鸡兔同笼

六年级的鸡兔同笼问题的填空题!会的来,快

40 22 2 11
tt白2023-07-23 16:55:275

如何解鸡兔同笼的问题

方法一:人见人爱的方法“列表法”分析:如果二年级小朋友做这道题,可以用列表法!列表法容易理解,同时也是数学中一个重要的方法,学会后,为以后的学习打一个坚实的基础!好啦,我们来看一下!鸡03579...兔1411975...腿5650464238...根据上面的表格,我们可以看出,鸡为9只,兔子为5只。我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!方法二:最快乐的方法“画图法”分析:画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。方法三:最酷的方法“金鸡独立法”分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。方法四:最逗的方法“吹哨法”分析:假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。方法五:最常用的方法“假设法”分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。方法六:最常用的方法“假设法”分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只。方法七:最牛的方法“特异功能法”分析:鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有。假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只。方法八:最牛的方法“特异功能法”分析:假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-5=9只。鸡兔具有“特异功能”,这个方法想得太棒了!呵呵,小朋友也要发挥自己的想象喔!方法九:最牛的方法“特异功能法”假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就有14-5=9只。呵呵,小朋友把兔“劈开”成“半兔”,想得奇吧!
人类地板流精华2023-07-23 16:54:081

鸡兔同笼方法

有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?1、假设法(1)假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔子比鸡多的脚数:4-2=2(只)兔子的只数:24÷2=12 (只)鸡的只数:35-12=23(只)(2)假设全是兔子:4×35=140(只)兔子脚比总数多:140-94=46(只)兔子比鸡多的脚数:4-2=2(只)鸡的只数:46÷2=23(只)兔子的只数:35-23=12(只)2、一元一次方程法:(1)解:设兔有x只,则鸡有(35-x)只。4x+2(35-x)=94 解得x=12鸡:35-12=23(只)(2)解:设鸡有x只,则兔有(35-x)只。2x+4(35-x)=94 解得x=23兔:35-23=12(只)所以兔子有12只,鸡有23只。3、二元一次方程组解:设鸡有x只,兔有y只。x+y=35 2x+4y=94解得x=23 y=12所以兔子有12只,鸡有23只。4、砍腿法砍腿法是假设法的深入拓展,下面我就用这种方法来解一下这道题。我们首先砍去每只鸡、每只兔的两条腿,这样每只鸡就没有腿了,每只兔子就剩下了两条腿,腿的总数也就变成了94-35×2=24(条),那么这24条腿都是砍掉两条腿后的兔子的腿,所以兔子的只数就是24÷2=12(只),鸡的只数就是35-12=23(只)。我们仔细观察会发现它的计算过程和假设法中先把所有的都看成鸡的做法是一样的。只不过这种说法,我们理解起来更容易而已。5 抬腿法(1)假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。(2)假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。(3)我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。希望能帮到你
meira2023-07-23 16:54:081

鸡兔同笼,头共20个,脚共62只,鸡和兔各多少只?用金鸡独立法,安脚法,砍脚法算

安脚法:如果给每只鸡安上2只脚,那么每只鸡和兔就都有4只脚,共安了(20)×4-(62)=(18)只假脚,所以鸡有(18)÷(2)=(9)只,兔有(20)-(9)=(11)只。思路:假设鸡安2只脚,那样就会鸡和兔就都有四只脚,先说了鸡兔共有20只,所以就有20×4,,20×4=80.这时,腿就多了80-62=18只脚。鸡在没安假脚之前是2只脚,所以鸡就有18÷2=9只,鸡兔共有20只,那么兔就有20-9=11只。
Ntou1232023-07-23 16:54:061

鸡兔同笼金鸡独立法:想象所有的鸡都用一只脚站立,所有的兔都用两只脚站立。这时地上的总脚数是原来的一半

鸡兔同笼问题是一种古老的数学问题,它本来是专门研究鸡兔混杂时,头、足及各有多少只的数量关系问题。人们常常用假设的方法来解答这类问题。但我们如果对鸡兔赋予新的生命,也就会得到异想不到的解法。例: 今有鸡兔共50 只,140只脚,问鸡兔各多少只?分析与解:方法(一)让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即70只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从70里减去头数50,剩下来的就是兔的头数70-50=20只,鸡有50-20=30只。金鸡独立,兔子站起——想得巧!方法(二)让每只兔子又长出一个头来,然后将它劈开,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有140÷2=70只鸡兔,70-50=20只,这就是兔子的数目,(因为每只兔子变为两只‘半兔",只数增加1只),当然鸡就有50-20=30只。把兔“劈开”成“半兔”——想得奇!方法(三)把每只鸡的两个翅膀也当作脚,那么每只 鸡就有4只脚,与兔的脚数相同,则鸡兔共有脚50×4=200只,多了200-140=60只脚,这就是鸡的翅膀数,所以鸡有60÷2=30只,兔有50-30=20只。把鸡翅膀当作脚——想得妙!方法(四)让每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是140-50×2=40条,因此兔的只数有40÷2=20只,进而知道鸡有30只。鸡兔具有“特异功能”——想得更奇妙!同学们,你们看了这四种解法有什么想法吗?小学数学:鸡兔同笼你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
u投在线2023-07-23 16:53:523

鸡兔同笼金鸡独立法:想象所有的鸡都用一只脚站立,所有的兔都用两只脚站立。这时地上的总脚数是原来的一半

当有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚时:假设法(通俗):假设鸡和兔子都听指挥那么,让所有动物抬起一只脚,笼中站立的脚:   94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子, 站立脚:59-35=24(只)    兔:24÷2=12(只)    鸡:35-12=23(只)
北有云溪2023-07-23 16:53:521

鸡兔同笼解题方法打包法

鸡兔同笼解题方法打包法如下:两只鸡的脚数(2只)刚好等于一只兔的脚数(4只),由“鸡和兔的脚数相同”,可以知道鸡的只数是兔的2倍。将两只鸡和一只兔打包成一组,每组有3只动物,60只动物刚好分成20组,即可知兔有20只,鸡有40只拓展资料:人见人爱的列表法,根据上面的表格,我们可以看出,鸡为9只,兔子为5只。我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。最酷的金鸡独立法,让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。最逗的吹哨法,假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。最常用的假设法,假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。最牛的特异功能法,鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有。假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只。
拌三丝2023-07-23 16:52:581

鸡兔同笼金鸡独立法

兔子啊再去掉一半脚剩下的都是兔子了
墨然殇2023-07-23 16:52:571

鸡兔同笼问题解法

鸡兔同笼问题解法   鸡兔同笼问题解法,鸡兔同笼问题可以算得上是里试遗留问题了,是我们国家古代非常有趣著名的数学题之一,深受学子的喜爱,并且延续至今,那么鸡兔同笼问题解法是怎么样的呢?以下分享给大家。   鸡兔同笼问题解法1    鸡兔同笼问题解法    1、人见人爱的方法“列表法”   列举法就是将各种情况一一地罗列出来,再针对要求,筛选符合题意的答案。   根据上面的表格,我们可以看出,鸡为9只,兔子为5只。我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!    2、最常用的方法“假设法”   假设法:把两个不同数量假设成相同数量,再找出与假设量之间的差距解决。   其数量关系:(总脚数-每只鸡的脚数×总头数)/(每只兔的脚数-每只鸡的脚数)=兔数;总头数 - 兔数 = 鸡数。   在本题中,假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。   或者假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只。    3、最酷的"方法“金鸡独立法”   老师我用哨子一吹,并喊了一声口令!全体肃立!让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。   这招金鸡独立法实际上用了公式:脚数和÷2- 头数和= 兔子数。   鸡兔同笼问题解法2    1、最逗的方法“吹哨法”   分析:假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。    2、抬腿法   假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。   假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡。   我们可以先让兔子都抬起2只脚,那么就有35×2=70只脚,脚数和原来差94-70=24只脚,这些都是每只兔子抬起2只脚,一共抬起24只脚,用24÷2得到兔子有12只,用35-12得到鸡有23只。
北营2023-07-23 16:52:561

鸡兔同笼,头共20个,脚共62只,鸡和兔各多少只?用金鸡独立法,安脚法,砍脚法算

没听过这些法- -
陶小凡2023-07-23 16:52:329

鸡兔同笼金鸡独立法:想象所有的鸡都用一只脚站立,所有的兔都用两只脚站立。这时地上的总脚数是原来的一半

我是你爸爸哈哈哈哈哈哈哈哈哈哈哈哈哈
Chen2023-07-23 16:52:323

鸡兔同笼解题方法

鸡兔同笼解题方法:最酷的金鸡独立法、最快乐的画图法、最常用的假设法、最古老的砍足法。例题:现有一笼子,里面有鸡和兔子若干只,数一数,共有头18个,腿56条,求鸡和兔子各有多少只?1、最酷的金鸡独立法让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即28只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从28里减去头数18,剩下来的就是兔的头数28-18=10(只),鸡有18-10=8(只)。2、最快乐的画图法假设18只全部是鸡,先把鸡给画好。18×2=36(条),差56-36=20(条),而每一只鸡补2条腿就变成兔子,需要把10只鸡每只补2条腿,所以有10只兔子,18-10=8(只)鸡。3、最常用的假设法假设全部是兔子,则有18×4=72条腿,比实际多72-56=16(只),一只兔子变成一只鸡腿减少2条,16÷2=8(只),所以需要8只兔子变成鸡,即鸡为8只,兔子为18-8=10(只)。4、最古老的砍足法假如把每只鸡砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。鸡和兔的脚的总数就由56只变成了28只;如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总数28与总头数18的差,就是兔子的只数,即28-18=10(只)。所以,鸡的只数就是18-10=8(只)。鸡兔同笼来源鸡兔同笼是中国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”《孙子算经》一共有三卷,成书大约是在公元五世纪,是小学奥数的常见题型,是想让孩子们提前理解未知数和方程的概念,还可以让他们锻炼一下从应用问题里面抽象得数的能力。
墨然殇2023-07-23 16:52:022

