空间, 是一组基,线性变换 在这组基下的矩阵是A,设 是特征值,它的一个特征向量 在 下的坐标为 ,则 的坐标为 , 的坐标为 故 相当于坐标之间的等式 或 即特征向量 的坐标 满足齐次方程组即 ,故它的坐标 不全为零,即齐次方程组有非零解 故 定义:设A是数域P上一n级矩阵, 是一个文字,矩阵 的行列式称为A的特征多项式,是数域P上的一个n次多项式 注:若 是线性变换 的特征值,则 是矩阵A的特征多项式的一个根,反之,若 是矩阵A的特征多项式在数域P中的一个根,即 ,则对应齐次方程组有非零解,若 是方程组的一个非零解,则非零向量 满足 即 是线性变换 的一个特征值, 是数域特征值 的一个特征向量 确定线性变换 的特征值与特征向量: 1.在线性空间V中取一组基 ,写出 在这组基下的矩阵A 2.求出A的特征多项式 在数域P中全部的根,即 的全部特征值 3.将所求得的特征值逐个代入方程组,对每个特征值,解方程组,求出一组基础解系,即属于这个特征值的几个线性无关的特征向量在基 下的坐标,求出属于每个特征值的全部线性无关的特征向量 例: 1.n维线性空间中,数乘变换 在任一组基下的矩阵都是 ,它的特征多项式为 故数乘变换 的特征值只有k 由定义,每个非零向量都是属于数乘变换 的特征向量 2.设线性变换 在基 下的矩阵是 求 的特征值与特征向量 特征多项式为 故特征值为 (二重)和5 把特征值-1代入齐次方程组 可得 基础解系为 故属于-1的两个线性无关的特征向量为 属于-1的全部特征向量为 , 取遍数域P中不全为零的全部数对 再将特征值5代入得 基础解系为 故属于5的一个线性无关的特征向量为 属于5的全部特征向量为 ,k是P中任意不为零的数 3.在空间 中,线性变换 在基 下的矩阵为的特征多项式为故D的特征值为0 通过解相应齐次线性方程组可知,属于特征值0的线性无关的特征向量组只能是任一非零常数 即微商为零的多项式只能是零或非零常数 4.平面上全体向量构成实数域上一个二维线性空间 选择 在直角坐标系下的矩阵为 特征多项式为 当 时,多项式无实根,故 时, 没有特征值 对线性变换 的任一特征值 ,适合条件 的向量 所成的集合,即 的属于 的全部特征向量再添上零向量所成的集合,是V的一个子空间,称为 的一个特征子空间,记作 注: 的维数是属于 的线性无关的特征向量的最大个数, 展开式中,有一项是主对角线上元素的连乘积 其余各项至多包含 个主对角线上的元素,对 的次数最多是 故特征多项式中含 的n次与n-1次项只能在主对角线上元素的连乘积中出现 为 令 ,可得常数项 故若只写出特征多项式的前两项与常数项,有 若 在数域P上能分解为一次因式的乘积,由根与系数的关系,A的全体特征值的和为 ,称为 的迹,记作 ,A的全体特征值的积为 注:特征值被线性变换确定,在有限维空间中,任取一组基,特征值为线性变换在这组基下矩阵的特征多项式的根,基不同则线性变换的矩阵一般也不同,但是相似 定理:相似的矩阵有相同的特征多项式 证明:注: 1.定理说明线性变换的矩阵的特征多项式与基的选择无关,直接被线性变换决定,故可称为线性变换的特征多项式 2.定理的逆不成立,特征多项式相同的矩阵不一定相似 如 它们的特征多项式都是 ,但A和B不相似,和A相似的矩阵只能是A 定理:设A是数域P上一个 矩阵, 是A的特征多项式,则证明:推论:设 是有限维空间V的线性变换, 是 的特征多项式,则ardim2023-05-14 15:36:041
一个方阵的特征值与特征向量是否一一对应
不是一一对应 若 α 是 A 的属于特征值 λ 的特征向量, 则 kα (k≠0) 也是 A 的属于特征值 λ 的特征向量特征向量只能属于一个特征值而特征值有无穷多特征向量NerveM 2023-05-14 15:36:041
关于特征值与特征向量性质的证明
|uE-A|=u^n-(u11+...+unn)u^n-1+...+(-1)^n|A|=(u-u1)(u-u2)...(u-u3)n-1项的系数就为-u1-....-un常数项为u1u2...un所以,由根与系数的关系可知,A的特征值的和为u11+...unn,积为|A|九万里风9 2023-05-14 15:36:042
矩阵A的特征值与特征向量如何求解?
1、设x是矩阵A的特征向量,先计算Ax;2、发现得出的向量是x的某个倍数;3、计算出倍数,这个倍数就是要求的特征值。求矩阵的全部特征值和特征向量的方法如下:第一步:计算的特征多项式;第二步:求出特征方程的全部根,即为的全部特征值;第三步:对于的每一个特征值,求出齐次线性方程组的一个基础解系,则可求出属于特征值的全部特征向量。扩展资料:特征向量的性质:特征向量对应的特征值是它所乘的那个缩放因子。特征空间就是由所有有着相同特征值的特征向量组成的空间,还包括零向量,但要注意零向量本身不是特征向量。线性变换的主特征向量是最大特征值对应的特征向量。特征值的几何重次是相应特征空间的维数。有限维向量空间上的一个线性变换的谱是其所有特征值的集合。例如,三维空间中的旋转变换的特征向量是沿着旋转轴的一个向量,相应的特征值是1,相应的特征空间包含所有和该轴平行的向量。该特征空间是一个一维空间,因而特征值1的几何重次是1。特征值1是旋转变换的谱中唯一的实特征值。此后故乡只2023-05-14 10:43:531
特征值与特征向量的关系:
不可能。如果c是矩阵A的特征方程的一个单根,则A-cE的秩为(n-1)。于是,齐次线性方程组(A-cE)X=0的解空间是一维的。而每个c的特征向量都是该方程组的解,所以它们张成的空间也是一维的,不可能有两个线性无关。一般地,特征值的重数等于特征空间的维数LuckySXyd2023-05-14 10:43:512
特征值与特征向量怎么求
特征值与特征向量求法介绍如下:从定义出发,Ax=cx:A为矩阵,c为特征值,x为特征向量。矩阵A乘以x表示,对向量x进行一次转换(旋转或拉伸)(是一种线性转换),而该转换的效果为常数c乘以向量x(即只进行拉伸)。通常求特征值和特征向量即为求出该矩阵能使哪些向量(当然是特征向量)只发生拉伸使其发生拉伸的程度如何(特征值大小)。这样做的意义在于看清一个矩阵在那些方面能产生最大的效果(power),并根据所产生的每个特征向量(一般研究特征值最大的那几个)进行分类讨论与研究。铁血嘟嘟2023-05-14 10:43:511
特征值与特征向量之间有什么关系?
一个特征值只能有一个特征向量,(非重根)又一个重根,那么有可能有两个线性无关的特征向量,也有可能没有两个线性无关的特征向量(只有一个).不余辉2023-05-14 10:43:502
特征值与特征向量之间有什么关系
特征值跟特征向量的关系就是,先有特征向量你才可以求特征值,没有特征向量就没办法去求特征值,所以说特征向量是求解特征值的一个介质。ardim2023-05-14 10:43:495