回归分析中怎么排除协变量的影响,怎么去掉协变量~
拉入变量进入方程就行北营2023-06-11 08:50:462
回归分析中怎么排除协变量的影响,怎么去掉协变量~
协变量的本质含义就是对因变量有影响的变量,虽然它不是研究者研究的自变量,那既然对结果肯定有影响,那方程中就不能将其去掉,而是如何控制协变量之后看看自变量的影响。可以有两种方法,第一种,把协变量当做自变量进入方程,之后看自变量的回归系数,标准化的回归系数表示其他变量不变的情况下,因变量变化一个单位,自变量变化多少个单位;其次,可以考虑采用分层回归方法,第一层回归中只放入协变量,获得协变量的回归方程,第二层回归则加入自变量,看看新增自变量之后,方程的解释率是否发生显著变化,这种变化就是自变量的“净增影响”。以上是南心网SPSS及结构方程模型数据统计分析提供的专业解答小白2023-06-11 08:50:451
回归分析中怎么排除协变量的影响,怎么去掉协变量~
协变量的本质含义就是对因变量有影响的变量,虽然它不是研究者研究的自变量,那既然对结果肯定有影响,那方程中就不能将其去掉,而是如何控制协变量之后看看自变量的影响。可以有两种方法,第一种,把协变量当做自变量进入方程,之后看自变量的回归系数,标准化的回归系数表示其他变量不变的情况下,因变量变化一个单位,自变量变化多少个单位;其次,可以考虑采用分层回归方法,第一层回归中只放入协变量,获得协变量的回归方程,第二层回归则加入自变量,看看新增自变量之后,方程的解释率是否发生显著变化,这种变化就是自变量的“净增影响”。以上是南心网SPSS及结构方程模型数据统计分析提供的专业解答豆豆staR2023-06-11 08:50:431
在cox回归分析中协变量是等级资料的该怎样处理
协变量的本质含义就是对因变量有影响的变量,虽然它不是研究者研究的自变量,那既然对结果肯定有影响,那方程中就不能将其去掉,而是如何控制协变量之后看看自变量的影响。可以有两种方法,第一种,把协变量当做自变量进入方程,之后看自变量的回归系数,标准化的回归系数表示其他变量不变的情况下,因变量变化一个单位,自变量变化多少个单位;其次,可以考虑采用分层回归方法,第一层回归中只放入协变量,获得协变量的回归方程,第二层回归则加入自变量,看看新增自变量之后,方程的解释率是否发生显著变化,这种变化就是自变量的“净增影响”。Ntou1232023-06-11 08:50:421
spss方差分析 协变量
协变量只能是连续变量,年级变量是不符合这个前提假设的,你要排除年级的影响,可以先试试把年级当自变量,看看不同年级在各个因变量上是否有差异,没有的话那就是年级没影响,不用再做处理,若是有显著差异,那就要让有差异的各个年级的被试人数比较平均。另外可以考虑研究一下这个年级的变量和其他自变量的交互作用。康康map2023-06-11 08:50:421
在回归分析中如何去除协变量
协变量的本质含义就是对因变量有影响的变量,虽然它不是研究者研究的自变量,那既然对结果肯定有影响,那方程中就不能将其去掉,而是如何控制协变量之后看看自变量的影响。可以有两种方法,第一种,把协变量当做自变量进入方程,之后看自变量的回归系数,标准化的回归系数表示其他变量不变的情况下,因变量变化一个单位,自变量变化多少个单位;其次,可以考虑采用分层回归方法,第一层回归中只放入协变量,获得协变量的回归方程,第二层回归则加入自变量,看看新增自变量之后,方程的解释率是否发生显著变化,这种变化就是自变量的“净增影响”阿啵呲嘚2023-06-11 08:50:401
求教,协变量为分类变量能做协方差分析吗
不行的,要定量的善士六合2023-06-11 08:50:171
生存分析中部分协变量数据部分缺失怎么处理
缺失10%以下,不需处理,10-30%要进行填补墨然殇2023-06-11 08:50:101
spss的多因素方差分析中,怎么判断一个因素是否为协变量
协变量只能是连续变量,年级变量是不符合这个前提假设的,你要排除年级的影响,可以先试试把年级当自变量,看看不同年级在各个因变量上是否有差异,没有的话那就是年级没影响,不用再做处理,若是有显著差异,那就要让有差异的各个年级的被试人铁血嘟嘟2023-06-11 08:50:081
结构方程分析不显著但回归分析结果显著怎么办
结构方程是算显变量和潜变量的关系,普通意义上的回归是算显变量之间的关系,两者不一样,不用一起比较北营2023-06-11 08:49:301
进行2x2分组问卷调查,做问卷信度和效度分析时是全部数据合在一起分析还是任选一组,或者都要分析?
合在一起吧yibazu投在线2023-06-11 08:49:236
路径分析是什么
问题一:路径分析的步骤 路径分析的主要步骤是:①选择变量和建立因果关系模型。这是路径分析的前提。研究人员多用路径图形象地将变量的层次,变量间因果关系的路径、类型、结构等,表述为所建立的因果模型。下图是5个变量因果关系的路径。 图中带箭头的直线“→”连接的是具有因果关系的两个变量,箭头的方向与因果的方向相同;当两变量只有相关关系而无因果关系时,用弧线双向箭头表示。图中变量分为:a.外生变量。因果模型中只扮演因,从不扮演果的变量,是不受模型中其他变量影响的独立变量,如x1与 x2。b.内生变量。模型中既可为因又可为果的变量,其变化受模型中其他变量的影响,如x3、x4与x5。c.残差变量。来自因果模型之外的影响因变量的所有变量的总称,如e3、e4、e5。若变量间的关系是线性可加的,则图中的因果模型可用3个标准化多元线性回归方程表示: pij 称为由xj到xi的路径系数,它表示xj与xi间因果关系的强弱,即当其他变量均保持不变时,变量xj对变量xi的直接作用力的大小。pie称为残差路径系数,它表示所有自变量所不能解释的因变量的变异部分,其大小对于因果模型的确定有重要作用。②检验假设。路径分析要以下列假定为前提:a.变量间的因果关系是单向的,不具有反馈性,又称递归模型;b.变量间具有线性可加关系;c.变量具有等距以上测量尺度;d.所有误差均为随机的,外生变量无测量误差;e.所有内生变量的误差变量间及与内生变量有因果关系的所有自变量间无相关。当某些假定,如递归性或变量的测量尺度不满足时,要做适当的处理才能应用路径分析。③估计参数。首先计算路径系数与残差路径系数,然后计算两变量间相关系数rji。此外,要计算两变量间总因果作用力,包括变量xj对xi的直接作用力、xj经中间变量而对xi的间接作用力两部分。例如,上图的因果模型中,x1对x5的总作用力由直接作用力p51和间接作用力构成。这两部分作用力的大小可由两变量间的相关系数rij的分解得到。最后还要计算决定系数,它表示所有作用于xi的自变量所能解释xi变异量的比例。公式是: ④评估因果模型。评估的主要指标是:a. ,若太小,则要考虑是否需要增加新的自变量,以保证模型精度。b,一个理想的因果模应当很小,当它很大时,则有必要重新估计此因果路径也可由公计算。c.进行F检验。 式中Q为残差平方和,U为回归平方和,N为样本数,K为变量数,检验不显著时要修改模型。 路径分析是多元回归分析的延伸,与后者不同的是:①路径分析间的因果关系是多层次的,因果变量之间加入了中介变量,使路径分析模型较一般回归模型对于现实因果关系的描述更丰富有力。②路径分析不是运用一个而是一组回归方程,在分析时更应注意保证各方程式所含意义的一致性。 问题二:如何进行路径分析 您好,我目前想做一个路径分析,但不知道程序应该怎么写,也找不到相关资料。想跟您请教一下, 用Lisrel或是Sas怎么做呢? 我的外生变量很多(超过25个),包括一些个人背景的、家庭和同伴特征的,请问是否能通过主成分来缩减指标呢? 如果两个内生变量之间是相关的关系,那么在写方程时是否也要把相关关系写上呢? 庄主@2007-03-13: 为了便于其他读者的理解,我先交待一下路径分析 (path *** ysis) 的简单背景。 路径分析可以用作多种目的:一是将因变量之间有关系的的若干个回归模型整合在一个模型里,以助分析和表达的完整和简洁;二是在该整合模型中的各自变量对各因变量的“总影响”(total effects) 分解为“直接影响“(direct effects) 和“间接影响”(indirect effects),如果发现间接影响较大,那就有理论价值了(当然,如下所示,很难发现大的间接影响);三是通过直接影响和间接影响的比较来验证一个自变量是否为“中介变量”(mediating variable),即其直接影响不显著而间接影响显著(上面已说过,不容易发现间接影响、如果同时又要其直接影响不显著,那就更难了)。 如此看来,路径分析是个好东西(不好意思,赶了一回时髦)。其从1960年代兴起,1970-80年代已十分流行。我在Indiana念博士时,学院里的老师常用路径分析做研究。后来学了SEM(结构方程模型),才知道路径分析有“含测量误差”和“不含测量误差”两种。前者只研究自变量和因变量之间因果关系,即SEM中的structural model(结构模型)那部分(见图一),而后者则加上了各变量的CFA(验证性因子分析),也即SEM中的measurement model(测量模型)那部分(图二)。 如何写路径分析的指令(转载) 如何写路径分析的指令(转载) 好了,现在直接回答你的问题。问题1从字面上看,只涉及结构模型那部分,所以比较简单、容易。这种路径分析,不仅可以用LISREL、SAS或其它SEM软件,其实也可以用SPSS等通用统计软件,其结果是一样的。先说在SPSS中如何做。图一是我日前在“Confirmatory regression vs. hierarchical regression 一文中举的例子相仿(当时只用了三个公式,没有此图)。