鸡兔同笼金鸡独立法,为什么要个去掉一半的脚

鸡兔同笼问题是一种古老的数学问题,它本来是专门研究鸡兔混杂时,头、足及各有多少只的数量关系问题。人们常常用假设的方法来解答这类问题。但我们如果对鸡兔赋予新的生命,也就会得到异想不到的解法。例:今有鸡兔共50只,140只脚,问鸡兔各多少只?分析与解:方法(一)让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即70只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从70里减去头数50,剩下来的就是兔的头数70-50=20只,鸡有50-20=30只。金鸡独立,兔子站起——想得巧!方法(二)让每只兔子又长出一个头来,然后将它劈开,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有140÷2=70只鸡兔,70-50=20只,这就是兔子的数目,(因为每只兔子变为两只‘半兔",只数增加1只),当然鸡就有50-20=30只。把兔“劈开”成“半兔”——想得奇!方法(三)把每只鸡的两个翅膀也当作脚,那么每只鸡就有4只脚,与兔的脚数相同,则鸡兔共有脚50×4=200只,多了200-140=60只脚,这就是鸡的翅膀数,所以鸡有60÷2=30只,兔有50-30=20只。把鸡翅膀当作脚——想得妙!方法(四)让每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是140-50×2=40条,因此兔的只数有40÷2=20只,进而知道鸡有30只。鸡兔具有“特异功能”——想得更奇妙!同学们,你们看了这四种解法有什么想法吗?小学数学:鸡兔同笼你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
豆豆staR2023-07-23 16:51:573

鸡兔同笼问题解决方法

鸡兔同笼问题解决方法有方程法、画图法、金鸡独立法、吹哨法。1、方程法设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只。2、画图法画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。3、金鸡独立法让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。4、吹哨法假设鸡和兔都训练有素,吹一声哨,所有动物(35只)都抬起一只脚,这时脚着地的只数还有:94-35=59(只);再吹一声哨,每只动物又抬起一只脚,这时脚着地的只数还有:59-35=24(只),此时鸡的脚全都不着地,这24只脚全都是兔子的脚。所以可以知道兔子只数有:24÷2=12(只),则鸡的只数有:35-12=23(只)。
无尘剑 2023-07-23 16:51:571

鸡兔同笼小学生解法

鸡兔同笼小学生解法有:例:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,聪明的小朋友,你能算出鸡和兔子各有多少只吗?1、最酷的方法“金鸡独立法”分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。2、最逗的方法“吹哨法”分析:假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。3、最常用的方法“假设法”分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
tt白2023-07-23 16:51:521

鸡兔同笼29头92脚第二种方法

1、设有鸡x只4*(29-x)+2x=92116-2x=922x=24x=12只有兔=29-12=17只2、先全部考虑成鸡脚兔=(92-29X2)÷2=17只鸡=29-17=12只
铁血嘟嘟2023-07-15 09:33:441

古代着名数学题之一:鸡兔同笼问题

中国古代的数学可以说是让人都仰望的存在,虽然是近代的发展并不好,但这并不影响古代所遗留下的着名作品。鸡兔同笼的问题可以说是每个人在小学的课本上都曾留有印象。 那么,本期古代六艺解析鸡兔同笼问题。 鸡兔同笼,是中国古代着名趣题之一,记载于《孙子算经》之中。鸡兔同笼问题,是小学奥数的常见题型。许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法——“假设法”来求解。因此很有必要学会它的解法和思路。通常是假设法比较简单易懂一点。 “鸡兔同笼问题”是我国古算书《孙子算经》中着名的数学问题,其内容是:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”意思是:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔? 《孙子算经》用算术方法来解:脚数的1/2减头数,即94/2-35=12为兔数;头数减兔数即35-12=23为鸡数。这种解法虽然直接而自然,也很合乎逻辑,但是却不容易理解。知道孙子是如何解答这个“鸡兔同笼”问题的吗? 原来孙子提出了大胆的设想。他假设砍去每只鸡和每只兔1/2的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只。 而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数。 【结束语】在跑男2的综艺上,包贝尔也可以说是无形中秀出了自己的高智商,这样的鸡兔同笼问题也都是必须掌握的哦!
康康map2023-06-30 08:43:561

鸡兔同笼怎么算

鸡兔同笼公式解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数总只数-鸡的只数=兔的只数解法2:(总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数总只数-兔的只数=鸡的只数解法3:总脚数÷2—总头数=兔的只数总只数—兔的只数=鸡的只数例1(古典题)鸡兔同笼,头共46,足共128,鸡兔各几只?分析如果46只都是兔,一共应有4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。解:①鸡有多少只?(4×6-128)÷(4-2)=(184-128)÷2=56÷2=28(只)②免有多少只?46-28=18(只)答:鸡有28只,免有18只。我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是:鸡数=(每只兔脚数×兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数)兔数=鸡兔总数-鸡数当然,也可以先假设全是鸡。例2鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?分析这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢?假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。解:(2×100-80)÷(2+4)=20(只)。100-20=80(只)。答:鸡与兔分别有80只和20只。
bikbok2023-06-30 08:43:557

8道应用题,您会做几题就几题,谢谢。急 六年级上册的数学广角-鸡兔同笼 {我要完整的算式喔谢谢}

1设有x只兔y只鸡x+y=12,4x+2y=40 你会解得下面的举一反三好不好
wpBeta2023-06-30 08:43:542

五年级解方程应用题----鸡兔同笼,兔是鸡2倍,它们共有脚150只,鸡、兔各有多少只?

设鸡有x只.则兔子有2x只.则鸡脚有2x只.兔子脚8x只 因为总共150只脚所以2x+8x=150解得x=15 所以鸡有15只.兔子有30只
北有云溪2023-06-30 08:43:541

