鸡兔同笼

四年级数学鸡兔同笼100道应用题(不含答案)

1.有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只? 2.一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时?3.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只?
CarieVinne 2023-06-30 08:42:591

帮我找一些鸡兔同笼的应用题,用方程计算

1、 鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只? 3、鸡兔同笼,头共35个,脚共94只,求鸡与兔各有多少个头? 4、在一个停车场上,停了汽车和摩托车一共32辆.其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子.求汽车和摩托车各有多少辆? 5、小华买了2元和5元纪念邮票一共34张,用去98元钱.求小华买了2元和5元的纪念邮票各多少张? 6、全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只? 7、张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只? 8、鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只? 9、小刚买回8分邮票和4分邮票共100张,共付出6.8元,问,小刚买回这两种邮票个多少张?各付出多少元? 10、东风小学有3名同学去参加数学竞赛,一份试卷共10道题,答对一题得10分,答错一道不但不得分,还要扣去3分,这3名同学都回答了所有的题目,小明得74分,小华得22分,小红得87分,他们三人共答对多少题? 11、在知识竞赛中,有10道判断题,评分规定:每答对一题得2分,答错一题要倒扣一分.小明同学虽然答了全部的题目,但最后只得了14分,请问,他答错了几题? 12、某运输队为超市运送暖瓶500箱,每箱装有6个暖瓶.已知每10个暖瓶的运费为5元,损坏一个的话不但不给运费还要陪成本10元,运后结算时,运输队共得1350元的运费.问、共损坏了多少只暖瓶?13、蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫16只,共有110条腿和14对翅膀.问,每种小鸟各几只? 14、螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀.现在这三种动物37只,共有250条腿和52对翅膀.每种动物各有多少只? 15、小东妈妈从单位领回奖金400元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张?16、小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等.这三种硬币各有多少枚?1. 某次数学竞赛共20道题,评分标准是:每做对一题得5分,每做错或不做一题扣1分.小华参加了这次竞赛,得了64分.问:小华做对几道题? 2. 鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚86只.问:鸡、兔各有几只? 3. 一只货船载重260吨,容积1000米3,现装运甲、乙两种货物,已知甲种货物每吨体积是8米3,乙种货物每吨体积2米3,要使这只船的载重量与容积得到充分利用,甲、乙两种货物应分别装多少吨? 4. 自行车越野赛全程 220千米,全程被分为 20个路段,其中一部分路段长14千米,其余的长9千米.问:长9千米的路段有多少个? 5. 有一群鸡和兔,腿的总数比头的总数的2倍多18只,兔有几只? 6. 如果被乘数增加15,乘数不变,积就增加180;如果被乘数不变,乘数增加4,那么积就增加120.原来两个数相乘的积是多少? 7. 编一本695页的故事书的页码,一共要用多少个数字?其中数字“5”用去了几个? 8. 编一本辞典一共用去了6889个数字,这本辞典共有几页? 9. 甲乙两人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分,每人各射10发,共命中14发,结算分数时,甲比乙多10分,问甲、乙各中几发? 10. 某次数学测验共20题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分,问他做对几题? 11. 有一辆货车运输2000只玻璃瓶,运费按到达时完好瓶子数目计算,每只2角,如有破损,破损1个瓶子还要倒赔1元,结果得到运费379.6元,问这次搬运中玻璃损坏了几只? 12. 鸡与兔共有200只,鸡的脚比兔的脚少56只,问鸡与兔各多少只? 13. 今有鸡兔共居一笼,已知鸡头与兔头共35个,鸡脚与兔脚共94只,问鸡兔各几只? 14. 蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和一对翅膀,现有这三种动物共21只,共140条腿和 23对翅膀,问蜘蛛、蝴蝶、蝉各有几只? 