菱形判定定理

菱形判定定理

菱形判定定理如下:1、一组邻边相等的平行四边形是菱形;2、对角线互相垂直的平行四边形是菱形;3、四条边均相等的四边形是菱形;4、对角线互相垂直平分的四边形;5、两条对角线分别平分每组对角的四边形;6、有一对角线平分一个内角的平行四边形。菱形是指在同一平面内,有一组邻边相等的平行四边形。菱形是轴对称图形,也是中心对称图形。首先四边都相等的四边形是菱形,然后两条对角线互相平行的平行四边形就是菱形,接下来一组邻边相等的平行四边形就是菱形,最后就是对角线互相垂直平分的就是菱形。菱形的性质:1、菱形具有平行四边形的一切性质;2、菱形的四条边都相等;3、菱形的对角线互相垂直平分且平分每一组对角;4、菱形是轴对称图形,对称轴有2条,即两条对角线所在直线;5、菱形是中心对称图形。
LuckySXyd2023-05-19 11:01:061

菱形判定定理

菱形判定定理(Determination of rhombus),数学定理,适用于数学几何、实际应用。① 四条边都相等的四边形是菱形。② 对角线互相垂直平分的平行四边形是菱形。③ 一组邻边相等的平行四边形是菱形。④ 对角线平分一组对角的平行四边形是菱形。注意:一组对角线平分一组对角的四边形不是菱形,也可能是筝形(有一条对角线所在直线为对称轴的四边形)菱形的判定1.有一组邻边相等的平行四边形是菱形。(菱形的定义)2.四条边都相等的四边形是菱形。3. 对角线互相垂直平分的平行四边形是菱形。
hi投2023-05-19 11:01:041