鸡兔同笼的练习题

1、 鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?2、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?3、在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?4、小华买了2元和5元纪念邮票一共34张,用去98元钱。求小华买了2元和5元的纪念邮票各多少张?5、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?6、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?7、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?8、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元? 9、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题? 10、在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题?11、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要陪成本10元,运后结算时,运输队共得1350元的运费。问、共损坏了多少只暖瓶?12、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种小鸟各几只? 13、螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。现在这三种动物37只,共有250条腿和52对翅膀。每种动物各有多少只? 14、小东妈妈从单位领回奖金400元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?15、小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。这三种硬币各有多少枚?16. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?17. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?18. 一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米19.乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?20. 自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?21. 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?22. 如果被乘数增加15,乘数不变,积就增加180;如果被乘数不变,乘数增加4,那么积就增加120.原来两个数相乘的积是多少?23. 编一本695页的故事书的页码,一共要用多少个数字?其中数字“5”用去了几个?24. 编一本辞典一共用去了6889个数字,这本辞典共有几页?25. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?26. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?27. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?28. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?29. 今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?30. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?31. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?32. 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?33. 班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?34. 大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?35. 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?36. 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?37. 有鸡兔共20只,脚44只,鸡兔各几只?38. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?39. 现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?40. 有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同.这两桶油各有多少千克?41. 瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268.6元,求打破了几只花瓶?42. 学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?43.. 蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶.现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元.该校每学期买两种墨水各多少瓶?44. 大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛.小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?45. 小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多.问小毛做对几道题?46. 赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张.他兑换了两种面额的人民币各多少张?47. 幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少?48. 动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤.该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少?49. 小张的存钱盒里有2角,5角和1元人民币20张,共12元,算一算三种面值的人民币各有多少张?50. 鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?鸡兔同笼应用题体详解(四个阶段) 鸡兔同笼问题(1)基础级1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡、兔各多少只?2.鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?3.在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?4.小华买了2元和5元纪念邮票一共34张,用去98元钱。求小华买了2元和5元的纪念邮票各多少张?5.全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?6.张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?7.小刚买回8角分邮票和4角分邮票共100张,共付出68元,问,小刚买回这两种邮票个多少张?各付出多少元?8.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?9.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?10.松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有几天是雨天?11.白兔妈妈采蘑菇,晴天每天可采24个,雨天每天可采16个。它一连几天采了168个蘑菇,平均每天采21个。求晴天时一共采了多少个蘑菇?12.小王买了甲,乙两种电影票共20张,两种电影票的平均票价为每张26元,而甲种电影票实际票价为每张30元,乙种电影票实际票价为每张20元,求两种电影票各买了多少张? 鸡兔同笼问题(2)提高级1.鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?2.鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?3.鸡兔同笼,鸡比兔多10只,但鸡脚却比兔子少60只,问鸡兔各多少只?4.鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只?5.张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只?6.鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?7.鸡与兔共有110个头,但鸡的脚比兔的脚少20只,求鸡兔各有多少头?8.鸡与兔共有110只脚,但鸡的头数比兔的少20个,求鸡兔各有多少头?9.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题?鸡兔同笼问题(3)难题级1.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种昆虫各几只?2.螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。现在这三种动物37只,共有250条腿和52对翅膀。每种动物各有多少只?3.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?4.小东妈妈从单位领回奖金380元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?5.甲,乙,丙三种练习本每本价钱分别为7角,3角,2角。三种练习本一共卖了47本,付了21元2角,买的乙种练习本的本数是丙种练习本本数的2倍。就三种练习本各买了多少本?6.某校购买了大,中,小3种型号的投影仪共47台,他们的单价分别是700元,300元,200元,共支出21200元。已知中型投影仪的台数为小型投影仪台数的2倍,问购买了多少台大型投影仪?7.有一元,五元和十元的人民币共14张,共计66元,其中一元的张数比十元的多2张。问三种人民币各多少张?8.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?9.食品店上午卖出甲,乙,丙三种糖果共100千克,共收入2570元。甲种糖:20元/每千克,乙种糖:25元/每千克,丙种糖:30元/每千克,已知卖出的乙种糖和丙种糖共收入1970元,求丙种糖卖出了多少千克?10.买来3角,5角,7角的邮票共400张,共用去192元,其中7角的和5角的邮票张数相等。求每种邮票各多少张?11.学校组织新年晚会,买了奖品铅笔,圆珠笔和钢笔共232支,共花100元。其中铅笔的支数是圆珠笔支数的4倍。已知铅笔每支2角钱,圆珠笔每支9角,钢笔每支2元1角。问:三种笔各有多少支?12.学校组织新年晚会,买了奖品铅笔,圆珠笔和钢笔共232支,共花300元。其中铅笔的支数是圆珠笔支数的4倍。已知铅笔每支6角钱,圆珠笔每支2元7角,钢笔每支6元3角。问:三种笔各有多少支? 鸡兔同笼问题(4)超难级1.小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。这三种硬币各有多少枚?2.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个?3.100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个?4.大油瓶一瓶装4千克,小油瓶两瓶装1千克。现在100千克油装了60个瓶。求大,小油瓶各有多少个?5.在很久很久以前,传说有九头一尾的九头鸟和九尾一头的九尾鸟。有一次这两种鸟栖息在树林里,一位猎人经过此地数了数,这两种鸟头共268个,尾332个,那么有九头鸟和九尾鸟各多少只?6.某校数学竞赛,共有20道填空题。评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是69分,那么小英有几题没做?7.某校数学竞赛,共有20道填空题。评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是72分,那么小英有几题没做?8.某次数学抢答比赛共20题,做对一题得5分,做错一题倒扣2分,不做倒扣1分.小华得了74分,问他做对几题?答错几题?没答的有几题?9.一件工程甲独做12天完成,乙独做18天完成,现在由甲先做若干天后,再由乙单独完成余下的任务,这样前后共用了16天,甲先做了多少天?10.一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?11.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡兔各有多少只?12.鸡与兔共有220只脚,若原来所有的鸡都换成兔,所有的兔都换成鸡后,则脚只有212只,求原来鸡兔各有多少头?
瑞瑞爱吃桃2023-06-30 08:43:527

鸡兔同笼买电影票问题

买来3元、4元和5元的电影票共200张,用去780元,其中4元和5元的张数相等,每种票各买了多少张? 假设 200张都是4元和5元的,因为它们的张数相等所以4元的为100张,5元的100张求出来的张数是3元的. 100*4+100*5=900元 与实际相差 900-780=120元 3元与 4 元和5元相差 (4+5)/2-3=1.5元 相差的总钱数与每张相差的钱数相除就求出3元的张数 120/1.5=80张 4元和5元各60张 (200-80)/2=60张
善士六合2023-06-30 08:43:521

有关鸡兔同笼的应用题

可以求助于我,希望可以帮助你。
大鱼炖火锅2023-06-30 08:43:523

小学鸡兔同笼问题怎么做

鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。 例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只? 分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。 解:有兔(44-2×16)÷(4-2)=6(只), 有鸡16-6=10(只)。 答:有6只兔,10只鸡。 当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。 有鸡(4×16-44)÷(4-2)=10(只), 有兔16——10=6(只)。 由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。
FinCloud2023-06-30 08:43:521

四年级数学鸡兔同笼假设法解题技巧

  假设法就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找出正确答案。假设法是解鸡兔同笼、倒扣、逻辑推理、幻方、数阵等问题的常用方法。   运用假设法的思路解应用题,先要根据题意假设位置的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并做出适当的调整。若问题中出现多个量时,需要考虑把其中的一些量进行分组再假设。   例题1   解鸡兔同笼问题时,一般先假设全部是鸡或者兔,再求出假设后腿的总数量,然后与实际脚的数量比较,从而求出兔或者积的数量。需要注意的是当我们假设全部是鸡的话,对比腿数求出的是兔的数量,因为假设后得出的腿的数量与实际数量的差异是由于兔腿的数量不同引起的。   练一练:小兔妈妈采蘑菇,晴天每天可以采32个,雨天每天只能采22个,它一共采了390个,平均每天采26个,这些天中有几天下雨?(参考答案:9天下雨)   例题3   解决此类问题,先假设全部都对,计算出全部都对的分数与实际的分数的差,用这个差除以答对一道题和答错一道题的得分差就等于答错的题目数。   例题4   练一练:某物流公司运800个花瓶,每个花瓶100元,按合同每个运费5元,每损坏一个除不给运费外,还要赔偿花瓶价格的一半,实收运费3780元。问:损坏了几个花瓶?(参考答案:损坏了4个花瓶)   例题5   分组假设法解决鸡兔同笼问题关键是把三个量分成两组,一般将有关系的量分为一组,然后在两组之间假设,再用总的差除以每组的差。   练一练:公园出售5元、8元、10元的门票共100张,收入748元,其中5元和8元的张数相等,请问:每种门票各出售多少张?(参考答案:5元和8元各36张,10元有28张)
Chen2023-06-30 08:43:481

鸡兔同笼的经典题目(帮我出)

现代有三种人,一种是好人,没脸蛋。一种是坏蛋,有脸蛋,还一种是好人坏人和脸蛋。 现在有大约 15亿个好人,15亿个坏人,15亿个脸蛋。请问有好人几个坏人和几个脸蛋?15亿个。
北境漫步2023-06-30 08:43:476

有关鸡兔同笼的算术题目

"鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路.例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是244÷2=122(只).在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数122-88=34(只),有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面的计算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 总头数-兔子数=鸡数
西柚不是西游2023-06-30 08:43:471

三种动物鸡兔同笼应用题

8×47=376(47只都看成蜘蛛共有腿) 376-324=52(多出的腿) 52÷(8-6)=26(有26只6条腿的算成8条腿的) 47-26=21(蜘蛛数) 同上 26×2=52(26只都按2对翅膀算) 52-37=15(多出的翅膀) 15÷(2-1)=15(禅的数) 26-15=11(蜻蜓数)
hi投2023-06-30 08:43:461

鸡兔同笼问题

假设法或者用方程都可以解答
bikbok2023-06-30 08:43:454

这道鸡兔同笼怎么做啊?!

48/2=2424/(1+2)=8 鸡的数量
真颛2023-06-30 08:43:444

鸡兔同笼式应用题急!急!急!

买了16个足球,14个篮球,20个排球
ardim2023-06-30 08:43:436

一道数学鸡兔同笼的应用题 鸡兔同笼,兔比鸡多15只,脚数共有228只,鸡兔各多少只?

用算数方法更能开发智力 兔比鸡多15只 228-15×4=168 这是鸡兔一般多.但兔脚是鸡脚的2倍,一个是两只的,一个是4只得.一共6只 168/6=28 鸡28只 兔43
NerveM 2023-06-30 08:43:421

鸡兔同笼的公式

热心网友2018-11-26.第一鸡兔同笼问题:①假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)②假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)2.第二鸡兔同笼问题:①假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)②假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)望采纳谢谢。
人类地板流精华2023-06-30 08:43:3713

鸡兔同笼的最好解决方案.公式,最好就是有例题啦!~

设兔为4x,鸡为2x,4x+2x=总腿数然后自己慢慢求啦
凡尘2023-06-30 08:43:364

鸡兔同笼知识点

来了没接到了,你家急急如律令铁路局不不碳
tt白2023-06-30 08:43:365

鸡兔同笼

脑壳痛 书到用时方恨少
豆豆staR2023-06-30 08:43:357

鸡兔同笼共100只头,鸡的脚比兔的脚少28只。问:鸡、兔各有几只?

解:设兔x只。鸡100-x只。4x-2(100-x)=284x-200+2x=286x=228x=38100-38=62(只)答:兔38只,鸡62只.
水元素sl2023-06-30 08:43:341

那位帮帮忙给找10道六年级鸡兔同笼应用题?