15. 12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张? 16. 鸡与兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只? 17. 班主任张老师带五年级(2)班50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵,问几名男生,几名女生? 18. 大油瓶一瓶装4千克,小油瓶2瓶装1千克.现有100千克油装了共60个瓶子.问大、小油瓶各多少个? 19. 红英小学三年级有3个班共135人,二班比一班多5人,三班比二班少7人,三个班各有多少人? 20. 刘老师带了41名同学去北海公园划船,共租了10条船.每条大船坐6人,每条小船坐4人,问大船、小船各租几条? 21. 有鸡兔共20只,脚44只,鸡兔各几只? 22. 小红的储钱罐里有面值2元和5元的人民币共65张,总钱数为205元,两种面值的人民币各多少张? 23. 现有大小油桶50个,每个大桶可装油4千克,每个小桶可装油2千克,大桶比小桶共多装油20千克,问大小桶各多少个? 24. 有两桶油共重86千克,假如从甲桶油倒入乙桶4千克,则两桶油的重量相同.这两桶油各有多少千克? 25. 瓷器商店委托搬运站运送800只花瓶,双方商定每只运费是0.35元,如果打破1只,不但不计运费,而且要赔偿2.50元,结果运到目的地后,搬运站共得运费268.6元,求打破了几只花瓶? 26. 学校举行运动会,三年级有35人参加比赛,四年级参加的人数是三年级的3倍,五年级参加的人数比三、四年级参加的总人数多10人,五年级参加比赛的有多少人? 27. 蓝墨水和红墨水,以前都是3角钱一瓶,王营小学每学期都花12元买若干瓶.现在每瓶蓝墨水涨价5分,每瓶红墨水涨价3分,虽然买的两种墨水瓶数还和各学期相等,但比每学期都多付1.8元.该校每学期买两种墨水各多少瓶? 28. 大院里养了三种动物,每只小山羊戴着3个铃铛,每只狮子狗戴着一个铃铛,大白鹅不戴铃铛.小明数了数,一共9个脑袋、28条腿、11个铃铛,三种动物各有多少只? 29. 小毛参加数学竞赛,共做20道题,得64分,已知做对一道得5分,不做得0分,错一题扣2分,又知道他做错的题和没做的一样多.问小毛做对几道题? 30. 赵传伦把一张50元和一张5元的人民币,兑换成了两元和5角的人民币共50张.他兑换了两种面额的人民币各多少张? 31. 幼儿园买来20张小桌和30张小凳共用去1860元,已知每张小桌比小凳贵8元,问小桌、小凳的价格各多少? 32. 动物园饲养的食肉动物分大型动物和小型动物两类,规定老虎、狮子一类的大动物每次喂肉每头三斤,狐狸、山猫一类小动物每三头喂一斤.该动物园共有这两类动物100头,每次需喂肉100斤,问大、小动物各多少? 33. 小张的存钱盒里有2角,5角和1元人民币20张,共12元,算一算三种面值的人民币各有多少张? 34. 鸡、兔共笼,鸡比兔多26只,足数共274只,问鸡、兔各几只? 35. 某电视机厂每天生产电视500台,在质量评比中,每生产一台合格电视机记5分,每生产一台不合格电视机扣18分.如果四天得了9931分,那么这四天生产了多少台合格电视机? 36. 六年二班全体同学,植树节那天共栽树180棵.平均每个男生栽5棵、每个女生栽3棵;又知女生比男生多4人,该班男生和女生各多少人? 37. 崔文符进山打猎,平均5枪打死两只兔子,9枪打死6只野鸡.他共放了25枪,获得猎物14只,两种动物各打死了几只? 鸡兔同笼应用题体详解(四个阶段) 鸡兔同笼问题(1)基础级 1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡、兔各多少只? 2.鸡兔同笼,头共20个,足共62只,求鸡与兔各有多少只? 3.在一个停车场上,停了汽车和摩托车一共32辆.其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子.求汽车和摩托车各有多少辆? 4.小华买了2元和5元纪念邮票一共34张,用去98元钱.求小华买了2元和5元的纪念邮票各多少张? 5.全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只? 6.张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只? 7.小刚买回8角分邮票和4角分邮票共100张,共付出68元,问,小刚买回这两种邮票个多少张?各付出多少元? 8.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆? 9.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件? 10.松鼠妈妈采松子,晴天每天采20个,雨天每天可采12个,它一连采了112个,平均每天采14个,这几天中有几天是雨天? 11.白兔妈妈采蘑菇,晴天每天可采24个,雨天每天可采16个.它一连几天采了168个蘑菇,平均每天采21个.求晴天时一共采了多少个蘑菇? 12.小王买了甲,乙两种电影票共20张,两种电影票的平均票价为每张26元,而甲种电影票实际票价为每张30元,乙种电影票实际票价为每张20元,求两种电影票各买了多少张? 