如前文中所说,因为该模型中有两个因变量(或内生变量,endogenous variables),所以需要建立两个回归模型,分别为公式一和二,其中变量名和系数名有些改动,系数分别记为b和g,是为了与LISREL用法一致,b表示一个内生变量(如W)对另一个内生变量(如Y)的影响、g表示一个外生变量(如X)对一个内生变量(如W或Y)的影响: Y = b0 + g1X + b2W (公式一) W = g0 +g2X (公式二) 在SPSS中,就按上述两个公式分别做一个回归分析。如果你习惯用SPSS指令的话,其syntax分别为: Regression Dependent=Y/Enter X, W. Regression Dependent=W/Enter X. 然后将两个回归分析所得到的回归系数填入图一,此时要用standardized Beta(即 B1、B2、G1分别为公式一和三中b1、b2、g1的标准化值),......>> 问题三:路径分析的介绍 路径分析是常用的数据挖据方法之一, 是一种找寻频繁访问路径的方法,它通过对Web服务器的日志文件中客户访问站点访问次数的分析,挖掘出频繁访问路径。LBS不仅需要能确定目标的地理位置,还需要能实现对地理环境的有效分析。网络分析是地理环境分析中的一个重要技术,包括最短路径分析、网络流分析等内容。在网络分析中,最短路径分析是最基本的,也是最关键的技术,一直是计算机科学、运筹学、交通工程学、地理信息学等学科的一个研究热点。如今,最短路径分析算法已经非常成熟,如以Dijkstra算法为代表的宽度搜索方法、动态规划方法等。 问题四:软件测试中路径分析法是什么 熟悉测试理论的人都知道,路径覆盖是白盒测试中一种很重要的方法,广泛应用于单元测试。那么基于路径覆盖的分析方法是不是只能应用于单元测试呢,能不能将其推而广之呢。一般而言,在单元测试中,路径就是指函数代码的某个分支,而实际上如果我们将软件系统的某个流程也看成路径的话,我们将可以尝试着用路径分析的方法来设计测试用例。采用路径分析的方法设计测试用例有两点好处:一是降低了测试用例设计的难度,只要搞清了各种流程,就可以设计出高质量的测试用例来,而不用太多测试方面的经验;二是在测试时间较紧的情况下,可以有的放矢的选择测试用例,而不用完全根据经验来取舍。下面就具体的介绍一下如何用路径分析的方法编写测试用例。 首先是将系统运行过程中所涉及到的各种流程图表化,可以先从最基本的流程入手,将流程抽象成为不同功能的顺序执行。在最基本流程的基础上再去考虑次要或者异常的流程,这样将各种流程逐渐细化,这样既可以逐渐加深对流程的理解,还可以将各个看似孤立的流程关联起来。完成所有流程的图表化后就完成了所有路径的设定。 找出了所有的路径,下面的工作就是给每条路径设定优先级,这样在测试时就可以先测优先级高的,再测优先级低的,在时间紧迫的情况下甚至可以考虑忽略一些低优先级的路径。优先级根据两个原则来选取:一是路径使用的频率,使用越频繁的优先级越高;二是路径的重要程度,如果失败对系统影响越大的优先级越高。将根据两个原则所分别得到的优先级相加就得到了整个路径的优先级。根据优先级的排序就可以更有针对性的进行测试。 为每条路径设定好优先级后,接下来的工作就是为每条路径选取测试数据,构造测试用例。一条路径可以对应多个测试用例,在选取测试数据时,可以充分利用边界值选取等方法,通过表格将各种测试数据的输入输出对应起来,这样就完成了测试用例的设计。 问题五:结构方程模型 和路径分析的区别,原理是否一样? 路径分析是结构方程模型的一部分,完整的结构方程模型包含两部分:1、测量模型,研究因子和指标的关系,也就是一般我们说的验证性因子分析;2、因果模型,也就是路径分析,研究的是因子之间的关系。另外提一下,狭义上的路径分析指的是把显变量直接当做潜变量的因果模型。 因此,结构方程模型和路径分析其实是概念与子概念的关系。他们所涉及的统计学原理自然是一样的,只不过如果是狭义上的路径分析,那么默认变量无测量误差,其计算的精确度及误差的控制是不如完整的结构方程模型的。 问题六:路径分析的最优路径分析模型 最优路径分析是地理网络分析中最常见的基本功能,也是LBS需要具备的功能。地理网络中的最优路径是指在地理网络中满足某些优化条件的一条路,包括距离最短或最长、通行时间最短、运输费用最低、行使最安全、容量最大等。 问题七:SPSS如何做路径分析 路径分析用amos,amos以前是spss的一个模块,现在分离出去了,要单独安装,现在出最新的spss21.0和amos21.0,先装spss,再装amos,装amos的时候还会提醒安装最新的.NET Framework,先装好就ok了。 SPSS AMOS 21.0是一款使用结构方程式,探索变量间的关系的软件 ,轻松地进行结构方程建模(SEM) 。快速创建模型以检验变量之间的相互影响及其原因,比普通最客服乘回归和探索性因子分析更进一步 。 Microsoft .NET Framework是用于Windows的新托管代码编程模型。它将强大的功能与新技术结合起来,用于构建具有视觉上引人注目的用户体验的应用程序,实现跨技术边界的无缝通信,并且能支持各种业务流程。 问题八:因果路径分析用什么软件 两款比较流行的软件是lisrel和Amos 问题九:如何做用户行为路径分析 用户行为一直是网站优化关注的重点,分析网站用户行为,对提高网站的转换率帮助很大,至少你知道用户需要什么,接下来你应该怎么去满足这些行为。目前几乎90%上的网站几乎都销售为主,无论是产品还是服务,都的为了销售。当然还有一些是需要用户参与网站的某些调查,但是一般专门为这些行为做的网站还是比较少, seo培训下面主要分析用户的购买行为。在做SEO的朋友当中,可能有50%不会卖东西,但是我相信100%的都会买,我们这里也是研究购买者的行为,所以每个人都很可以平等参与,从购买者的角度去分析。如果你对某一些方面的产品感兴趣。但是不知道拥有这种功能的产品名称甚至具体型号,这在营销专家来看,是属于“初级需求”,他们使用经济术语“需求” 来描述当一个购买者对某物质的需要,处于这一阶段的用户遇见了问题,但是不知道是否有相关产品或服务可以帮助他们解决;或者在很多方案中却不知道如何选择 (选择性需求);甚至是知道某一产品能解决自己的问题,正在需找某一喜好的品牌或适合自己的某一型号。这就是购买者行为。初级需求用户行为一个处于“初级需求”的用户,在他准备进入“选择性需求”之前,他可能正在努力寻找关于可以解决他目前问题的有效方法,这个时候他对产品并不敏感,而对信息特别喜好。mlhxueli 2023-06-11 08:49:191
两个变量做相关分析时显著,但在结构方程模型中路径系数不显著,怎么解释?
第一,双变量分析是显变量分析,结构方程模型中如果是潜变量分析,那就考虑了误差问题,因而,显著性会有差异。第二,双变量分析类似一元回归,而结构方程模型分析则类似多元回归。二者原理不一样。(南心网 SPSS回归与结构方程模型分析)CarieVinne 2023-06-11 08:49:121
做问卷调查一定要做信度与效度分析吗
对,必需的! 问卷调查往往只是整个项目的一个环节,在正确项目的目标下,一定会另有调查的可信度,有效分析来支持调查结果;无尘剑 2023-06-11 08:49:102
bit,sbit,sfr,sfr16这些数据类型是相对C语言的扩展,分析这些存储类型的特点,
反对和规划法规和合格后方豆豆staR2023-06-11 08:48:353
二阶验证性因子分析为什么运行后潜变量变的圈变红了
计算错误。二阶验证性因子分析运行后潜变量变的圈是绿色的,变红是计算错误导致的,需要重新计算。验证性因子分析是对社会调查数据进行的一种统计分析,它测试一个因子与相对应的测度项之间的关系是否符合研究者所设计的理论关系。拌三丝2023-06-11 08:47:401
如何用smartpls处理二阶潜变量之间的维度的分析
中介关系是根据变量间的箭头指向来反映的,因此,关键在于你的模型假定的中介路径是什么样的,而不在于是潜变量还是显变量。如果要研究维度间的中介关系,那么维度之间就要建立中介路径。(南心网 Amos中介效应分析)meira2023-06-11 08:47:341
什么叫探索性的因子分析?
探索性因子分析和验证性因子分析相同之处两种因子分析都是以普通因子分析模型作为理论基础,其主要目的都是浓缩数据,通过对诸多变量的相关性研究,可以用假想的少数几个变量(因子,潜变量)来表示原来变量(观测变量)的主要信息。探索性因子分析和验证性因子分析的差异之处1.基本思想不同探索性因子分析主要是为了找出影响观测变量的因子个数,以及各个因子和各个观测变量之间的相关程度,以试图揭示一套相对比较大的变量的内在结构。而验证性因子分析的主要目的是决定事前定义因子的模型拟合实际数据的能力,以试图检验观测变量的因子个数和因子载荷是否与基于预先建立的理论的预期一致。2.应用前提不同探索性因子分析没有先验信息,而验证性因子分析有先验信息。详情见:http://wenku.baidu.com/link?url=w_nw0aI0KN0XpL1SEmbOjjwxOeampOzKefUEg1aRzWG27Iep7kPTvDrKY-toinCbLgoHe0r4COCzymPwhgAj_5Pe6bv9Y0HBhOVzVSRqDTK豆豆staR2023-06-11 08:47:321
SPSS如何对潜变量进行分析呢?如果自变量或因变量中包含了潜变量,在SPSS中如何实现呢?谢谢谢谢谢谢
要用结构模型的哈hi投2023-06-11 08:47:072
什么是探索性因子分析和验证性因子分析?