你确定只要十道?1、 鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?3、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头?4、在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?5、小华买了2元和5元纪念邮票一共34张,用去98元钱。求小华买了2元和5元的纪念邮票各多少张?6、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?7、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?8、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?9、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元? 10、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题? 11、在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分。小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题?12、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶。已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要陪成本10元,运后结算时,运输队共得1350元的运费。问、共损坏了多少只暖瓶?13、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种小鸟各几只? 14、螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。现在这三种动物37只,共有250条腿和52对翅膀。每种动物各有多少只? 15、小东妈妈从单位领回奖金400元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?16、小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。这三种硬币各有多少枚?1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题?2. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只?3. 一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨?4. 自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个?5. 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只?6. 如果被乘数增加15,乘数不变,积就增加180;如果被乘数不变,乘数增加4,那么积就增加120.原来两个数相乘的积是多少?7. 编一本695页的故事书的页码,一共要用多少个数字?其中数字“5”用去了几个?8. 编一本辞典一共用去了6889个数字,这本辞典共有几页?9. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发?10. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题?11. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只?12. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只?13. 今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只?14. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只?15. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?16. 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?17. 班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?18. 大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?19. 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人?20. 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?21. 有鸡兔共20只,脚44只,鸡兔各几只?22. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张?23. 现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个?24. 有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同.这两桶油各有多少千克?25. 瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268.6元,求打破了几只花瓶?26. 学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人?27. 蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶.现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元.该校每学期买两种墨水各多少瓶?28. 大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛.小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只?29. 小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多.问小毛做对几道题?30. 赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张.他兑换了两种面额的人民币各多少张?31. 幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少?32. 动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤.该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少?33. 小张的存钱盒里有2角,5角和1元人民币20张,共12元,算一算三种面值的人民币各有多少张?34. 鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只?35. 某电视机厂每天生产电视500台,在质量评比中,每生产一台合格电视机记5分,每生产一台不合格电视机扣18分.如果四天得了9931分,那么这四天生产了多少台合格电视机?36. 六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人?37. 崔文符进山打猎,平均5枪打死两只兔子,9枪打死6只野鸡.他共放了25枪,获得猎物14只,两种动物各打死了几只?鸡兔同笼应用题体详解(四个阶段)鸡兔同笼问题(1)基础级1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡、兔各多少只?2.鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?3.在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?4.小华买了2元和5元纪念邮票一共34张,用去98元钱。求小华买了2元和5元的纪念邮票各多少张?5.全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?6.张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?7.小刚买回8角分邮票和4角分邮票共100张,共付出68元,问,小刚买回这两种邮票个多少张?各付出多少元?8.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?9.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?10.松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有几天是雨天?11.白兔妈妈采蘑菇,晴天每天可采24个,雨天每天可采16个。它一连几天采了168个蘑菇,平均每天采21个。求晴天时一共采了多少个蘑菇?12.小王买了甲,乙两种电影票共20张,两种电影票的平均票价为每张26元,而甲种电影票实际票价为每张30元,乙种电影票实际票价为每张20元,求两种电影票各买了多少张? 鸡兔同笼问题(2)提高级1.鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只?2.鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只?3.鸡兔同笼,鸡比兔多10只,但鸡脚却比兔子少60只,问鸡兔各多少只?4.鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只?5.张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只?6.鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?7.鸡与兔共有110个头,但鸡的脚比兔的脚少20只,求鸡兔各有多少头?8.鸡与兔共有110只脚,但鸡的头数比兔的少20个,求鸡兔各有多少头?9.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题?鸡兔同笼问题(3)难题级1.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现在这三种小虫16只,共有110条腿和14对翅膀。问,每种昆虫各几只?2.螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。现在这三种动物37只,共有250条腿和52对翅膀。每种动物各有多少只?3.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只?4.小东妈妈从单位领回奖金380元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?5.甲,乙,丙三种练习本每本价钱分别为7角,3角,2角。三种练习本一共卖了47本,付了21元2角,买的乙种练习本的本数是丙种练习本本数的2倍。就三种练习本各买了多少本?6.某校购买了大,中,小3种型号的投影仪共47台,他们的单价分别是700元,300元,200元,共支出21200元。已知中型投影仪的台数为小型投影仪台数的2倍,问购买了多少台大型投影仪?7.有一元,五元和十元的人民币共14张,共计66元,其中一元的张数比十元的多2张。问三种人民币各多少张?8.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张?9.食品店上午卖出甲,乙,丙三种糖果共100千克,共收入2570元。甲种糖:20元/每千克,乙种糖:25元/每千克,丙种糖:30元/每千克,已知卖出的乙种糖和丙种糖共收入1970元,求丙种糖卖出了多少千克?10.买来3角,5角,7角的邮票共400张,共用去192元,其中7角的和5角的邮票张数相等。求每种邮票各多少张?11.学校组织新年晚会,买了奖品铅笔,圆珠笔和钢笔共232支,共花100元。其中铅笔的支数是圆珠笔支数的4倍。已知铅笔每支2角钱,圆珠笔每支9角,钢笔每支2元1角。问:三种笔各有多少支?12.学校组织新年晚会,买了奖品铅笔,圆珠笔和钢笔共232支,共花300元。其中铅笔的支数是圆珠笔支数的4倍。已知铅笔每支6角钱,圆珠笔每支2元7角,钢笔每支6元3角。问:三种笔各有多少支? 鸡兔同笼问题(4)超难级1.小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等。这三种硬币各有多少枚?2.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个?3.100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个?4.大油瓶一瓶装4千克,小油瓶两瓶装1千克。现在100千克油装了60个瓶。求大,小油瓶各有多少个?5.在很久很久以前,传说有九头一尾的九头鸟和九尾一头的九尾鸟。有一次这两种鸟栖息在树林里,一位猎人经过此地数了数,这两种鸟头共268个,尾332个,那么有九头鸟和九尾鸟各多少只?6.某校数学竞赛,共有20道填空题。评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是69分,那么小英有几题没做?7.某校数学竞赛,共有20道填空题。评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是72分,那么小英有几题没做?8.某次数学抢答比赛共20题,做对一题得5分,做错一题倒扣2分,不做倒扣1分.小华得了74分,问他做对几题?答错几题?没答的有几题?9.一件工程甲独做12天完成,乙独做18天完成,现在由甲先做若干天后,再由乙单独完成余下的任务,这样前后共用了16天,甲先做了多少天?10.一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?11.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡兔各有多少只?12.鸡与兔共有220只脚,若原来所有的鸡都换成兔,所有的兔都换成鸡后,则脚只有212只,求原来鸡兔各有多少头?望采纳!O(∩_∩)O谢谢
苏州马小云2023-06-30 08:43:332

鸡兔同笼的问题

例1 (古典题)鸡兔同笼,头共46,足共128,鸡兔各几只? 分析 如果 46只都是兔,一共应有 4×46=184只脚,这和已知的128只脚相比多了184-128=56只脚.如果用一只鸡来置换一只兔,就要减少4-2=2(只)脚.那么,46只兔里应该换进几只鸡才能使56只脚的差数就没有了呢?显然,56÷2=28,只要用28只鸡去置换28只兔就行了.所以,鸡的只数就是28,兔的只数是46-28=18。 解:①鸡有多少只? (4×6-128)÷(4-2) =(184-128)÷2 =56÷2 =28(只) ②免有多少只? 46-28=18(只) 答:鸡有28只,免有18只。 我们来总结一下这道题的解题思路:先假设它们全是兔.于是根据鸡兔的总只数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看相差多少.每差2只脚就说明有一只鸡;将所差的脚数除以2,就可以算出共有多少只鸡.我们称这种解题方法为假设法.概括起来,解鸡兔同笼问题的基本关系式是: 鸡数=(每只兔脚数× 兔总数- 实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数 当然,也可以先假设全是鸡。 例2 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 分析 这个例题与前面例题是有区别的,没有给出它们脚数的总和,而是给出了它们脚数的差.这又如何解答呢? 假设100只全是鸡,那么脚的总数是2×100=200(只)这时兔的脚数为0,鸡脚比兔脚多200只,而实际上鸡脚比兔脚多80只.因此,鸡脚与兔脚的差数比已知多了(200-80)=120(只),这是因为把其中的兔换成了鸡.每把一只兔换成鸡,鸡的脚数将增加2只,兔的脚数减少4只.那么,鸡脚与兔脚的差数增加(2+4)=6(只),所以换成鸡的兔子有120÷6=20(只).有鸡(100-20)=80(只)。 解:(2×100-80)÷(2+4)=20(只)。 100-20=80(只)。 答:鸡与兔分别有80只和20只。 58
mlhxueli 2023-06-30 08:43:333

鸡兔同笼应用题100道(不含答案)。

2太尴尬发图太突然雇个人通过给他他吞吞吐吐一样回复发广告长袖善舞谢谢范冰冰方法跟我玩vv勾搭彻底失望多吃菜干活vvv干活土豆丝城管局发
NerveM 2023-06-30 08:43:321