鸡兔同笼问题(2)提高级 1.鸡兔同笼,鸡比兔多15只,鸡兔共有脚132只,问鸡兔各多少只? 2.鸡兔同笼,鸡兔共40个头,鸡脚比兔脚共多32只,问鸡兔各多少只? 3.鸡兔同笼,鸡比兔多10只,但鸡脚却比兔子少60只,问鸡兔各多少只? 4.鸡兔同笼,鸡比兔多10只,鸡脚比兔脚多10只,问鸡兔各多少只? 5.张大妈家养的鸡比兔多13只,兔足比鸡足少16只,求鸡兔各有多少只? 6.鹤龟同池,鹤比龟多12只,鹤龟足共72只,求鹤龟各有多少只? 7.鸡与兔共有110个头,但鸡的脚比兔的脚少20只,求鸡兔各有多少头? 8.鸡与兔共有110只脚,但鸡的头数比兔的少20个,求鸡兔各有多少头? 9.东湖小学六年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题倒扣3分.刘刚得了60分,则他做对了几题? 鸡兔同笼问题(3)难题级 1.蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫16只,共有110条腿和14对翅膀.问,每种昆虫各几只? 2.螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀.现在这三种动物37只,共有250条腿和52对翅膀.每种动物各有多少只? 3.有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿,蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀),三种动物各几只? 4.小东妈妈从单位领回奖金380元,其中有2元、5元、10元人民币共80张,且5元和10元的张数相等,试问,这三种人民币各有多少张? 5.甲,乙,丙三种练习本每本价钱分别为7角,3角,2角.三种练习本一共卖了47本,付了21元2角,买的乙种练习本的本数是丙种练习本本数的2倍.就三种练习本各买了多少本? 6.某校购买了大,中,小3种型号的投影仪共47台,他们的单价分别是700元,300元,200元,共支出21200元.已知中型投影仪的台数为小型投影仪台数的2倍,问购买了多少台大型投影仪? 7.有一元,五元和十元的人民币共14张,共计66元,其中一元的张数比十元的多2张.问三种人民币各多少张? 8.买一些4分和8分的邮票,共花6元8角.已知8分的邮票比4分的邮票多40张,那么两种邮票各买了多少张? 9.食品店上午卖出甲,乙,丙三种糖果共100千克,共收入2570元.甲种糖:20元/每千克,乙种糖:25元/每千克,丙种糖:30元/每千克,已知卖出的乙种糖和丙种糖共收入1970元,求丙种糖卖出了多少千克? 10.买来3角,5角,7角的邮票共400张,共用去192元,其中7角的和5角的邮票张数相等.求每种邮票各多少张? 11.学校组织新年晚会,买了奖品铅笔,圆珠笔和钢笔共232支,共花100元.其中铅笔的支数是圆珠笔支数的4倍.已知铅笔每支2角钱,圆珠笔每支9角,钢笔每支2元1角.问:三种笔各有多少支? 12.学校组织新年晚会,买了奖品铅笔,圆珠笔和钢笔共232支,共花300元.其中铅笔的支数是圆珠笔支数的4倍.已知铅笔每支6角钱,圆珠笔每支2元7角,钢笔每支6元3角.问:三种笔各有多少支? 鸡兔同笼问题(4)超难级 1.小华有1分、2分、5分的硬币共38枚,合计9角2分,已知1分与2分的硬币的枚数相等.这三种硬币各有多少枚? 2.100个馒头100个和尚吃,大和尚每人吃3个,小和尚3人吃一个,则大和尚有多少个?小和尚有多少个? 3.100个馒头100个和尚吃,大和尚每人吃4个,小和尚4人吃一个,则大和尚有多少个?小和尚有多少个? 4.大油瓶一瓶装4千克,小油瓶两瓶装1千克.现在100千克油装了60个瓶.求大,小油瓶各有多少个? 5.在很久很久以前,传说有九头一尾的九头鸟和九尾一头的九尾鸟.有一次这两种鸟栖息在树林里,一位猎人经过此地数了数,这两种鸟头共268个,尾332个,那么有九头鸟和九尾鸟各多少只? 6.某校数学竞赛,共有20道填空题.评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是69分,那么小英有几题没做? 7.某校数学竞赛,共有20道填空题.评分标准是:每做对1题得5分,做错1题倒扣3分,没做的一题得0分,小英的得分是72分,那么小英有几题没做? 8.某次数学抢答比赛共20题,做对一题得5分,做错一题倒扣2分,不做倒扣1分.小华得了74分,问他做对几题?答错几题?没答的有几题? 9.一件工程甲独做12天完成,乙独做18天完成,现在由甲先做若干天后,再由乙单独完成余下的任务,这样前后共用了16天,甲先做了多少天? 10.一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时? 11.鸡兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只,则鸡兔各有多少只? 12.鸡与兔共有220只脚,若原来所有的鸡都换成兔,所有的兔都换成鸡后,则脚只有212只,求原来鸡兔各有多少头?
拌三丝2023-06-30 08:42:591