探索性因子分析和验证性因子分析相同之处两种因子分析都是以普通因子分析模型作为理论基础,其主要目的都是浓缩数据,通过对诸多变量的相关性研究,可以用假想的少数几个变量(因子,潜变量)来表示原来变量(观测变量)的主要信息。探索性因子分析和验证性因子分析的差异之处1.基本思想不同探索性因子分析主要是为了找出影响观测变量的因子个数,以及各个因子和各个观测变量之间的相关程度,以试图揭示一套相对比较大的变量的内在结构。而验证性因子分析的主要目的是决定事前定义因子的模型拟合实际数据的能力,以试图检验观测变量的因子个数和因子载荷是否与基于预先建立的理论的预期一致。2.应用前提不同探索性因子分析没有先验信息,而验证性因子分析有先验信息。详情见:http://wenku.baidu.com/link?url=w_nw0aI0KN0XpL1SEmbOjjwxOeampOzKefUEg1aRzWG27Iep7kPTvDrKY-toinCbLgoHe0r4COCzymPwhgAj_5Pe6bv9Y0HBhOVzVSRqDTKmeira2023-06-11 08:47:061
结构方程模型,CFA,路径分析,潜变量调节模型这几个是什么关系
SEM就是输入相关矩阵或协方差矩阵,结合1个或多个构想的可能模型,统计软件(如Mplus、Lisrel)帮你算出拟合指数,输出各路径参数、拟合指数等,可以用于修正和比较模型。想了解SEM推荐侯杰泰老师的《结构方程模型及其应用》(现在不再版,只有影印版) 。CFA也是SEM(结构方程模型)的一种,但不是完整SEM;路径分析也是SEM的一个特例,但前者是对显变量,后者对潜变量。实际上SEM是很多统计方法(如t检验、方差分析、回归分析等)的特例,而SEM具有更准确的误差估计和信度指标。因为CFA可以检验量表结构,所以往往先做CFA,如果拟合不好,说明量表信效度不高,就难以做之后的分析。中介和调节检验有不同的方法,可以基于SEM对潜变量做分析,也可以化潜为显做层次回归(用SPSS)。要了解中介和调节,推荐温忠麟老师的文章,比如05年发在《心理学报》上的《调节效应与中介效应的比较和应用》,温忠麟老师的书《调节效应与中介效应分析》。看到你的标签里有“家庭关系”,你是做发展教育方向的吧!你所说的这些:SEM、中介调节都是统计前沿,发展教育也用得很多,但建议先多阅读文章和书,了解了原理再使用。豆豆staR2023-06-11 08:47:061
潜变量与显变量之间能做路径分析吗?应该用什么软件呢?
路径分析是结构方程模型的一部分,完整的结构方程模型包含两部分:1、测量模型,研究因子和指标的关系,也就是一般我们说的验证性因子分析;2、因果模型,也就是路径分析,研究的是因子之间的关系。另外提一下,狭义上的路径分析指的是把显变量直接当做潜变量的因果模型。因此,结构方程模型和路径分析其实是概念与子概念的关系。他们所涉及的统计学原理自然是一样的,只不过如果是狭义上的路径分析,那么默认变量无测量误差,其计算的精确度及误差的控制是不如完整的结构方程模型的。余辉2023-06-11 08:47:011
什么是潜变量分析法?最好举例说明
分析潜变量与观测变量之间的关系对等问题(潜变量即潜在结构)韦斯特兰2023-06-11 08:46:581
分析潜变量最少几个维度
回答:一般一个潜变量最少需要3个指标,为什么,因为3个指标的时候模型是恰好识别的,参数刚好能够求到唯一解NerveM 2023-06-11 08:46:581
如何用smartpls处理二阶潜变量之间的维度的分析
常见的PLS二阶factor处理方式 1. 利用平均数,作为二阶的indicator factor 2. 利用主成分分析的结果,作为二阶的基础 3. 执行两次一阶的factor,画在一起成为二阶。ardim2023-06-11 08:46:493
如何用spss做潜变量间的相关分析
用spss菜单中Analyze中的correlat,再选择提示框中Spearman和Kendall"s tau_b可桃可挑2023-06-11 08:46:451
复变函数,实分析,复分析,数学分析是什么关系
数学分析按术语来讲是个大类,自然包含了实分析和复分析。国内很多名叫《数学分析》的教材其实是基础的微积分加上一些拓展。实分析是对实数域上的函数的分析(比如利用Lebesgue measure对函数进行积分等等)。同理复分析是在复数域上的函数的分析(比如函数是否analytic等等)。复变函数是自变量含有复变量/复数的函数(以上皆为粗略简介,深入会有很多内容,建议参考阅读 stein 的 complex analysis,还有Folland 的 Real analysis,都是实分析和复分析很好的入门教材)meira2023-06-11 08:36:401
数学中的复分析是指什么?
建立在复变量函数基础上的一套分析学康康map2023-06-11 08:36:372
举出生活中包含变量的例子,分析变量之间的关系
举例:用碗吃你能吃两碗饭,如果你把两碗饭倒进一个桶里吃.表面现象是饭的重量没变.但是,你变成一个饭桶了......meira2023-06-11 08:32:453
相关分析与回归分析的联系与区别是什么?
满意回答: 回归分析与相关分析的联系ue008研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题ue007需进行直线相关和回归分析。从研究的目的来说ue007若仅仅为了了解两变量之间呈直线关系的密切程度和方向ue007宜选用线性相关分析ue009若仅仅为了建立由自变量推算因变量的直线回归方程ue007宜选用直线回归分析。从资料所具备的条件来说ue007作相关分析时要求两变量都是随机变量ue005如ue008人的身长与体重、血硒与发硒ue006ue009作回归分析时要求因变量是随机变量ue007自变量可以是随机的ue007也可以是一般变量(即可以事先指定变量的取值ue007如ue008用药的剂量)。 在统计学教科书中习惯把相关与回归分开论述ue007其实在应用时ue007当两变量都是随机变量时ue007常需同时给出这两种方法分析的结果ue009另外ue007若用计算器实现统计分析ue007可用对相关系数的检验取代对回归系数的检验,这样到了化繁为简的目的。 回归分析和相关分析都是研究变量间关系的统计学课题ue007它们的差别主要是ue008 1、在回归分析中ue007y被称为因变量ue007处在被解释的特殊地位ue007而在相关分析中ue007x与y处于平等的地位ue007即研究x与y的密切程度和研究y与x的密切程度是一致的ue009 2、相关分析中ue007x与y都是随机变量ue007而在回归分析中ue007y是随机变量ue007x可以是随机变量ue007也可以是非随机的ue007通常在回归模型中ue007总是假定x是非随机的ue009 3、相关分析的研究主要是两个变量之间的密切程度ue007而回归分析不仅可以揭示x对y的影响大小ue007还可以由回归方程进行数量上的预测和控制。 回归分析和相关分析的区别回归分析和相关分析是互相补充、密切联系的ue007相关分析需要回归分析来表明现象数量关系的具体形式ue007而回归分析则应该建立在相关分析的基础上。 主要区别有:一,在回归分析中,不仅要根据变量的地位,作用不同区分出自变量和因变量,把因变量置于被解释的特殊地位,而且以因变量为随机变量,同时总假定自变量是非随机的可控变量.在相关分析中,变量间的地位是完全平等的,不仅无自变量和因变量之分,而且相关变量全是随机变量. 二,相关分析只限于描述变量间相互依存关系的密切程度,至于相关变量间的定量联系关系则无法明确反映.而回归分析不仅可以定量揭示自变量对应变量的影响大小,还可以通过回归方程对变量值进行预测和控制. 相关分析和回归分析是极为常用的2种数理统计方法ue007在科学研究领域有着广泛的用途。然而ue007由于这2种数理统计方法在计算方面存在很多相似之处ue007且在一些数理统计教科书中没有系统阐明这2种数理统计方法的内在差别ue007从而使一些研究者不能严格区分相关分析与回归分析。 最常见的错误是:用回归分析的结果解释相关性问题。例如ue007作者将“回归直线ue005曲线ue006图”称为“相关性图”或“相关关系图”ue009将回归直线的R2(拟合度ue007或称“可决系数”)错误地称为“相关系数”或“相关系数的平方”ue009根据回归分析的结果宣称2个变量之间存在正的或负的相关关系。相关分析与回归分析均为研究2个或多个变量间关联性的方法ue007但2种数理统计方法存在本质的差别ue007即它们用于不同的研究目的。相关分析的目的在于检验两个随机变量的共变趋势ue005即共同变化的程度ue006ue007回归分析的目的则在于试图用自变量来预测因变量的值。 在相关分析中ue007两个变量必须同时都是随机变量ue007如果其中的一个变量不是随机变量ue007就不能进行相关分析ue007这是相关分析方法本身所决定的。对于回归分析ue007其中的因变量肯定为随机变量ue005这是回归分析方法本身所决定的ue006ue007而自变量则可以是普通变量ue005有确定的取值ue006也可以是随机变量。 如果自变量是普通变量ue007即模型Ⅰ回归分析ue007采用的回归方法就是最为常用的最小二乘法。如果自变量是随机变量ue007即模型Ⅱ回归分析ue007所采用的回归方法与计算者的目的有关。在以预测为目的的情况下ue007仍采用“最小二乘法”ue005但精度下降—最小二乘法是专为模型Ⅰ设计的ue007未考虑自变量的随机误差ue006ue009在以估值为目的ue005如计算可决系数、回归系数等ue006的情况下ue007应使用相对严谨的方法ue005如“主轴法”、“约化主轴法”或“Bartlett法”ue006。显然ue007对于回归分析ue007如果是模型Ⅱ回归分析ue007鉴于两个随机变量客观上存在“相关性”问题ue007只是由于回归分析方法本身不能提供针对自变量和因变量之间相关关系的准确的检验手段ue007因此ue007若以预测为目的ue007最好不提“相关性”问题ue009若以探索两者的“共变趋势”为目的ue007应该改用相关分析。如果是模型Ⅰ回归分析ue007就根本不可能回答变量的“相关性”问题ue007因为普通变量与随机变量之间不存在“相关性”这一概念ue005问题在于ue007大多数的回归分析都是模型Ⅰ回归分析ue004ue006。此时ue007即使作者想描述2个变量间的“共变趋势”而改用相关分析ue007也会因相关分析的前提不存在而使分析结果毫无意义。 需要特别指出的是ue007回归分析中的R2在数学上恰好是Pearson积矩相关系数r的平方。因此ue007这极易使作者们错误地理解R2的含义ue007认为R2就是“相关系数”或“相关系数的平方”。问题在于ue007对于自变量是普通变量ue005即其取值有确定性的变量ue006、因变量为随机变量的模型Ⅰ回归分析ue0072个变量之间的“相关性”概念根本不存在ue007又何谈“相关系数”呢ue00a更值得注意的是ue007一些早期的教科书作者不是用R2来描述回归效果ue005拟合程度ue007拟合度ue006的ue007而是用Pearson积矩相关系数r来描述。这就更容易误导读者。 随机变量: random variable 定义ue008在一定范围内以一定的概率分布随机取值的变量。 随机变量ue005random variableue006表示随机现象ue005在一定条件下ue007并不总是出现相同结果的现象称为随机现象ue006各种结果的变量ue005一切可能的样本点ue006。例如某一时间内公共汽车站等车乘客人数ue007电话交换台在一定时间内收到的呼叫次数等等ue007都是随机变量的实例。性质:不确定性和随机性: 随机变量在不同的条件下由于偶然因素影响ue007其可能取各种不同的值ue007具有不确定性和随机性ue007但这些取值落在某个范围的概率是一定的ue007此种变量称为随机变量。随机变量可以是离散型的ue007也可以是连续型的。如分析测试中的测定值就是一个以概率取值的随机变量ue007被测定量的取值可能在某一范围内随机变化ue007具体取什么值在测定之前是无法确定的ue007但测定的结果是确定的ue007多次重复测定所得到的测定值具有统计规律性。随机变量与模糊变量的不确定性的本质差别在于ue001后者的测定结果仍具有不确定性ue001即模糊性。 关于线性回归的问题。为什么一元线性回归的判定系数等于相关系数的平方ue003从各自的公式上看不存在这个关系难道只是数值近似ue003求推导。 满意回答 其实是关系是这样的ue002相关系数的值=判定系数的平方根ue001符号与x的参数相同。只是你没发现而已。他们用不同的表达式表达出来了。所以不能一眼看出来ue001推导有些复杂。 但是ue001他们在概念上有明显区别ue001相关系数建立在相关分析基础之上ue001研究两个变量之间的线性相关关系。而判定系数建立在回归分析基础之上ue001研究一个随机变量对别一个随机变量的解释程度。 一元回归分析中的决定系数 spss 一元回归分析结果解读 我运用SPSS软件对自变量和因变量进行了回归分析ue001得到以下结果ue002 R=0.378 ADJUSTED R SQUARE=0.058 STD.ERROR OF ESTIMATE=2.51 F=1.672SIG=0.225 bete=-3.78 t=-1.293 这些都是什么意思啊ue003 18:40 满意回答 R是自变量与因变量的相关系数ue001从r=0.378来看ue001相关性并不密切ue001是否相关性显著由于缺乏sig值无法判断。 R square就是回归分析的决定系数ue001说明自变量和因变量形成的散点与回归曲线的接近程度ue001数值介于0和1之间ue001这个数值越大说明回归的越好ue001也就是散点越集中于回归线上。从你的结果来看ue001R2 = 0.058ue001说明回归的不好。 Sig值是回归关系的显著性系数ue001当他<= 0.05的时候ue001说明回归关系具有统计学支持。如果它> 0.05ue001说明二者之间用当前模型进行回归没有统计学支持ue001应该换一个模型来进行回归。