鸡兔同笼应用题解答技巧

鸡兔同笼应用题解答技巧   许多小学算术应用题和填空题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解。因此很有必要学会它的解法和思路。以下是我整理的鸡兔同笼应用题解答技巧,希望可以帮助大家!    【含义】 这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的"问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。   【数量关系】第一鸡兔同笼问题:   假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)   假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)   第二鸡兔同笼问题:   假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)   假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)    【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。   例1 长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?   解假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)   兔数=35-23=12(只)   也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)   鸡数=35-12=23(只)   答:有鸡23只,有兔12只。   例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?   解此题实际上是改头换面的“鸡兔同笼”问题。“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。假设16亩全都是菠菜,则有   白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)   答:白菜地有10亩。   例3 李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。问作业本和日记本各买了多少本?   解此题可以变通为“鸡兔同笼”问题。假设45本全都是日记本,则有   作业本数=(69-0.70×45)÷(3.20-0.70)=15(本)   日记本数=45-15=30(本)   答:作业本有15本,日记本有30本。   例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?   解假设100只全都是鸡,则有   兔数=(2×100-80)÷(4+2)=20(只)   鸡数=100-20=80(只)   答:有鸡80只,有兔20只。   例5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?   解假设全为大和尚,则共吃馍(3×100)个,比实际多吃(3×100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(3-1/3)个。因此,共有小和尚(3×100-100)÷(3-1/3)=75(人)   共有大和尚100-75=25(人)   答:共有大和尚25人,有小和尚75人。 ;
tt白2023-06-30 08:43:321

要10道鸡兔同笼的应用题。

http://wenku.baidu.com/view/213a500bf12d2af90242e6cf.htmlhttp://wenku.baidu.com/view/847586293169a4517723a328.html
LuckySXyd2023-06-30 08:43:322

帮我找一些鸡兔同笼的应用题,用方程计算

鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只?
西柚不是西游2023-06-30 08:43:314

鸡兔同笼应用题

设大瓶X,小瓶Y所以X+Y=60 4X+0.5Y=100 解这个二元一次方程
大鱼炖火锅2023-06-30 08:43:3015

鸡兔同笼应用题及答案

  一、鸡兔同笼问题例题透析   例题1:有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只?   解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是   244÷2=122(只).   在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数   122-88=34,   有34只兔子.当然鸡就有54只.   答:有兔子34只,鸡54只.   上面的计算,可以归结为下面算式:   总脚数÷2-总头数=兔子数.   上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,“脚数”就不一定是4和2,上面的"计算方法就行不通.因此,我们对这类问题给出一种一般解法.   还说此题.   如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了   88×4-244=108(只).   每只鸡比兔子少(4-2)只脚,所以共有鸡   (88×4-244)÷(4-2)= 54(只).   说明我们设想的88只“兔子”中,有54只不是兔子.而是鸡.因此可以列出公式   鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).   当然,我们也可以设想88只都是“鸡”,那么共有脚2×88=176(只),比244只脚少了   244-176=68(只).   每只鸡比每只兔子少(4-2)只脚,   68÷2=34(只).   说明设想中的“鸡”,有34只是兔子,也可以列出公式   兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).   上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.   假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为“假设法”.   现在,拿一个具体问题来试试上面的公式.   例题2:红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红、蓝铅笔各买几支?   解:以“分”作为钱的单位.我们设想,一种“鸡”有11只脚,一种“兔子”有19只脚,它们共有16个头,280只脚.   现在已经把买铅笔问题,转化成“鸡兔同笼”问题了.利用上面算兔数公式,就有   蓝笔数=(19×16-280)÷(19-11)   =24÷8   =3(支).   红笔数=16-3=13(支).   答:买了13支红铅笔和3支蓝铅笔.   对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的“脚数”19与11之和是30.我们也可以设想16只中,8只是“兔子”,8只是“鸡”,根据这一设想,脚数是   8×(11+19)=240.   比280少40.   40÷(19-11)=5.   就知道设想中的8只“鸡”应少5只,也就是“鸡”(蓝铅笔)数是3.   30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算.   实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,“兔数”为10,“鸡数”为6,就有脚数   19×10+11×6=256.   比280少24.   24÷(19-11)=3,   就知道设想6只“鸡”,要少3只.   要使设想的数,能给计算带来方便,常常取决于你的心算本领.   二、“鸡兔同笼”问题练习题及答案   1.鸡兔同笼,共有30个头,88只脚。求笼中鸡兔各有多少只?   2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?   3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?   4.鸡兔同笼不知数,三十六头笼中露。数清脚共五十双,各有多少鸡和兔?   5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?   6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?   7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?   8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?   9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?   10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。它一连8天共采了112个松籽,这八天有几天晴天几天雨天?   11.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。其中男生平均得60分,女生平均得70分。求参加竞赛的男女各有多少人?   12.一次数学竞赛共有20道题。做对一道题得5分,做错一题倒扣3分,刘冬考了52分,你知道刘冬做对了几道题?   13.一次数学竞赛共有20道题。做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?   14.52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。求大船和小船各几只?   15.在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。求小轿车和摩托车各有多少辆?   16.解放军进行野营拉练。晴天每天走35千米,雨天每天走28千米,11天一共走了350千米。求这期间晴天共有多少天?   17.100个和尚吃了100个面包,大和尚1人吃3个,小和尚3人吃1个。求大小和尚各有多少个?   18.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对。问蜻蜓有多少只?(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀)   19.一队强盗一队狗,二队拼作一队走,数头一共三百六,数腿一共八百九,问有多少强盗多少狗?   答案   1.鸡:16只,兔:14只   2.鸡:30只,兔:18只   3.鸡:56只,兔:22只   4.鸡:22只,兔:14只   5.20分的邮票25张,50分的邮票10张。   6.50分的邮票8张,80分邮票12张。   7.2分硬币52枚,5分硬币18枚。   8.捐了5元的同学有19人,捐10元的有11人。   9.捐2元的有27人,捐5元的有7人。   10.晴天2天,雨天6天。   11.求参加竞赛的女生15人,男生35人。   12.刘冬做对14道题。   13.刘冬做对16道题。   14.大船4只,小船7只。   15.小轿车22辆,摩托车10辆。   16.晴天共有6天。   17.大和尚有25个,小和尚有75个。   18.蜘蛛5只;蜻蜓7只;蝉6只。   19.强盗275人,狗85只。
苏州马小云2023-06-30 08:43:281

急需50道简单的鸡兔同笼应用题和50道乘除法简便计算,都不要复杂的!谢谢喽!跪求!

1、长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?2、2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?3、李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元。问作业本和日记本各买了多少本?4、鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?5、有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?6、一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?7、一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完?8、在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?9学校有象棋、跳棋共26副,恰好可供120个学生同时进行活动,象棋2人下一副棋,跳棋6人下一副,象棋和跳棋各有几副?10、小华买了2元和5元纪念邮票一共34张,用去98元钱。求小华买了2元和5元的纪念邮票各多少张?11、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?12、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只?13、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元? 14、自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长1千米,其余的长9千米.问:长9千米的路段有多少个?15、12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?16、班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生?17、大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个?18、刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条?19、在一个停车场上,停了汽车和摩托车一共32辆。其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。求汽车和摩托车各有多少辆?20、体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?21、白兔妈妈采蘑菇,晴天每天可采24个,雨天每天可采16个。它一连几天采了168个蘑菇,平均每天采21个。求晴天时一共采了多少个蘑菇?22、小王买了甲,乙两种电影票共20张,两种电影票的平均票价为每张26元,而甲种电影票实际票价为每张30元,乙种电影票实际票价为每张20元,求两种电影票各买了多少张? 23、小明和小芳同院,小芳上学每分走50米,12分到学校。小明上学每分比小芳多走10米,小明几分到学校?24、实验小学五年级有学生540人,男生人数是女生人数的1.2倍,男、女生各有多少人?25、.陈老师要用80元买一些文具作为年级运动会的奖品。他先花45.6元买了8本相册,并准备用剩下的钱买一些钢笔,每支钢笔2.5元。他还可以买几支钢笔?26、一个运粮队,5辆车共运粮食22.5吨,照这样计算,要运粮食118吨,至少需要几辆车?27、加工车间要加工875个零件,已经加工了3.5个小时,每小时加工50个。剩下的平均每个小时加工56个,还要几个小时完成任务?(用方程解)28、有三个同学玩打字比赛,小明打了200个字,有180个字正确,小刚打了120个字,有90个正确。小华打了2000个字,有18个字正确。你认为谁的成绩最好?为什么?29、犀牛、羚羊、孔雀三种动物共有头26个,脚80只,犄角20只.已知犀牛有4只脚、1只犄角,羚羊有4只脚,2只犄角,孔雀有2只脚,没有犄角.那么,犀牛、羚羊、孔雀各有几只呢?30、一些奇异的动物在草坪上聚会. 有独脚兽(1个头、1只脚)、双头龙(2个头、4只脚)、三脚猫(1个头、3只脚)和四脚蛇(1个头、4只脚). 如果草坪上的动物共有58个头、160只脚,且四脚蛇的数量恰好是双头龙数量的2倍. 那么,有_____________只独脚兽参加聚会. 31、学而思小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣3分.刘钢得了60分,问他做对了几道题?32、笼子里有若干只鸡和兔。上面数,有35个头,下面数,有94只脚。鸡和兔各有几只?33、1 、一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?34、今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年?35、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?36、某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人?37、龟鹤共有100个头,350只脚.龟、鹤各多少只?学校有象棋、跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副?  38.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个?  39.某人领得工资240元,有2元、5元、10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元、5元、10元各有多少张?  40.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天?  41.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米)、一段平路(4千米)、一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米)、一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段? 42.用1元钱买4分、8分、1角的邮票共15张,问最多可以买1角的邮票多少张?43、 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张? 44、 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天工程要多少天才能完成?45、鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只?  46、 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?47、有一辆货车运输2000只玻璃瓶,运费按到达时完好的瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费379.6元,问这次搬运中玻璃瓶破损了几只?  48、有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分?49.运输公司运1000个暖水瓶.合同规定每个暖水瓶的运费是0.5元.如果要损坏一个.不但这个不付运费.还要赔偿本费3.5元.货物运到后.运输公司实得运费480元.损坏几个暖水瓶?50.组装工人李阿姨平均每天组装电表60个.没组装一个正品.可为企业创造财富15元.但如果装坏一个.要损失85元.一天.她为企业创造了700元.这一天,他组装合格电表多少个?
九万里风9 2023-06-30 08:43:281

鸡兔同笼的应用题及答案

图片呢,不好意思,我看不到你的图片
ardim2023-06-30 08:43:2714

鸡兔同笼应用题(带答案)吗?