鸡兔同笼问题的应用题

鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚和兔脚共94只。鸡、兔各有多少只?
gitcloud2023-06-30 08:42:596

鸡兔同笼应用题(带答案)

1.鸡兔同笼,上有头20个,下有脚48只.求鸡兔各多少只. 假设全是鸡 20*2=40(只) 48-48=8(只) 4-2=2(只) 8/2=4(只)——————兔 20-4=16只——————鸡 这是我随便编的一个,需要的话再消息我!
可桃可挑2023-06-30 08:42:591

鸡兔同笼应用题100道

1、四年级和六年级学生共120人给小树浇水.其中六年级学生1人提2桶水,四年级学生2人抬一桶水,他们一次浇水共180桶.四年级和六年级参加浇水的各有多少人?2.鸡兔同笼,上有头20个,下有脚48只.求鸡兔各多少只.3、 大小两辆汽车共同运216吨货物,小汽车运了7小时,大汽车运了8小时,已知小汽车5小时运的数量等于大汽车2小时运的数量,则大汽车每小时运多少吨?4、 笼子里有鸡兔共27只,兔脚比鸡脚多18只,问:有鸡兔各多少只?5、有182只兔子,把它们分别装在甲乙两种笼子里,甲种笼子每笼装6只,乙种笼子每笼装4只,两种笼子正好用36个,问:两种笼子个多少个?6、一个大人一餐吃2个面包,两个小孩一餐吃1个面包,现在有大人和小孩共99人,一餐刚好吃了99个面包,大人、小孩各有多少人?7、四年级共有52位同学参加植树,男生每人种3棵,女生每人种2棵,已知男生比女生多种36棵,求:有多少名男生?8、有面值分别为2元、5元、10元的邮票共34张,价值共计178元。其中5元与10元的邮票张数相等,问:各种面值的邮票各有多少张? 9、公园门票出售5元、8元、10元共100张,收入748元,其中5元和8元的张数相等。各种票售出多少张?10、犀牛、鹿、鸵鸟三种动物共有26个头,80只脚,20只角。犀牛有4只脚,1只角;鹿有4只脚,2只角,鸵鸟有2只脚。三种动物分别有多少只?1、鸡兔同笼,共100个头,320只脚,鸡有( )只、兔( )只。 2、小明计算20道竞赛题,做对一道得5分,做错一道倒扣3分。结果小明考得60分,小明做对了( )道题。3、松鼠妈妈采松子。晴天每天可以采20个,雨天每天可以采12个。它一连几天采了112个松子,平均每天采14个。这几天中有( )天下雨。4、个体户王小二承接了建筑公司一项运输1200块玻璃的业务,并签了合同。合同上规定:每块玻璃运费2元;如果运输过程中有损坏,每损坏一块,除了扣除一块的运费外,还要赔偿25元。王小二把这1200块玻璃运送到指定地点后,建筑公司按合同付给他2076元。运输过程中损坏了( )块。5、100名师生绿化校园,老师每人栽3棵树,学生每2人栽1棵,总共栽树100棵。老师栽树( )棵,学生栽树( )棵。6、30枚硬币由2分和5分组成,共值9角9分,2分硬币( )枚,5分硬币( )枚。7、某校数学竞赛,共有20道填空题。评分标准是每做对一题得5分,做错一题倒扣3分,某题没做该题得0分。小英结果得了69分,那小英有( )题没做。8、蜘蛛有8只脚,蜻蜓有6只脚和2对翅膀,蝉有6只脚和1对翅膀。现在这三种昆虫18只,共有118只脚和20对翅膀。蜘蛛有( )只,蜻蜓有( )只,蝉有( )只。9、甲、乙两人进行射击比赛,约定每中一发记20分,脱靶一发扣12分,两人各打10发,共得208分,其中甲比乙多64分,甲中了( )发,乙中了( )发。10、鸡、兔共有脚96只,若将鸡、兔互换,则有脚84只,鸡有( )只,兔有( )只。
西柚不是西游2023-06-30 08:42:581