其它的ue003不懂ue001我也不看他们。 总之ue001你的回归不好ue001建议换一个模型。 变量之间是非线性的ue004有必要求相关系数吗? 如题ue004要分析变量Z分别与变量X、Y之间的相关关系ue004但是Z与X的散点图呈非线性ue004Z与Y的散点图呈线性ue004我需要比较X、Y两个变量对Z产生的影响。那么分别求Z与X、Z与Y的相关关系数还有意义吗ue007 回答:当研究ue005因变量z与自变量x、y之间的相关关系时ue004应当利用偏相关系数和复相关系数ue005若z是x,y的函数:z =z(x,y) 1.偏相关系数ue005在z中去掉y的影响ue004算出对x的相关系数ue004就是z对x的偏相关系数ue002由于过程复杂仅简单说一下ue003ue004在z中去掉x的影响ue004算出对y的相关系数ue004就是z对y的偏相关系数。如果这两个偏相关系数的绝对值都接近1ue004表明ue005x、y对z有显著的影响ue006若z对x的偏相关值大ue004对y的值小ue004那么ue004x对z的影响大ue004y对z的影响小。 2.复相关系数ue005在z中去掉噪声ue002全部的除x、y之外的一切干扰ue003ue004算出的相关系数叫复相关系数ue004它的值接近于1表明ue005x、y是对z的主要影响因素ue004除此之外的因素很小。 3.总体判断可用复相关系数ue004个别判断可用偏相关系数 4.对多元函数做相关分析时ue004简单的相关系数作用不大了ue004得采用复、偏相关系数分析。 回答:一般来说ue004生活中各个变量之间的关系没有严格的线性。而相关系数就是说明近似线性的程度。所以有必要求相关系数ue004再判断两个变量之间的关系是否可以看成是近似线性的。所以ue004是有意义的。但是如果完全呈非线性ue004可以一眼看出来ue004那么求不求都无所谓了。 复相关系数定义 一个要素或变量同时与几个要素或变量之间的相关关系。 复相关系数是度量复相关程度的指标ue004它可利用单相关系数和偏相关系数求得。复相关系数越大ue004表明要素或变量之间的线性相关程度越密切。 复相关系数(多重相关系数)ue005多重相关的实质就是Y的实际观察值与由p个自变量预测的值的相关。 前面计算的确定系数是Y与相关系数的平方ue004那么复相关系数就是确定系数的平方根。 复相关系数的计算 复相关系数是测量一个变量与其他多个变量之间线性相关程度的指标。它不能直接测算ue004只能采取一定的方法进行间接测算。 为了测定一个变量y与其他多个变量X1,X2,...,Xk之间的相关系数ue004可以考虑构造一个关于X1,X2,...,Xk的线性组合ue004通过计算该线性组合与y之间的简单相关系数作为变量y与X1,X2,...,Xk之间的复相关系数。 如何消除多重共线性从而计算因变量和各个自变量之间相关系数? 回答:消除多重共线性的方法ue0051.逐步回归ue0042.主成分回归ue0043.零回归~Chen2023-06-11 08:32:364
回归分析和相关分析的关系是
回归分析和相关分析的关系是:回归分析可用于估计和预测、回归分析中自变量和因变量可以互相推导并进行预测、相关分析是研究变量之间的相互依存关系和密切程度。一、回归分析和相关分析的联系和区别回归分析和相关分析有着密切的联系,它们不仅具有共同的研究对象,而且在具体应用时,常常必须互相补充。相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。相关分析与回归分析之间在研究目的和方法上是有明显区别的。相关分析研究变量之间相关的方向和相关的程度。但是相关分析不能指出变量间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况。回归分析则是研究变量之间相互关系的具体形式,它对具有相关关系的变量之间的数量联系进行测定,确定一个相关的数学方程式,根据这个数学方程式可以从已知量来推测未知量,从而为估算和预测提供了一个重要的方法。二、回归分析和相关分析的联系相关分析是回归分析的基础和前提,回归分析是相关分析的深入和延续。二者有共同的研究对象,在具体应用时,常常必须互相补充。相关分析需要依靠回归分析来表明现象数量相关的具体形式,而回归分析则需要依靠相关分析来表明现象数量变化的相关程度。只有当变量之间存在着高度相关时,进行回归分析寻求其相关的具体形式才有意义。三、回归分析的优点与缺点优点:1.表明自变量和因变量之间的显著关系;2.表明多个自变量对一个因变量的影响强度。它也允许去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。缺点:算法相对简单。u投在线2023-06-11 08:32:351
因子分析法的模型
因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。因子分析模型描述如下:⑴X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。⑵F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。⑶e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:x1 = a11F1+ a12F2 +…+a1mFm + e1x2 = a21F1+a22F2 +…+a2mFm + e2………xp = ap1F1+ ap2F2 +…+apmFm + ep称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。其矩阵形式为:x =AF + e .其中:x=,A=,F=,e=这里,⑴m £ p;⑵Cov(F,e)=0,即F和e是不相关的;⑶D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1;D(e)=,即e1,e2,…,ep不相关,且方差不同。我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。肖振2023-06-11 08:32:311
因子分析中参数估计的方法?正交因子模型需要满足的条件?有斜交因子模型吗
1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法.它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子.对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量. 因子分析的基本思想: 把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子 因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现). (2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的. (3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型: x1 = a11F1+ a12F2 +…+a1mFm + e1 x2 = a21F1+a22F2 +…+a2mFm + e2 ……… xp = ap1F1+ ap2F2 +…+apmFm + ep 称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型. 其矩阵形式为: x =AF + e . 其中: x=,A=,F=,e= 这里, (1)m £ p; (2)Cov(F,e)=0,即F和e是不相关的; (3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1; D(e)=,即e1,e2,…,ep不相关,且方差不同. 我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子. A = (aij),aij为因子载荷.数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性. 2. 模型的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量.公共因子的含义,必须结合具体问题的实际意义而定.e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的.模型中载荷矩阵A中的元素(aij)是为因子载荷.因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度.可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(aij£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大.为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献. 因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度.它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响.hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大. 将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献.gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标.gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大.如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子. 3. 因子旋转 建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析.如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子. 旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法.最常用的方法是最大方差正交旋转法(Varimax).进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小.因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转.常用的斜交旋转方法有Promax法等. 4.因子得分 因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价.例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等.这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分. 设公共因子F由变量x表示的线性组合为: Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m 该式称为因子得分函数,由它来计算每个样品的公共因子得分.若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究. 但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计.估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法. (1)回归估计法 F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X ). (2)Bartlett估计法 Bartlett估计因子得分可由最小二乘法或极大似然法导出. F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X (3)Thomson估计法 在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有: F = XR-1A¢ = X (X ¢X+W)-1A¢ 这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为: F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢ 5. 因子分析的步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释.因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题的. (i)因子分析常常有以下四个基本步骤: (1)确认待分析的原变量是否适合作因子分析. (2)构造因子变量. (3)利用旋转方法使因子变量更具有可解释性. (4)计算因子变量得分. (ii)因子分析的计算过程: (1)将原始数据标准化,以消除变量间在数量级和量纲上的不同. (2)求标准化数据的相关矩阵; (3)求相关矩阵的特征值和特征向量; (4)计算方差贡献率与累积方差贡献率; (5)确定因子: 设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标; (6)因子旋转: 若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义. (7)用原指标的线性组合来求各因子得分: 采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分. (8)综合得分 以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数. F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm ) 此处wi为旋转前或旋转后因子的方差贡献率. (9)得分排序:利用综合得分可以得到得分名次. 