带,在下面有讲解。
hi投2023-06-30 08:43:271

求鸡兔同笼应用题100道

把这个题换一下
苏州马小云2023-06-30 08:43:2510

鸡兔同笼应用题(带答案)

鸡兔同笼有什么好吗?
hi投2023-06-30 08:43:256

鸡兔同笼应用题100道

2、四年级和六年级学生共120人给小树浇水.其中六年级学生1人提2桶水,四年级学生2人抬一桶水,他们一次浇水共180桶.四年级和六年级参加浇水的各有多少人?3.鸡兔同笼,上有头20个,下有脚48只.求鸡兔各多少只.1、 大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?2、 笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?3、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?4、一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩共99人,一餐刚好吃了99个面包,大人、小孩各有多少人?5、四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,求:有多少名男生?6、有面值分别为2元、5元、10元的邮票共34张,价值共计178元。其中5元与10元的邮票张数相等,问:各种面值的邮票各有多少张? 7、公园门票出售5元、8元、10元共100张,收入748元,其中5元和8元的张数相等。各种票售出多少张?8、犀牛、鹿、鸵鸟三种动物共有26个头,80只脚,20只角。犀牛有4只脚,1只角;鹿有4只脚,2只角,鸵鸟有2只脚。三种动物分别有多少只?1、鸡兔同笼,共100个头,320只脚,鸡有( )只、兔( )只。 2、小明计算20道竞赛题,做对一道得5分,做错一道倒扣3分。结果小明考得60分,小明做对了( )道题。3、松鼠妈妈采松子。晴天每天可以采20个,雨天每天可以采12个。它一连几天采了112个松子,平均每天采14个。这几天中有( )天下雨。4、个体户王小二承接了建筑公司一项运输1200块玻璃的业务,并签了合同。合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了扣除一块的运费外,还要赔偿25元。王小二把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元。运输过程中损坏了( )块。5、100名师生绿化校园,老师每人栽3棵树,学生每2人栽1棵,总共栽树100棵。老师栽树( )棵,学生栽树( )棵。6、30枚硬币由2分和5分组成,共值9角9分,2分硬币( )枚,5分硬币( )枚。7、某校数学竞赛,共有20道填空题。评分标准是每做对一题得5分,做错一题倒扣3分,某题没做该题得0分。小英结果得了69分,那小英有( )题没做。8、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀。现在这三种昆虫18只,共有118只脚和20对翅膀。蜘蛛有( )只,蜻蜓有( )只,蝉有( )只。9、甲、乙两人进行射击比赛,约定每中一发记20分,脱靶一发扣12分,两人各打10发,共得208分,其中甲比乙多64分,甲中了( )发,乙中了( )发。10、鸡、兔共有脚96只,若将鸡、兔互换,则有脚84只,鸡有( )只,兔有( )只。
拌三丝2023-06-30 08:43:241

鸡兔同笼应用题100道方程解题

弄懂3题足够了
meira2023-06-30 08:43:242

四年级数学鸡兔同笼100道应用题(不含答案)

1.鸡兔同笼,共有30个头,88只脚。求笼中鸡兔各有多少只?2.鸡兔同笼,共有头48个,脚132只,求鸡和兔各有多少只?3.一个饲养组一共养鸡、兔78只,共有200只脚,求饲养组养鸡和兔各多少只?4.鸡兔同笼不知数,三十六头笼中露。数清脚共五十双,各有多少鸡和兔?5.小明用10元钱正好买了20分和50分的邮票共35张,求这两种邮票名买了多少张?6.小红用13元6角正好买了50分和80分邮票共计20张,求两种邮票各买了多少张?7.小刚的储蓄罐里共2分和5分硬币70枚,小刚数了一下,一共有194分,求两种硬币各有多少枚?8.三年一班30人共向北京奥运会捐款205元,同学每人了捐了5元或10元,你知道捐5元和10元的同学各有多少人吗?9.三年二班45个同学向爱心基金会共计捐款100元,其中11个同学每人捐1元,其他同学每人捐2元或5元,求捐2元和5元的同学各有多少人?10.松鼠妈妈采松籽,晴天每天可以采20个,雨天每天只能采12个。它一连8天共采了112个松籽,这八天有几天晴天几天雨天?11.某校有一批同学参加数学竞赛,平均得63分,总分是3150分。其中男生平均得60分,女生平均得70分。求参加竞赛的男女各有多少人?12.一次数学竞赛共有20道题。做对一道题得5分,做错一题倒扣3分,刘冬考了52分,你知道刘冬做对了几道题?13.一次数学竞赛共有20道题。做对一道题得8分,做错一题倒扣4分,刘冬考了112分,你知道刘冬做对了几道题?14.52名同学去划船,一共乘坐11只船,其中每只大船坐6人,每只小船坐4人。求大船和小船各几只?15.在一个停车场上,停了小轿车和摩托车一共32辆,这些车一共108个轮子。求小轿车和摩托车各有多少辆?16.解放军进行野营拉练。晴天每天走 35千米,雨天每天走 28千米,11天一共走了 350千米。求这期间晴天共有多少天?17.100个和尚吃了100个面包,大和尚1人吃3个,小和尚3人吃1个。求大小和尚各有多少个?18.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对。问蜻蜓有多少只?(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀)19.一队强盗一队狗,二队拼作一队走,数头一共三百六,数腿一共八百九,问有多少强盗多少狗?
九万里风9 2023-06-30 08:43:2212

五年级鸡兔同笼应用题100道含答案

鸡和兔在同一个笼子里,已知从上面数有35个头,从下面数有94只脚。请问鸡和兔各有几只?
小菜G的建站之路2023-06-30 08:43:2110

六年级数学上册鸡兔同笼应用题作业做好了,没事做,正好补补数学

1.龟鹤共有100个头,350只脚.龟,鹤各多少只2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段7.用1元钱买4分,8分,1角的邮票共15张,问最多可以买1角的邮票多少张
九万里风9 2023-06-30 08:43:201

麻烦出三道鸡兔同笼的数学应用题,稍微难一点的,谢谢了,好的我会采纳的。

四年级和六年级学生共120人给小树浇水。其中六年级学生1人提2桶水,四年级学生2人抬一桶水,他们一次浇水共180桶。四年级和六年级参加浇水的各有多少人?王老师圆珠笔和钢笔共买了 15 枝,圆珠笔每枝 1.5 元,钢笔每枝 4.5 元,共花了 49.5 元,圆珠笔和钢 笔各买了多少枝?在一个停车场内,汽车、摩托车共停了 48 辆,其中每辆汽车有 4 个轮子,每辆摩托车有 3 个轮子,这 些车共有 172 个轮子,停车场内有汽车摩托车各多少辆?
ardim2023-06-30 08:43:195

鸡兔同笼问题怎么解

我们在还拥有的时候学不会珍惜,等学会珍惜时已经错过了。
此后故乡只2023-06-30 08:43:1810

小学四年级数学的鸡兔同笼应用题怎么作

我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是  244÷2=122(只).  在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数  122-88=34,  有34只兔子.当然鸡就有54只.  答:有兔子34只,鸡54只.
北境漫步2023-06-30 08:43:143

鸡兔同笼邮票应用题并解答

17x4=68(分) 100-68=32(分) 8分的买了:32/(8-4)=8(张) 4分的买了:17-8=9(张)
u投在线2023-06-30 08:43:131

磕头了,给50道鸡兔同笼应用题吧

鸡和兔子一共有120只,鸡有多少只,兔子有多少只?
tt白2023-06-30 08:43:133

鸡兔同笼应用题60道

1.鸡兔共有32条腿,一共有10只,鸡兔各有多少只? 2.鸡兔只数相同,一共有216条腿,鸡兔各有多少只? 3.鸡兔共有100只,共有320条腿,鸡兔各有多少只? 4.鸡兔共有39只,共有96条腿,鸡兔各有多少只? 5.鸡兔共有160条腿,共有50只,鸡兔各有多少只? 6.鸡兔只数相同,共有372条腿,鸡兔各有多少只? 7.鸡兔共有300只,共有920条腿,鸡兔各有多少只? 8.鸡兔只数相同,共有552条腿,鸡兔各有多少只? 9.鸡兔共有1600条腿,共有500只,鸡兔各有多少只? 10.鸡兔共有1000只,共有3400条腿,鸡兔共有多少只?
CarieVinne 2023-06-30 08:43:131