如何用while循环做鸡兔同笼的问题?

while是循环流程控制,使用的标准格式为while(表达式){循环语句体;}说明:①while循环的表达式是循环进行的条件,用作循环条件的表达式中一般至少包括一个能够改变表达式的变量,这个变量称为循环变量②当表达式的值为真(非零)时,执行循环体;为假(0)时,则循环结束③当循环体不需要实现任何功能时,可以用空语句作为循环体④对于循环变量的初始化应在while语句之前进行,可以通过适当方式给循环变量赋初值如:var i,l,n,m:longint;beginn:=15;m:=15;while 2*n+4*m<>90 dobeginif 2*n+4*m>90then beginm:=m-1;n:=n+1;endelse beginm:=m+1;n:=n-1;end;end;writeln("ji:",m," tu:",n);end.
阿啵呲嘚2023-06-13 07:58:141

单变量求解鸡兔同笼

设兔为x只,则鸡有 总只数-x 只,则依 4x+2(总只数-x) = 总脚数 列方程解答
瑞瑞爱吃桃2023-06-10 07:42:532

小学6年级知识 百分数的应用题 。知识点,怎么列算试 鸡兔同笼问题 。 方程和比较难的题目

题目呢?
凡尘2023-05-29 09:40:445

出15道脱式计算 10道解比例,5道解方程 10道化简比,5道百分数应用题,5到鸡兔同笼应用题

10道解方程7(2x-1)-3(4x-1)=4(3x+2)-1; (5y+1)+ (1-y)= (9y+1)+ (1-3y);20%+(1-20%)(320-x)=320×40% 2(x-2)+2=x+1 2(x-2)-3(4x-1)=9(1-x) 11x+64-2x=100-9x 15-(8-5x)=7x+(4-3x) 3(x-7)-2[9-4(2-x)]=22 3/2[2/3(1/4x-1)-2]-x=2 25(x/3-x/2+2/5)-2=3/5(x-2/7)+4/910道解比例 1.38:60=x:302.25:40=x:603.11:50=x:1004.18:25=x:755.85:1664=x:61246.小明从家去图书馆,去时每小时行6千米,回来时每小时行9千米,来回共用3小时,小明来回共走了多少千米?7.甲出资金2400元,乙出资金4000元,合资经商得利润1700元,因甲特别劳累,先提取利润的十七分之一作酬劳,其余按本金比例分配.问甲、乙各得红利多少元(红利金额不包括酬劳金额)?8.一种商品,先降价20%,后又打九折,这时售价360元,商品原价多少元?9.我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周要多少小时?10.一个晒盐场用100克海水可以晒出3克盐.照这样计算,如果一块盐田一次放入585000吨海水,可以晒出多少吨盐?多少吨海水可以晒出9吨盐10道简便运算1.7456789-7456788+7456787-7456786+7456785-74567842.158+262+138 3.(181+2564)+2719 4.(375+1034)+(966+125)5.7755-(2187+755)6.2357-183-317-3577.32×(25+125)8.83×102-83×29.123×18-123×3+85×123 10.7300÷25÷4 10道化简比84分之162 8分之5 :2 2分之3 :3分之46.3:0.09 8分之1:0.75 0.25 :0.56 :2.5 15分之1 :5分之6 12:5/424:72 7/12:5/24
九万里风9 2023-05-28 21:47:101