在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题: · 简化系统结构,探讨系统内核.可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响.“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核. · 构造预测模型,进行预报控制.在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的.在多元分析中,用于预报控制的模型有两大类.一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术.另一类是描述性模型,通常采用聚类分析的建模技术. · 进行数值分类,构造分类模式.在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类.以便找出它们之间的联系和内在规律性.过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征.进行数值分类,构造分类模式一般采用聚类分析和判别分析技术. 如何选择适当的方法来解决实际问题,需要对问题进行综合考虑.对一个问题可以综合运用多种统计方法进行分析.例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际. Rotated Component Matrix,就是经转轴后的因子负荷矩阵, 当你设置了因子转轴后,便会产生这结果. 转轴的是要得到清晰的负荷形式,以便研究者进行因子解释及命名. SPSS的Factor Analysis对话框中,有个Rotation钮,点击便会弹出Rotation对话框, 其中有5种因子旋转方法可选择: 1.最大变异法(Varimax):使负荷量的变异数在因子内最大,亦即,使每个因子上具有最高载荷的变量数最少. 2.四次方最大值法(Quartimax):使负荷量的变异数在变项内最大,亦即,使每个变量中需要解释的因子数最少. 3.相等最大值法(Equamax):综合前两者,使负荷量的变异数在因素内与变项内同时最大. 4.直接斜交转轴法(Direct Oblimin):使因素负荷量的差积(cross-products)最小化. 5.Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴.因子负荷量取2,4,6次方以产生接近0但不为0的值,藉以找出因子间的相关,但仍保有最简化因素的特性. 上述前三者属於「直交(正交)转轴法」(Orthogonal Rotations),在直交转轴法中,因子与因子之间没有相关,因子轴之间的夹角等於90 ufa01.后两者属於「斜交转轴」(oblique rotations),表示因子与因子之间彼此有某种程ufa01的相关,因素轴之间的夹角uf967是90ufa01. 直交转轴法的优点是因子之间提供的讯息uf967会重叠,受访者在某一个因子的分uf969与在其他因子的分uf969,彼此独uf9f7互uf967相关;缺点是研究迫使因素之间uf967相关,但这种情况在实际的情境中往往并不常存在.至於使用何种转轴方式,须视乎研究题材、研究目的及相关理论,由研究者自行设定. 在根据结果解释因子时,除了要看因子负荷矩阵中,因子对哪些变量呈高负荷,对哪些变量呈低负荷,还须留意之前所用的转轴法代表的意义. 2,主成分分析(principal component analysis) 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法.又称主分量分析.在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息.但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性.人们自然希望变量个数较少而得到的信息较多.在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠.主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息.主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形.信息的大小通常用离差平方和或方差来衡量. (1)主成分分析的原理及基本思想. 原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法. 基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标.通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标.最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多.因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分.如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分. (2)步骤 Fp=a1mZX1+a2mZX2+……+apmZXp 其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵∑的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]. A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 . 进行主成分分析主要步骤如下: 1. 指标数据标准化(SPSS软件自动执行); 2. 指标之间的相关性判定; 3. 确定主成分个数m; 4. 主成分Fi表达式; 5. 主成分Fi命名; 选用以上两种方法时的注意事项如下: 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合. 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差. 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设.因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关. 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子. 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同.在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分.和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势.大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释.而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析.当然,这中情况也可以使用因子得分做到.所以这中区分不是绝对的. 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的.主成分分析一般很少单独使用:a,了解数据.(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化.(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性. 在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分). (1)了解如何通过SPSS因子分析得出主成分分析结果.首先,选择SPSS中Analyze-Data Reduction-Factor…,在Extraction…对话框中选择主成分方法提取因子,选择好因子提取个数标准后点确定完成因子分析.打开输出结果窗口后找到Total Variance Explained表和Component Matrix表.将Component Matrix表中第一列数据分别除以Total Variance Explained表中第一特征根值的开方得到第一主成分表达式系数,用类似方法得到其它主成分表达式.打开数据窗口,点击菜单项的Analyze-Descriptive Statistics-Descriptives…,在打开的新窗口下方构选Save standardized values as variables,选定左边要分析的变量.点击Options,只构选Means,点确定后既得待分析变量的标准化新变量. 选择菜单项Transform-Compute…,在Target Variable中输入:Z1(主成分变量名,可以自己定义),在Numeric Expression中输入例如:0.412(刚才主成分表达式中的系数)*Z人口数(标准化过的新变量名)+0.212*Z第一产业产值+…,点确定即得到主成分得分.通过对主成分得分的排序即可进行各个个案的综合评价.很显然,这里的过程分为四个步骤: Ⅰ.选主成分方法提取因子进行因子分析. Ⅱ.计算主成分表达式系数. Ⅲ.标准化数据. Ⅳ.计算主成分得分. 我们的程序也将依该思路开发. (2)对为何要将Component Matrix表数据除以特征根开方的解释 我们学过主成分分析和因子分析后不难发现,原来因子分析时的因子载荷矩阵就是主成分分析特征向量矩阵乘以对应特征根开方值的对角阵.而Component Matrix表输出的恰是因子载荷矩阵,所以求主成分特征向量自然是上面描述的逆运算. 成功启动程序后选定分析变量和主成分提取方法即可在数据窗口输出得分和在OUTPUT窗口输出主成分表达式. 3,聚类分析(Cluster Analysis) 聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 . 在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作. 4.判别分析(Discriminatory Analysis) 判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体.根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法. 费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理.选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值.对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大.贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断.所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率.它是对先验概率修正后的结果. 距离判别思想是根据各样品与各母体之间的距离远近作出判别.即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体. 5.对应分析(Correspondence Analysis) 对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术. 运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象. 这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息.CarieVinne 2023-06-11 08:32:301
相关分析主要通过一个指标来反映变量之间相关 的高低。
一、相关分析与回归分析的联系 相关分析是回归分析的基础和前提,回归分析则是相关分析的深入和继续。相关分析需要依靠回归分析来表现变量之间数量相关的具体形式,而回归分析则需要依靠相关分析来表现变量之间数量变化的相关程度。只有当变量之间存在高度相关时,进行回归分析寻求其相关的具体形式才有意义。如果在没有对变量之间是否相关以及相关方向和程度做出正确判断之前,就进行回归分析,很容易造成“虚假回归”,相关分析只研究变量之间相关的方向和程度,不能推断变量之间相互关系的具体形式,也无法从一个变量的变化来推测另一个变量的变化情况,在具体应用过程中,只有把相关分析和回归分析结合起来,才能达到研究和分析的目的。 二、相关分析与回归分析的区别 依.相关分析中涉及的变量不存在自变量和因变量的划分问题,变量之间的关系是对等的;而在回归分析中,则必须根据研究对象的性质和研究分析的目的,对变量进行自变量和因变量的划分。在回归分析中,变量之间的关系是不对等的。 贰.在相关分析中所有的变量都必须是随机变量;而在回归分析中,自变量是确定的,因变量才是随机的,即将自变量的给定值代入回归方程后,所得到的因变量的估计值不是唯一确定的,而会表现出一定的随机波动性。 三.相关分析主要是通过一个指标即相关系数来反映变量之间相关程度的大小,由于变量之间是对等的,因此相关系数是唯一确定的。而在回归分析中,对于互为因果的两个变量 ,则有可能存在多个回归方程水元素sl2023-06-11 08:32:291
什么是逐步回归分析?什么情况下使用?