完整的鸡兔同笼问题

鸡兔同笼,一共有m只头,n只脚,分别求鸡和兔子的个数。典型二元一次方程组的例题。
Jm-R2023-06-30 08:43:132

四年级鸡兔同笼应用题及答案

有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 解:我们设想,每只鸡都是“金鸡独立”,一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34, 有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只.
hi投2023-06-30 08:43:121

最简单的鸡兔同笼的问题

225888998885
小白2023-06-30 08:43:117

鸡兔同笼应用题(用方程解)

鸡的腿数+兔的腿数=94 2x+4(35-x)=94 x=23
小白2023-06-30 08:43:115

鸡兔同笼问题

典型应用题之鸡兔同笼 一,基本问题 "鸡兔同笼"是一类有名的中国古算题.最早出现在《孙子算经》中.许多小学算术应用题都可以转化成这类问题,或者用解它的典型解法--"假设法"来求解.因此很有必要学会它的解法和思路. 例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只 解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚的总数的一半,·也就是 244÷2=122(只). 在122这个数里,鸡的头数算了一次,兔子的头数相当于算了两次.因此从122减去总头数88,剩下的就是兔子头数 122-88=34, 有34只兔子.当然鸡就有54只. 答:有兔子34只,鸡54只. 上面的计算,可以归结为下面算式: 总脚数÷2-总头数=兔子数. 上面的解法是《孙子算经》中记载的.做一次除法和一次减法,马上能求出兔子数,多简单!能够这样算,主要利用了兔和鸡的脚数分别是4和2,4又是2的2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面的计算方法就行不通.因此,我们对这类问题给出一种一般解法. 还说例1. 如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了 88×4-244=108(只). 每只鸡比兔子少(4-2)只脚,所以共有鸡 (88×4-244)÷(4-2)= 54(只). 说明我们设想的88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式 鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数). 当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了 244-176=68(只). 每只鸡比每只兔子少(4-2)只脚, 68÷2=34(只). 说明设想中的"鸡",有34只是兔子,也可以列出公式 兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数). 上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数. 假设全是鸡,或者全是兔,通常用这样的思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面的公式. 例2 红铅笔每支0.19元,蓝铅笔每支0.11元,两种铅笔共买了16支,花了2.80元.问红,蓝铅笔各买几支 解:以"分"作为钱的单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚. 现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有 蓝笔数=(19×16-280)÷(19-11) =24÷8 =3(支). 红笔数=16-3=13(支). 答:买了13支红铅笔和3支蓝铅笔. 对于这类问题的计算,常常可以利用已知脚数的特殊性.例2中的"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是 8×(11+19)=240. 比280少40. 40÷(19-11)=5. 就知道设想中的8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3. 30×8比19×16或11×16要容易计算些.利用已知数的特殊性,靠心算来完成计算. 实际上,可以任意设想一个方便的兔数或鸡数.例如,设想16只中,"兔数"为10,"鸡数"为6,就有脚数 19×10+11×6=256. 比280少24. 24÷(19-11)=3, 就知道设想6只"鸡",要少3只. 要使设想的数,能给计算带来方便,常常取决于你的心算本领. 下面再举四个稍有难度的例子. 例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时 解:我们把这份稿件平均分成30份(30是6和10的最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份). 现在把甲打字的时间看成"兔"头数,乙打字的时间看成"鸡"头数,总头数是7."兔"的脚数是5,"鸡"的脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了. 根据前面的公式 "兔"数=(30-3×7)÷(5-3) =4.5, "鸡"数=7-4.5 =2.5, 也就是甲打字用了4.5小时,乙打字用了2.5小时. 答:甲打字用了4小时30分. 例4 今年是1998年,父母年龄(整数)和是78岁,兄弟的年龄和是17岁.四年后(2002年)父的年龄是弟的年龄的4倍,母的年龄是兄的年龄的3倍.那么当父的年龄是兄的年龄的3倍时,是公元哪一年 解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄的年龄看作"鸡"头数,弟的年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄的年龄是 (25×4-86)÷(4-3)=14(岁). 1998年,兄年龄是 14-4=10(岁). 父年龄是 (25-14)×4-4=40(岁). 因此,当父的年龄是兄的年龄的3倍时,兄的年龄是 (40-10)÷(3-1)=15(岁). 这是2003年. 答:公元2003年时,父年龄是兄年龄的3倍. 例5 蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只 解:因为蜻蜓和蝉都有6条腿,所以从腿的数目来考虑,可以把小虫分成"8条腿"与"6条腿"两种.利用公式就可以算出8条腿的 蜘蛛数=(118-6×18)÷(8-6) =5(只). 因此就知道6条腿的小虫共 18-5=13(只). 也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式 蝉数=(13×2-20)÷(2-1)=6(只). 因此蜻蜓数是13-6=7(只). 答:有5只蜘蛛,7只蜻蜓,6只蝉. 例6 某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道的有7人,5道全对的有6人,做对2道和3道的人数一样多,那么做对4道的人数有多少人 解:对2道,3道,4道题的人共有 52-7-6=39(人). 他们共做对 181-1×7-5×6=144(道). 由于对2道和3道题的人数一样多,我们就可以把他们看作是对2.5道题的人((2+3)÷2=2.5).这样 兔脚数=4,鸡脚数=2.5, 总脚数=144,总头数=39. 对4道题的有 (144-2.5×39)÷(4-1.5)=31(人). 答:做对4道题的有31人. 习题一 1.龟鹤共有100个头,350只脚.龟,鹤各多少只 2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副 3.一些2分和5分的硬币,共值2.99元,其中2分硬币个数是5分硬币个数的4倍,问5分硬币有多少个 4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元的张数一样多.那么2元,5元,10元各有多少张 5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下的部分,这样前后共用了16天.甲先做了多少天 6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有的是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成的;有的是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成的.已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段 7.用1元钱买4分,8分,1角的邮票共15张,问最多可以买1角的邮票多少张 二,"两数之差"的问题 鸡兔同笼中的总头数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢 例7 买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张 解一:如果拿出40张8分的邮票,余下的邮票中8分与4分的张数就一样多. (680-8×40)÷(8+4)=30(张), 这就知道,余下的邮票中,8分和4分的各有30张. 因此8分邮票有 40+30=70(张). 答:买了8分的邮票70张,4分的邮票30张. 也可以用任意假设一个数的办法. 解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分.以"分"作为计算单位,此时邮票总值是 4×20+8×60=560. 比680少,因此还要增加邮票.为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加的张数是 (680-4×20-8×60)÷(4+8)=10(张). 因此4分有20+10=30(张),8分有60+10=70(张). 例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天一天 工程要多少天才能完成 解:类似于例3,我们设工程的全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一的方法,晴天有 (150-8×3)÷(10+8)= 7(天). 雨天是7+3=10天,总共 7+10=17(天). 答:这项工程17天完成. 请注意,如果把"雨天比晴天多3天"去掉,而换成已知工程是17天完成,由此又回到上一节的问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7,例8与上一节基本问题之间的关系. 总脚数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢 例9 鸡与兔共100只,鸡的脚数比兔的脚数少28.问鸡与兔各几只 解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔的脚是鸡的脚4÷2=2(倍),于是鸡的只数是兔的只数的2倍.兔的只数是 (100+28÷2)÷(2+1)=38(只). 鸡是 100-38=62(只). 答:鸡62只,兔38只. 当然也可以去掉兔28÷4=7(只).兔的只数是 (100-28÷4)÷(2+1)+7=38(只). 也可以用任意假设一个数的办法. 解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是 4×50-2×50=100, 比28多了72.就说明假设的兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少的兔数是 (100-28)÷(4+2)=12(只). 兔只数是 50-12=38(只). 另外,还存在下面这样的问题:总头数换成"两数之差",总脚数也换成"两数之差".
tt白2023-06-30 08:43:101

鸡兔同笼应用题及解法是什么?