数学广角鸡兔同笼论文

  鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。   数学广角鸡兔同笼论文篇一   教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。   2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。   3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。   教学重点:用假设法解决“鸡兔同笼”问题。   教学具准备:电脑课件   一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)   “有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”   二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)   1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。   2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。   同样方法演示全是5元的,再拿二元去替换也可以。   3.抽象算法(形成策略):   (32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。   三、类化巩固(自主练习)。   ①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”   先由学生小组讨论,在抽生上台展示算法:   假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。   同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。   ②自己出题,交换答案.   展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?   展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)   四、归纳提高:   解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).   五、知识拓展。   其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。   “鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”   六、 解决生活问题(达标测试):   1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。   ②小明买了6角和8角的邮票共花5元,分别买了多少张?   2.选作题:   ①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?   ②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?   反思   《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。   首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。   在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。   在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。   本堂课我力求做到了三动:身动、心动、神动.   随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。   数学广角鸡兔同笼论文篇二   在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。   “鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。   一、 《孙子算经》中的“雉兔同笼”   “鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)   其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:   第一步:上置三十五头,下置九十四足   我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)   古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。   如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。   第二步:半其足得四十七   意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。   图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。   第三步:上三除下三,上五除下五   这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)   用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)   第四步:下有一除上一,下有二除上二即得   与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)   以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。   二、 《算法统宗》中的“鸡兔同笼”   “鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)   其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:   第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。   第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。   第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。   第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。   第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。   第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。   另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。   《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:   (94-35×2)÷2=12(只)   第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:   (35×4-94)÷2=23(只)   这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。   《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”   数学广角鸡兔同笼论文篇三   【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。   【关键词】鸡兔同笼;解题思路;求解方法;数学思想   鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?   解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。   解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡   方程:   解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23   答:兔有12只,鸡有23只。   我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解   对于这个问题,我们给出如下几种求解方法,并给出相应的公式;   解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数   解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数   解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数   解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数   解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数   解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数   解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数   解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数   解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数   “鸡兔同笼”中的数学思想方法   一、化归思想   化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。   二、假设思想   假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。   用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。   三、方程思想   方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。   四、建模思想   弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。   以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。   参考文献:
九万里风9 2023-05-21 08:45:051

孙子算经鸡兔同笼问题是什么意思

对于这道题我一直有个疑惑 就是那个人既然能数出有几个头那他肯定能看到鸡兔的头 这样一来 那个人直接数有几个头不就行了么 干嘛要费那么大的事去算呢
此后故乡只2023-05-21 08:45:052