逐步回归分析法是将变量逐个引入模型,每引入一个解释变量后都要进行检验,并对已经选入的解释变量逐个进行检验,当原来引入的解释变量由于后面解释变量的引入变得不再显著时,则将其删除。以确保每次引入新的变量之前回归方程中只包含显著性变量的方法。逐步回归分析是多元回归分析中的一种方法。回归分析是用于研究多个变量之间相互依赖的关系,而逐步回归分析往往用于建立最优或合适的回归模型,从而更加深入地研究变量之间的依赖关系。目前,逐步回归分析被广泛应用于各个学科领域,如医学、气象学、人文科学、经济学等。拓展资料:逐步回归分析结果解读逐步回归模型的基本原理是,把逐步回归分析每个解释变量依次引入模型进行F检验,同时对已引入的解释变量逐个进行T检验。当引入新的解释变量而造成原解释变量与被解释变量的相关性不再显著时,将不显著的解释变量剔除。依次类推,逐步回归分析保证在每次引入新的解释变量之前回归方程中只包含显著的变量,直到没有更显著的解释变量加入回归方程,也没有次显著的解释变量被剔除。此时,所得到的回归方程是显著性最优的解释变量组合,这样既完成了解释变量间显著性的对比,同时又能解决多重共线性问题。对上述模型与数据进行逐步回归。金融指货币的发行、流通和回笼,贷款的发放和收回,存款的存入和提取,汇兑的往来等经济活动。金融的本质是价值流通。金融产品的种类有很多,其中主要包括银行、证券、保险、信托等。金融所涉及的学术领域很广,其中主要包括:会计、财务、投资学、银行学、证券学、保险学、信托学等等。金融期货是期货交易的一种。期货交易是指交易双方在集中的交易市场以公开竞价的方式所进行的标准化期货合约的交易。而期货合约是期货交易的买卖对象或标的物,是由期货交易所统一制定的,规定了某一特定的时间和地点交割一定数量和质量商品的标准化合约。金融期货合约的基础工具是各种金融工具(或金融变量),如外汇、债券、股票、价格指数等。换言之,金融期货是以金融工具(或金融变量)为基础工具的期货交易。拌三丝2023-06-11 08:32:251
相关分析和回归分析有哪些区别和联系?
相关分析和回归分析有哪些区别和联系介绍如下:一、回归分析和相关分析主要区别是:1、在回归分析中,y被称为因变量,处在被解释的特殊地位,而在相关分析中,x与y处于平等的地位,即研究x与y的密切程度和研究y与x的密切程度是一致的;2、相关分析中,x与y都是随机变量,而在回归分析中,y是随机变量,x可以是随机变量,也可以是非随机的,通常在回归模型中,总是假定x是非随机的;3、相关分析的研究主要是两个变量之间的密切程度,而回归分析不仅可以揭示x对y的影响大小,还可以由回归方程进行数量上的预测和控制.二、回归分析与相关分析的联系:1、回归分析和相关分析都是研究变量间关系的统计学课题。2、在专业上研究上:有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关分析和回归分析。3、从研究的目的来说:若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析.扩展资料:1、相关分析是研究两个或两个以上处于同等地位的随机变量间的相关关系的统计分析方法。例如,人的身高和体重之间;空气中的相对湿度与降雨量之间的相关关系都是相关分析研究的问题。2、回归分析是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛。回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。大鱼炖火锅2023-06-11 08:32:241
相关分析和回归分析有何区别和联系
回归时相关的进一步分析,相关没有控制变量统计专业,为您服务大鱼炖火锅2023-06-11 08:32:182
回归分析与相关分析的区别
回归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。阿啵呲嘚2023-06-11 08:31:593
课题研究变量分析怎么写的
在确定教育科研课题之后,有一个非常重要的研究工作要做,这就是界定课题中的研究变量。对于中小学教师来说,这是最容易忽略的一步,但也是最能影响研究成果科学性的关键一步。虽然理解起来比较困难,但必须理解,且用到自己的研究实践中。苏州马小云2023-06-11 08:31:561
方差分析和多变量方差分析的区别
方差分析是一个因变量,多变量是多个因变量一起分析韦斯特兰2023-06-11 08:31:141
如何用eviews实现多个因变量和多个自变量的分析?
如果这么分析最好有借鉴的论文有借鉴的论文我可以帮你进行eviews操作NerveM 2023-06-11 08:31:053
多变量回归分析中的各个变量怎么样
先明确自由度的概念,自由度是指,当一个随机变量是由其他一系列随机变量定义的,这些随机变量独立项数的个数就是这个随机变量的自由度。例如,当x1,x2,.....xn相互独立,则它们的平方和服从自由度为n的卡方分布。因此在回归模型中若有两个自变量、三个回归参数,则残差序列e1,e2,........en中有n-3个是独立的(估计每一个参数会损失一个自由度)所以自由度为n-3;如果你的模型不含常数项只有两个参数,自由度就是n-2.黑桃花2023-06-11 08:31:032
多变量怎样进行共线性分析?
简单地说:计划明年是基于前几年的销售年历史来结束!基于上述的历史数据进行分析的营销问题和设备的更新,人事变动和其他变量以营销带来的影响。提出了自己的意见和建议~~~~~~~~~~~~~~~铁血嘟嘟2023-06-11 08:31:031
求助怎么进行多变量之间的相关性分析
建议先对你的数据做个正态性检验,这个是相关分析的基本条件,下来做个散点图,可以初步判断变量之间的是否具有相关性。大鱼炖火锅2023-06-11 08:31:002
为什么多次单变量分析不能代替一次多变量分析
多次单变量分析不能代替一次多变量分析的原因是:1、设多次为n次单变量假设检验增加假阳性错误的概率,设每次单变量假设检验的检验水准为X,做完n次检验后,一类错误的概率增加为nX=(1-X)^n;2、单变量假设检验只说明某一变量在数轴分布上有区别,说明各自的问题,不能互相代替。FinCloud2023-06-11 08:30:571
请问多因素,多个变量,应该怎样做统计分析?
首先先对边做分组,那么多变量,哪些是解释变量,哪些是被解释变量,然后可以做简单的描述统计分析,然后在分析他们的关系,比如是相关性,还是线性回归,还是对数线性回归,或者是检验这些解释变量对被解释变量的影响显著性。此后故乡只2023-06-11 08:30:561
统计学中多变量之间的相关性分析应该怎么做?
最简单的就是求相关系数矩阵和协方差矩阵。如果想玩的深一点,可以用因素分析、聚类分析、判别分析,多元回归等等。你查一下“多元统计分析”的相关教材或书籍吧,你说的问题很大,很模糊。但都在这类问题之中。NerveM 2023-06-11 08:30:561
做多因素cox分析,多个变量的hr结果怎么做成森林图
多变量分析为统计方法的一种,包含了许多的方法,最基本的为单变量,再延伸出来的多变量分析。统计资料中有多个变量(或称因素、指标)同时存在时的统计分析,是统计学的重要分支,是单变量统计的发展。统计学中的多变量统计分析起源于医学和心理学。陶小凡2023-06-11 08:30:551
请问谁有关于统计的论文,具体要求是使用多元统计分析方法分析数据,还有如下:
1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。 因子分析的基本思想: 把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。 (2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。 (3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型: x1 = a11F1+ a12F2 +…+a1mFm + e1 x2 = a21F1+a22F2 +…+a2mFm + e2 ……… xp = ap1F1+ ap2F2 +…+apmFm + ep 称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。 其矩阵形式为: x =AF + e . 其中: x=,A=,F=,e= 这里, (1)m £ p; (2)Cov(F,e)=0,即F和e是不相关的; (3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1; D(e)=,即e1,e2,…,ep不相关,且方差不同。 我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。 A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。 2. 模型的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。 因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。 将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。 3. 因子旋转 建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。 旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。 4.因子得分 因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。 设公共因子F由变量x表示的线性组合为: Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m 该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。 但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。 (1)回归估计法 F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。 (2)Bartlett估计法 Bartlett估计因子得分可由最小二乘法或极大似然法导出。 F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X (3)Thomson估计法 在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有: F = XR-1A¢ = X (X ¢X+W)-1A¢ 这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为: F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢ 5. 因子分析的步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。 (i)因子分析常常有以下四个基本步骤: (1)确认待分析的原变量是否适合作因子分析。 (2)构造因子变量。 (3)利用旋转方法使因子变量更具有可解释性。 (4)计算因子变量得分。 (ii)因子分析的计算过程: (1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。 (2)求标准化数据的相关矩阵; (3)求相关矩阵的特征值和特征向量; (4)计算方差贡献率与累积方差贡献率; (5)确定因子: 设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标; (6)因子旋转: 若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。 (7)用原指标的线性组合来求各因子得分: 采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。 (8)综合得分 以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。 F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm ) 此处wi为旋转前或旋转后因子的方差贡献率。 (9)得分排序:利用综合得分可以得到得分名次。 在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题: · 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。 · 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。 · 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。 如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。 Rotated Component Matrix,就是经转轴后的因子负荷矩阵, 当你设置了因子转轴后,便会产生这结果。 