题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,算出鸡和兔子各有多少只?解法:方法一、列表法:根据上面的表格,我们可以看出,鸡为9只,兔子为5只。列表的时候,我们不要按顺序列,否则做题的速度很慢,比如,列完鸡为0只,兔子为14只,发现腿的数量是56条,和实际的38条相差较大,那么,你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些。方法二、假设法:求兔时,假设全是鸡,则免子数= (38-14X2) / (4-2) =5。求鸡时,假设全是兔,则鸡数= (4X14-38) / (4-2) =9方法三、方程法:设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)=38,解出x=9,所以有鸡9只,兔子14-9=5只。方法四、金鸡独立法:让每只鸡都一只脚站立,每只兔都用两只后脚站立,那么地上的总脚数是原来的一半,即19只脚。鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下的就是兔的头数19-14=5只,鸡有14-5=9只。方法五、最逗“吹哨法”:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。方法六、最牛“特异功能法”:鸡有2条腿,比兔子少2条,这不公平,但是鸡有2只翅膀,兔子却没有。假设鸡有特异功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只。方法七、最古老“砍足法”:假如把每只鸡砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,鸡和兔脚的总数就由38只变成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总数19与总头数14的差,就是兔子的总数,即19-14=5(只)。所以,鸡的总数就是14-5=9(只)了。方法八:最坑“耍兔法”:喊口令:“兔子,耍酷!”此时兔子们都把两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔都是两只脚着地。在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只。为什么会多呢?因为兔子们把它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡则是14-5=9只。
hi投2023-06-30 08:43:101

麻烦出三道鸡兔同笼的数学应用题,稍微难一点的,谢谢了,好的我会采纳的。

(1)现有数量相同的鸡兔同笼,已知兔脚比鸡脚多28条。问笼子中有鸡,兔各多少只?(2)王师傅买6个碗和4个盘子共付6.24元,李师傅买3个碗和1个盘子共付2.7元。碗的单价是多少?(3)有一群人凑钱买一件物品,如果每人出8个钱币,就比物价多3个钱币;如果每人出7个钱币,就比物价少4个钱币,求人数和物价各是多少?(4)三种昆虫共18只,它们有20对翅膀,118条腿。其中蜘蛛是8条腿,蜻蜓是两对翅膀,6条腿,蝉是1对翅膀,6条腿。三种昆虫各有多少只/
真颛2023-06-30 08:43:081

鸡兔同笼类型的应用题该怎么解答?、

最好是把题目弄出来
左迁2023-06-30 08:43:083

最简单的鸡兔同笼的问题

225888998885
瑞瑞爱吃桃2023-06-30 08:43:087

求鸡兔同笼的应用题全解

解法很简单鸡兔分别有X、Y只 有X=3Y2X+4Y=90解得X=27,Y=9你这不是鸡兔同笼,真正的见
北营2023-06-30 08:43:0412

小学六年级应用题(鸡兔同笼问题)

1.设5元的有x张,则2元的(18-x)张。5x+2(18-x)=60(解方程步骤略)x=8,18-8=10答:5元的有8张,2元的有10张。2.设自行车x辆,则三轮车(39-x)辆。2x+3(39-x)=96x=21,39-x=18答:…………。3.设大油瓶x个,小油瓶32-x个。4x+0.5(32-x)=100x=24,32-x=8答:…………。六年级应该教过解方程了吧。这类题目只要掌握技巧,都不难的。剩下的题目如果你应该自己思考下,要还是不会,我再做。望采纳呵。
大鱼炖火锅2023-06-30 08:43:041

鸡兔同笼应用题

男生30人 女生20人
余辉2023-06-30 08:43:041

鸡兔同笼,鸡,兔共100只,鸡的脚数比兔的脚数少70只,鸡,兔各有几只

分析题意可知,“少了”的脚的鸡数:70÷2=35只则兔有:(100+35)÷(2+1)=45只——(两只鸡的脚数和一只兔的相等)鸡:100-45=55只故,鸡有55只,兔有45只。
苏萦2023-06-30 08:43:026

鸡兔同笼应用题及解法

一、方程解法 鸡兔同笼有a个头,b只脚,假设兔有x只,则鸡有(a-x)只,方程为:4x+2(a-x)=b,将题目中的数据代入方式即可解得兔子的数量,再根据(a-x)解得鸡的数量。如鸡兔同笼有8个头,26只脚,假设兔有x只,则鸡有(8-x)只,方程为:4x+2(8-x)=26 → 4x+16-2x=26 → 2x=10 → x=5,8-5=3,所以兔有5只,鸡有3只。二、假设法 1、假设法比较简单;2、先假设都是,脚少的(鸡),更简单。 例如:共有鸡兔15只,40只脚,求鸡个兔各多少只? 先假设都是鸡,那么,假设的鸡脚为:15个头乘以2等于30只脚。再用总数40只脚减去30只脚等于10只脚,这10只脚,就是由每个兔子的2只脚组成的,10除以2,得5只兔子。总数15个头减去5个兔子头,就是10个鸡头。结论:5只兔,10只鸡。 望采纳,谢谢
kikcik2023-06-30 08:43:011

鸡兔同笼共100只,鸡的脚比兔的脚少28只,问鸡兔各有多少只?

设鸡有X只脚,则兔有X+28只脚因为鸡是两条脚,兔子有4只脚则鸡的数量为X/2,兔子数量为X+28/4X/2+(X+28)/4=100解得X=124则有鸡124/2=62只则兔有100-62=38只
凡尘2023-06-30 08:43:012

六年级鸡兔同笼的应用题

小学6年级学二元一次方程了么??
u投在线2023-06-30 08:43:017

跪求~鸡兔同笼应用题

1.鸡兔同笼共有25个头、80条腿。鸡和兔各有多少只?(1) 假设全是鸡,兔子的只数=(总足数-总头数×2)÷2;鸡的只数=总头数-兔子的只数。(2) 假设全是兔,鸡的只数=(总头数×4-总足数)÷2;兔的只数=总头数-鸡的只数。2.一笼中,鸡兔共有100只,共有足360只。鸡和兔各有几只?3.一个饲养组养鸡兔共80只,共有脚220只。饲养组养鸡和兔各多少只?4.池塘里有青蛙和鸭子共50只,共有脚130只。青蛙有几只?鸭子有几只?5.明明用6元钱买了2角和5角的邮票共18张。2角的邮票几张?5角的呢?6.有2分和5分的硬币共78枚,总共2元6角4分。2分的硬币有几枚?5分的硬币有几枚?7.小容有2分、5分的硬币共35枚,一共是1元1角5分,2分的硬币有几枚?5分的硬币有几枚?8.王师傅到家具厂买了桌子和椅子共19件。桌子每张35元,椅子每张20元,共付现金400元。桌子和椅子各买了几张?9.长江家具厂有一种桌子每张32元,椅子每张24元。花园小学买桌子和椅子共38件,共付款976元。桌子和椅子各买了几张?10.操场上停放着39辆三轮车和自行车。两种车的轮子总数是96个。三轮车有几辆?自行车有几辆?11.面粉每千克5元,大米每千克3元,买大米和面粉共150千克,共付出650元。大米和面粉各买了多少千克?12.课桌每张4条腿,椅子每张6条腿。现在课桌和椅子共有42件,共有腿204条。课桌和椅子各有多少把?13.龟鹤同池,共有71只,脚数共有228只。龟、鹤各有几只?14.张老师和王老师带领50名学生到公园划船。他们租了大船和小船共11条,每条大船坐 6人,每条小船坐4人。每条船都坐满了人。他们租的大船和小船各多少只? 要答案的话,你把这个题目的前几个字复制到百度一搜,肯定有这道题的详解和答案! 非常方便! 例如第14题,就在百度上搜索“张老师和王老师带领50名学生到公园划船”。就OK了!给分啊!
Chen2023-06-30 08:43:002

鸡兔同笼应用题(带答案)

1.鸡兔同笼,上有头20个,下有脚48只。求鸡兔各多少只。解:假设全是鸡20*2=40(只)48-48=8(只)4-2=2(只)8/2=4(只)——————兔20-4=16只——————鸡这是我随便编的一个,需要的话再消息我!
小菜G的建站之路2023-06-30 08:43:002

小学鸡兔同笼类应用题

  小学鸡兔同笼类应用题   【含义】这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。   【数量关系】第一鸡兔同笼问题:   假设全都是鸡,则有   兔数=(实际脚数-2鸡兔总数)(4-2)   假设全都是兔,则有   鸡数=(4鸡兔总数-实际脚数)(4-2)   第二鸡兔同笼问题:   假设全都是鸡,则有   兔数=(2鸡兔总数-鸡与兔脚之差)(4+2)   假设全都是兔,则有   鸡数=(4鸡兔总数+鸡与兔脚之差)(4+2)   【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。   例1 长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?   解 假设35只全为兔,则   鸡数=(435-94)(4-2)=23(只)   兔数=35-23=12(只)   也可以先假设35只全为鸡,则   兔数=(94-235)(4-2)=12(只)   鸡数=35-12=23(只)   答:有鸡23只,有兔12只。   例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?   解 此题实际上是改头换面的鸡兔同笼问题。每亩菠菜施肥(12)千克与每只鸡有两个脚相对应,每亩白菜施肥(35)千克与每只兔有4只脚相对应,16亩与鸡兔总数相对应,9千克与鸡兔总脚数相对应。假设16亩全都是菠菜,则有   白菜亩数=(9-1216)(35-12)=10(亩)   答:白菜地有10亩。   例3 李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元。问作业本和日记本各买了多少本?   解 此题可以变通为鸡兔同笼问题。假设45本全都是日记本,则有   作业本数=(69-0.7045)(3.20-0.70)=15(本)   日记本数=45-15=30(本)   答:作业本有15本,日记本有30本。   例4 (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?   解 假设100只全都是鸡,则有   兔数=(2100-80)(4+2)=20(只)   鸡数=100-20=80(只)   答:有鸡80只,有兔20只。   例5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?   解 假设全为大和尚,则共吃馍(3100)个,比实际多吃(3100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以小换大,一个小和尚换掉一个大和尚可减少馍(3-1/3)个。因此,共有小和尚   (3100-100)(3-1/3)=75(人)   共有大和尚 100-75=25(人)   答:共有大和尚25人,有小和尚75人。
肖振2023-06-30 08:43:001
 1 2  下一页  尾页