3.鸡兔同笼问题传到日本时就成了龟鹤算笼子里有一些龟和鹤从上面数

著名的鸡兔同笼问题在《孙子算经》著作中得到解决。《孙子算经》是中国古代重要的数学著作,成书大约在前四、前五世纪,也就是大约一千五百年前,作者生平和编写年不详。《孙子算经》共三卷。卷上叙述算筹记数的纵横相间制度和筹算乘除法,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。 用列方程的方法解决鸡兔同笼如下:鸡兔同笼是中国古代重要的数学著作《孙子算经》中的著名趣题,书中是这样叙述的:"今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?"这就是后世“鸡兔同笼”题的始祖,后来传到日本,称为“鹤龟算”。《孙子算经》里的鸡兔同笼问题的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有多少只鸡和兔?鸡兔同笼曾经是小学奥数里的常客,它不仅能提高学生分析问题和解题问题的能力,也能提高学生的学习兴趣。列方程法列方程法是初中生比较常用的解题方法,可列一元一次方程,也可列二元一次方程组。鸡兔同笼问题里含有两个等量关系:(1)鸡脚的总数+兔脚的总数=总脚数,(2)鸡的总头数+兔的总头数=总头数。若列一元一次方程,可设鸡的总头数为x头,那么兔的总头数为(35-x)头,根据脚数的等量关系可以列出方程2x+4(35-x)=94,解方程即可得出答案。若列方程组,可设兔有x只,鸡有y只,得到x+y=35和4x+2y=94两个方程,联立解方程组即可。
kikcik2023-05-21 08:45:051

我国古代的数学著作《孙子算经》里有一道名题“今有鸡兔同笼,上有35头,下有94足,问鸡兔各多少只?”

这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。《孙子算经》上的解法很巧妙,它是按公式:兔数 足数-头数来算的,具体计算是这样的:兔数 (只),鸡数=头数-免数=35-12=23,并且书中还给出了公式的来历:把足数除以2以后,每只鸡只剩下一足,每只兔剩下两足了,减去头数,就相当于每只鸡兔再减去一只,鸡足减完了,剩下的每只兔只有一足了,此时所剩足数恰好等于兔子头数.
善士六合2023-05-21 08:45:042

孙子算经 鸡兔同笼

鸡兔同笼是中国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中各有几只鸡和兔?   算这个有个最简单的算法。   (总脚数-总头数×2)÷2=兔子数 总头数-兔子数=鸡数
韦斯特兰2023-05-21 08:45:041

《孙子算经》中今有鸡兔同笼

九章算术里有不是孙子算经而是周髀算经中有所涉及
凡尘2023-05-21 08:45:032

孙子算经 鸡兔同笼古文,译文?

《孙子算经》约成书于四、五世纪,作者生平和编写年代都不清楚。现在传本的《孙子算经》共三卷。卷上叙述算筹记数的纵横相间制度和筹算乘除法则,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?   具有重大意义的是卷下第26题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:『二十三』”。
豆豆staR2023-05-20 22:10:087