转轴的是要得到清晰的负荷形式,以便研究者进行因子解释及命名。 SPSS的Factor Analysis对话框中,有个Rotation钮,点击便会弹出Rotation对话框, 其中有5种因子旋转方法可选择: 1.最大变异法(Varimax):使负荷量的变异数在因子内最大,亦即,使每个因子上具有最高载荷的变量数最少。 2.四次方最大值法(Quartimax):使负荷量的变异数在变项内最大,亦即,使每个变量中需要解释的因子数最少。 3.相等最大值法(Equamax):综合前两者,使负荷量的变异数在因素内与变项内同时最大。 4.直接斜交转轴法(Direct Oblimin):使因素负荷量的差积(cross-products)最小化。 5.Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴。因子负荷量取2,4,6次方以产生接近0但不为0的值,藉以找出因子间的相关,但仍保有最简化因素的特性。 上述前三者属於「直交(正交)转轴法」(Orthogonal Rotations),在直交转轴法中,因子与因子之间没有相关,因子轴之间的夹角等於90 ufa01。后两者属於「斜交转轴」(oblique rotations),表示因子与因子之间彼此有某种程ufa01的相关,因素轴之间的夹角uf967是90ufa01。 直交转轴法的优点是因子之间提供的讯息uf967会重叠,受访者在某一个因子的分uf969与在其他因子的分uf969,彼此独uf9f7互uf967相关;缺点是研究迫使因素之间uf967相关,但这种情况在实际的情境中往往并不常存在。至於使用何种转轴方式,须视乎研究题材、研究目的及相关理论,由研究者自行设定。 在根据结果解释因子时,除了要看因子负荷矩阵中,因子对哪些变量呈高负荷,对哪些变量呈低负荷,还须留意之前所用的转轴法代表的意义。2,主成分分析(principal component analysis) 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。 (1)主成分分析的原理及基本思想。原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。(2)步骤Fp=a1mZX1+a2mZX2+……+apmZXp 其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵∑的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。进行主成分分析主要步骤如下:1. 指标数据标准化(SPSS软件自动执行);2. 指标之间的相关性判定;3. 确定主成分个数m;4. 主成分Fi表达式;5. 主成分Fi命名;选用以上两种方法时的注意事项如下:1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。 (1)了解如何通过SPSS因子分析得出主成分分析结果。首先,选择SPSS中Analyze-Data Reduction-Factor…,在Extraction…对话框中选择主成分方法提取因子,选择好因子提取个数标准后点确定完成因子分析。打开输出结果窗口后找到Total Variance Explained表和Component Matrix表。将Component Matrix表中第一列数据分别除以Total Variance Explained表中第一特征根值的开方得到第一主成分表达式系数,用类似方法得到其它主成分表达式。打开数据窗口,点击菜单项的Analyze-Descriptive Statistics-Descriptives…,在打开的新窗口下方构选Save standardized values as variables,选定左边要分析的变量。点击Options,只构选Means,点确定后既得待分析变量的标准化新变量。选择菜单项Transform-Compute…,在Target Variable中输入:Z1(主成分变量名,可以自己定义),在Numeric Expression中输入例如:0.412(刚才主成分表达式中的系数)*Z人口数(标准化过的新变量名)+0.212*Z第一产业产值+…,点确定即得到主成分得分。通过对主成分得分的排序即可进行各个个案的综合评价。很显然,这里的过程分为四个步骤:Ⅰ.选主成分方法提取因子进行因子分析。Ⅱ.计算主成分表达式系数。Ⅲ.标准化数据。Ⅳ.计算主成分得分。 我们的程序也将依该思路展开开发。(2)对为何要将Component Matrix表数据除以特征根开方的解释我们学过主成分分析和因子分析后不难发现,原来因子分析时的因子载荷矩阵就是主成分分析特征向量矩阵乘以对应特征根开方值的对角阵。而Component Matrix表输出的恰是因子载荷矩阵,所以求主成分特征向量自然是上面描述的逆运算。 成功启动程序后选定分析变量和主成分提取方法即可在数据窗口输出得分和在OUTPUT窗口输出主成分表达式。3,聚类分析(Cluster Analysis) 聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。 在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。 4.判别分析(Discriminatory Analysis) 判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。 费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。 距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。 5.对应分析(Correspondence Analysis) 对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。 运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。 这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。真颛2023-06-11 08:30:551
统计学上分析多个变量对一个变量的影响,可以用什么方法?
可以采用多元回归分析方法,即:在相关变量中将一个变量视为因变量,其他多个变量视为自变量,建立多个变量之间的非线性数学模型数量关系式,并利用样本数据进行分析的统计方法。FinCloud2023-06-11 08:30:531
多变量怎样分析
要用不同的变量,让自己更清楚;并切要每一步精确.ardim2023-06-11 08:30:521
spss多变量分析
要看你变量的类型,是分类变量还是连续变量?大鱼炖火锅2023-06-11 08:30:521
单变量分析和多变量分析在运筹学里面吗
多变量分析是对三个或更多变量的分析。根据你的目标,有多种方法可以执行多变量分析,这些方法中的一些包括添加树,典型相关分析,聚类分 析,收入等)在里面(即多变量分析:如各种回归模型等)。日单变量分析 1.协方差的一些解释: 在坐标轴中,使用x_u、y_u画两条直线,会使数据分布在四个象限 当s_xy为正时,表示变量x、y是正的线性...CSDN博客康康map2023-06-11 08:30:511
求spss大神解决多变量相关分析!!!!
SPSS最多只能计算5个因素的交互作用。 SPSS操作:Analyze > General Linear Model > Univariate...LuckySXyd2023-06-11 08:30:511
多变量分析:SPSS的操作与应用的作者简介
林震岩现职中原大学企业管理学系教授中原大学人事室主任学历政治大学企业管理博士政治大学企业管理硕士台湾大学资讯工程学士经历中原大学推广教育中心主任开南管理学院教务长专长领域多变量分析资讯管理生产管理著作台湾资讯管理个案第I-VII辑SAS精析与实例资讯管理理论与实务:企业e化的蓝图与建置墨然殇2023-06-11 08:30:501
多变量综合分析是什么
多变量分析(multivariable analysis)是指多个变量统计分析技术在社会研究中的运用。又称多元分析拌三丝2023-06-11 08:30:491
SPSS 多变量频数分析 如何操作
简单,采用anlyze---TABLES功能就可以了。原理是先在Multiple Response Sets中合并变量(合并成功后会生成带有“$”新变量),然后采用custom tables中找到这个新变量(通常在最下面)功能对新变量操作,输出频数分析结果。好运!拌三丝2023-06-11 08:30:471
多变量资料进行一元单变量分析会导致什么后果
增加错误,难得结论等。多变量资料进行一元单变量分析会导致,增大犯第Ⅰ类错误的概率。当单变量分析结果不一致时,很难得到一个综合的结论。忽略变量间的相互关系。多变量分析为统计方法的一种,包含了许多的方法,最基本的为单变量,再延伸出来的多变量分析。北境漫步2023-06-11 08:30:461
求助怎么进行多变量之间的相关性分析
1、首先,大家平时理解的变量是单纬的,而不是你说的多维的。因此,对spss而言,X1、X2、X3、Y1、Y2、Y3分别是6个变量。 2、spss的相关性分析中可以分别统计这6个变量间的相关性。通过他们之间相关性的计算,你或许可以得到你所说的X与Y之间的相...Chen2023-06-11 08:30:461
如何对多变量数据进行统计分析
这个可以在spssau中完成:1、比如做三因子三水平的交互正交表,选项因子个数选择3,水平个数也是3,点击“开始分析”,搞定。试验完成后可使用方差分析进行研究。此后故乡只2023-06-11 08:30:441
多变量分析数据都比较多吗
是。在实际场景中,遇到的数据大多数是具有多特征、多变量的,因此除了对单个变量进行分布、缺失等情况的探索,还需要对变量与变量之间的关系进行探索。人类地板流精华2023-06-11 08:30:441
单变量及多变量危险因素分析有什么区别
现代统计学1.因子分析(Factor Analysis) 因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变...韦斯特兰2023-06-11 08:30:431
单因素多变量分析的观测变量是什么
单因素多变量方差分析中观测变量应为(因)变量,控制变量为类别变量陶小凡2023-06-11 08:30:251
多变量分析的介绍
多变量分析(multivariable analysis)为统计方法的一种,包含了许多的方法,最基本的为单变量,再延伸出来的多变量分析。统计资料中有多个变量(或称因素、指标)同时存在时的统计分析,是统计学的重要分支,是单变量统计的发展。统计学中的多变量统计分析起源于医学和心理学。1930年代它在理论上发展很快,但由于计算复杂,实际应用很少。1970年代以来由于计算机的蓬勃发展和普及,多变量统计分析已渗入到几乎所有的学科。到80年代后期,计算机软件包已很普遍,使用也方便,因此多变量分析方法也更为普及。北有云溪2023-06-11 08:30:221
多变量分析的回归分析
当多个变量x1,x2,…,xm(称为回归变量或自变量、独立变量)同时影响某个指标 y(称为因变量或依赖变量)时,可进行回归分析,回归分析的第一个任务就是求回归变量对指标 y的影响的统计规律性(也称回归关系);第二个任务是寻找众多的回归变量中哪一些能对指标 y产生影响(常称为因素分析或变量的筛选);第三个任务(也称相关分析)是在固定(或称消除)其他变量的影响后,考察每一个回归变量对指标 y的相关程度(称为偏相关系数)。上述三个任务常是相互联系,可以同时完成。回归变量x1,x2,…,xm与因变量y之间最常见的统计关系有两大类型:线性模型和非线性模型。线性模型中假定y 的主要部分(记为),可由x1,x2,xm线性表示为其中b0,b1,b2,…,bm是未知常数,需用样本去估计,ε 是用取代y后的误差。这是最常用的模型,称为多重线性回归或多元线性回归。用样本估计线性回归模型中未知常数的方法也很多,经典的方法为最小二乘法,它的理论较为完善,此法较适用于回归变量之间的相关性不很大时。其他求未知常数b0,b1,b2,…,bm的方法还有岭回归、特征根回归、主成分回归等,它们常用于回归变量之间相关性很大时。非线性回归模型中y的主要部分与x1,x2,…,xm的关系为非线性函数:其中┃ 的形式已知,未知常数 α1,α2;…用样本去估计。医学中最常见的非线性回归是logistic回归,它常用于疾病对照研究以及生长发育问题中。在前述的炊事员高血压病调查中,使用线性模型和最小二乘法求出未知常数,再用逐步回归选取变量,可求得15个变量中有 7个变量对炊事员舒张压有显著的影响,它们按偏相关系数大小排列为:年龄 (0.297),体胖程度 (0.253),肾炎史(0.162),性别(0.117),工作类别(0.081),高血压家族史(0.061),嗜咸程度(0.052)。从相关性大小看,体胖对舒张压的影响与年龄的影响大体相当。另外还可看出:工种,家族史和嗜咸对舒张压虽有影响,但影响甚小。凡尘2023-06-11 08:30:191
帮忙解释下六西格玛培训内容中的多变量分析是什么意思?