孙子算法鸡兔同笼文言文

1. 孙子算经 鸡兔同笼古文,译文 《孙子算经》 约成书于四、五世纪,作者生平和编写年代都不清楚。现在传本的《孙子算经》共三卷。卷上叙述算筹记数的纵横相间制度和筹算乘除法则,卷中举例说明筹算分数算法和筹算开平方法。卷下第31题,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”。 书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 具有重大意义的是卷下第26题:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:『二十三』”。 2. 一个古代算术故事 一般人都知道我国有著名的《孙子兵法》,但不知道我国还有一部伟大的算术著作《孙子算经》.在我国古代数学名著《九章算术》《孙子算经》书中都记载有一个著名的算术故事,就是流传广泛的“鸡兔同笼”,可谓是后世“鸡兔同笼”题的始祖,后来传到日本,变成“鹤龟算”.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?正确答案是:鸡12 兔23(现在看来解法有多种啊!但那时是古代没有现代数学的计算方法)。 3. 鸡兔同笼算法 鸡兔同笼问题五种基本公式和例题讲解 【鸡兔问题公式】 (1)已知总头数和总脚数,求鸡、兔各多少: (总脚数-每只鸡的脚数*总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数; 总头数-兔数=鸡数。 或者是(每只兔脚数*总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数; 总头数-鸡数=兔数。 例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?” 解一 (100-2*36)÷(4-2)=14(只)………兔; 36-14=22(只)……………………………鸡。 解二 (4*36-100)÷(4-2)=22(只)………鸡; 36-22=14(只)…………………………兔。 (答 略) (2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 (每只鸡脚数*总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 或(每只兔脚数*总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。 (例略) (3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。 (每只鸡的脚数*总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。 或(每只兔的脚数*总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数; 总头数-鸡数=兔数。(例略) (4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式: (1只合格品得分数*产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。 或者是总产品数-(每只不合格品扣分数*总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。 例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。 每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?” 解一 (4*1000-3525)÷(4+15) =475÷19=25(个) 解二 1000-(15*1000+3525)÷(4+15) =1000-18525÷19 =1000-975=25(个)(答略) (“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费**元,破损者不仅不给运费,还需要赔成本**元……。 它的解法显然可套用上述公式。) (5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式: 〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数; 〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。 例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?” 解 〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2 =20÷2=10(只)……………………………鸡 〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2 =12÷2=6(只)…………………………兔(答略) 鸡兔同笼 目录 1总述 2假设法 3方程法 一元一次方程 二元一次方程 4抬腿法 5列表法 6详解 7详细解法 基本问题特殊算法习题 8鸡兔同笼公式 1总述 鸡兔同笼是中国古代的数学名题之一。 大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。 问笼中各有几只鸡和兔? 算这个有个最简单的算法。 (总脚数-总头数*鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数 (94-35*2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23) 解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了头数*2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再除以2就是兔子数。 虽然现实中没人鸡兔同笼。 2假设法 假设全是鸡:2*35=70(只) 鸡脚比总脚数少:94-70=24 (只) 兔:24÷(4-2)=12 (只) 鸡:35-12=23(只) 假设法(通俗) 假设鸡和兔子都抬起一只脚,笼中站立的脚: 94-35=59(只) 然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只) 兔:24÷2=12(只) 鸡:35-12=23(只) 3方程法 一元一次方程 解:设兔有x只,则鸡有(35-x)只。 4x+2(35-x)=94 4x+70-2x=94 2x=94-70 2x=24 x=24÷2 x=12 35-12=23(只) 或解:设鸡有x只,则兔有(35-x)只。 2x+4(35-x)=94 2x+140-4x=94 2x=46 x=23 35-23=12(只) 答:兔子有12只,鸡有23只。 注:通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。 二元一次方程 解:设鸡有x只,兔有y只。 x+y=35 2x+4y=94 (x+y=35)*2=2x+2y=70 (2x+2y=70)-(2x+4y=94)=(2y=24) y=12 把y=12代入(x+y=35) x+12=35 x=35-12(只) x=23(只)。 答:兔子有12只,鸡有23只 4抬腿法 法一 假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚。 笼子里的兔就比鸡的头数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。 法二 假如鸡与兔子都抬起两只脚,还剩下94-35*2=24只脚,这时鸡是 *** 坐在地。
陶小凡2023-05-20 22:10:081

我国古代的数学著作《孙子算经》里有一道名题“今有鸡兔同笼,上有35头,下有94足,问鸡兔各多少只?”

还有一种解法 不知对否,假设全是鸡,就是35*2=70条腿,(94-70)/兔子4条腿=6只兔子、35-6=29只鸡。假设全是兔子,就是35*4=140条腿,(140-94)/鸡2条腿=23只鸡、35-23=12只兔子。
gitcloud2023-05-20 22:10:083

我国古代数学名著《孙子算经》上有这样一道题;今有鸡兔同笼,上有35头,下有94足,问鸡兔个几头?【用方程】

鸡有23,兔有12
瑞瑞爱吃桃2023-05-20 22:10:082

孙子算经中的数学问题适今有鸡兔同笼上有30个头下有84足问鸡兔各合几

设鸡有x只,则2x +(30-x)×4=84x =18(只)兔=30-18=12(只)
此后故乡只2023-05-20 22:10:0715

孙子算经中的鸡兔同笼问题用方程怎样解决

先让兔子和鸡抬起俩条腿,
水元素sl2023-05-20 22:10:062

求一些数学定理,就是同余定理鸡兔同笼类的,急

所有的脚减二乘以所有只数的差除以二等于兔的只数再看看别人怎么说的。
人类地板流精华2023-05-19 11:00:333
 首页 上一页  1 2