1、六西格玛多变量分析的含义: 六西格玛多变量分析是一种用于显示及分析多变量数据的图形工具。它可以帮助我们更好地理解过程中出现的偏差。 2、使用多变量分析的目的: 当需要找寻改进的机会时,当需要在众多的因素中,排除非重要部分。而将项目重心集中到重要的因素中时。 3、偏差的来源 ①位置偏差: 是由于不同位置所造成的,例如,同一零件上不同的部位,不同的上件/机头,不同的生产线。 ②循环偏差: 是指流程中连续件之间的偏差。例如,连续生产出的产品之间的偏差。 ③时间偏差: 例如,不同天次、不同的班次、不同的月份。 4、生成六西格玛多变量分析的方法: ①选择输出变量 流程的输出变量往往不止一个。例如,零件长度、零件直径。选择其中与项目有关联的做进一步分析。在使用数据进行分析之前,确认己通过测量系统的重复性与复现性的分析。 ②列举所有可能造成偏差的原因 例如,机器设置/原材料/环境/设备,等等。 ③制订抽样计划 了解不同偏差来源的类别及水平数目。我们至少需要收集2*2=4组数据。 ④收集数据 与相关人员讨论抽样计划;准备记录表格;记录所有的特殊事件;如有可能,记录所有可能的输入变量;如有可能,测量多次,以降低测量系统所造成的偏差。 ⑤制作多变量分析图 输入MINITAB,得出分析图。 ⑥分析结果,检查重要的非随机特征 ⑦找出可能产生的原因 ⑧总结所有的结果,得出结论并制订下一步计划meira2023-06-11 08:30:161
多变量分析的主要内容
在社会及行为科学的研究中,随着研究方法的复杂及个人计算机的普及,应用多元统计方法来分析资料的机会也相对增加。特别是近年来,各大学研究生人数逐年增加,基于学位论文撰写的需要,多元统计方法及统计软件包的运用成为不可或缺的能力。第 一 章 多元回归分析第 二 章 典型相关分析第 三 章 区别分析第 四 章 平均数之假设考验第 五 章 多变量变异数分析第 六 章 主成分分析第 七 章 因子分析第 八 章 集群分析第 九 章 多元尺度法第 十 章 结构方程模式第十一章 阶层线性模式kikcik2023-06-11 08:30:141
单变量、双变量和多变量分析之间的区别
单变量分析是数据分析中最简单的形式,其中被分析的数据只包含一个变量。因为它是一个单一的变量,它不处理原因或关系。单变量分析的主要目的是描述数据并找出其中存在的模式。 可以将变量视为数据所属的类别,比如单变量分析中,有一个变量是“年龄”,另一个变量是“高度”等,单因素分析就不能同时观察这两个变量,也不能看它们之间的关系。 单变量数据中的发现模式有:查看平均值、模式、中位数、范围、方差、最大值、最小值、四分位数和标准偏差。此外,显示单变量数据的一些方法包括频率分布表、柱状图、直方图、频率多边形和饼状图。 使用双变量分析来找出两个不同变量之间是否存在关系,在笛卡尔平面上(想想X和Y轴)将一个变量对另一个变量进行绘图,从而创建散点图(.plot),这样简单的事情有时可以让你了解数据试图告诉你的内容,如果数据似乎符合直线或曲线,那么这两个变量之间存在关系或相关性。例如,人们可能会选择热量摄入与体重的关系。 多变量分析是对三个或更多变量的分析。根据你的目标,有多种方法可以执行多变量分析,这些方法中的一些包括添加树,典型相关分析,聚类分析,对应分析/多重对应分析,因子分析,广义Procrustean分析,MANOVA,多维尺度,多元回归分析,偏最小二乘回归,主成分分析/回归/ PARAFAC和冗余分析。善士六合2023-06-11 08:30:131
多变量分析的基本简介
多变量分析为统计方法的一种,包含了许多的方法,最基本的为单变量,再延伸出来的多变量分析。统计资料中有多个变量(或称因素、指标)同时存在时的统计分析,是统计学的重要分支,是单变量统计的发展。统计学中的多变量统计分析起源于医学和心理学。人类地板流精华2023-06-11 08:30:131
被解释变量与解释变量的时间不同可以做回归分析吗
如果是有规律的时间,应该是可以的。比如,因变量2003,2004;解释变量为2002,2003;解释起来,就是解释变量滞后一年的数值对因变量的影响。像你提到的,应该是不可以CarieVinne 2023-06-11 08:26:061
经济数据分析论文解释变量和被解释变量可以取什么
经济数据分析论文解释变量和被解释变量可以取给的数据。解释变量与控制变量都是自变量,为了突出研究的问题进行了区分。解释变量是指着重研究的自变量,是研究者重点考查对因变量有何影响的变量。而控制变量是指与特定研究目标无关的非研究变量,即除了研究者重点研究的解释变量和需要测定的因变量之外的变量,是研究者不想研究,会影响研究结果的,需要加以考虑的变量。此后故乡只2023-06-11 08:26:001
什么是解释变量、被解释变量和控制变量? 实证分析中用到的
解释变量是,原因;被解释变量是,结果;控制变量是,参数(即外部因素) 例如:y=a*x+b.其中x为解释变量,y为被解释变量,ab就是控制变量!北境漫步2023-06-11 08:25:591
英语四级分析原因类作文
英语四级分析原因类作文模板(精选5篇) 分析原因就要有一定的道理依据,以下是我整理的英语四级分析原因类作文模板,欢迎参考阅读! 英语四级分析原因类作文 篇1 _________ is currently becoming a serve problem in China, which happen to ________. So long as ________, ___________ will always unsurprisingly ________. Why does ________ become so rampant? First and foremost,__________. Secondly,_________. Last but not least, ________. As a consequence,___________. 英语四级分析原因类作文 篇2 During the last decade, there has been a steady rise in the number of _________. In detail,________. Three reasons, in my mind, account for this social phenomenon. First and foremost,__________. Moreover,_________. In addition,___________. As a result,__________. Personally, I firmly believe that the problem derives from __________. Thus, if the government make relevant policies and take relevant measure to __________, the problem can be readily solved in __________. 英语四级分析原因类作文 篇3 Nowadays,_________ is/are doing great harm to ___________. What are the incentives that drive people to _________? The most important factors should be __________. Furthermore,________. It directly leads to the patent and salient harmfulness that ________. Consequently, it is high time that the whole society should contribute to the collective efforts to put an end to ________. 英语四级分析原因类作文 篇4 The environment is everything around us,for example,air,water,animals,plants,buildings and so on.They all affect us in many ways and closely related to our lives.People can"t live without the environment. Everybody needs to breathe air,drink water and eat food every day.We burn coal to keep warm,and we use wood to make paper.As a result,we become the part of the environment. The environment has been getting wores and wores for many years.We have been upgrading our living standard, meanwhile the environment has been polluted.Somke form factory chimneys pollutesthe air.Machines and engines make noises that annoy us constantly.Animals are homeless because the forcests are decreasing every minute.Streets are crowded with people and vehicles.The environment painful for us to live in it now.So it"s time to solve those problems. Fortunately,it isn"t too late to correct our mistake.People are coming to realiza the importance of the environment.We have begun to try our best to improve it.Laws are being made dealing with air, water and noise pollution.The river be bright,the sky will be clear,the flowers will be beautiful,and the sunbeam will be dazzling and pretty.We believe that we wil be able to save our environment and live in a better world 环境围绕我们身边,例如:空气、水、动物、建筑等。它们从各个方面影响着我们的生活,与我们的生活密切相关,人们离开环境就无法生存。每人每天都要呼吸、喝水和吃东西。我们少煤取暖、用木材造纸。结果,我们也成为环境的一部分。 很多年以来,环境日益恶化。我们在提高生活水平的"同时,也在导致环境污染。从工厂烟囱里冒出来的烟污染空气;机器和引擎经常发出恼人的噪音。因为森林每分钟都在减少,使动物们无家可归。街道上挤满了人和车辆。环境在我们的生活中是最重要的,但是现在它已经让人们讨厌。所以,该是解决这些问题的时候了。 幸运的是,现在改正错误还不晚。人们意识到环境的重要性。我们已经开始尽力改善环境。法律也开始涉及到空气、水和噪音等问题。将来,河流会更清澈,天空会更晴朗,花朵会更鲜艳,阳光会更灿烂、更温暖。保护环境会使我们生活在一个更加美好的世界中。 英语四级分析原因类作文 篇5 In recent years, more and more left-behind children have been brought into the public and aroused more and morepeople"s attention.Those children are left in their hometown in the countryside and one or two of their parents are goingout to earn money are called “left-behind children”. So why are there somany left-behind children in our country now? First,the fast development ofbig cities is a main reason.The fast-developed cities provide more chance of employment and higher-salary jobs appeal to a lot of migrant workers.Second,the pursuit of a better life is another reason.The farmers or the workers in the countryside would like to lead a better life and create a better condition for their children.They consider that going out to earn more money is easier to satisfy their children"s need.Finally,the increase of population in countryside also account for the reason. With the increase of population, peoplein the countryside can not get enough land to work and support their family. Therefore,those younger people have to go out to find other ways to make their living. In a word,the occurrence of left-behind children is not caused by a single factor.All of us know that children shouldnot be separated with their parents for a long time,but we also need to takeother factors into consideration so that we can understand the real purpose ofour parents" choice. ;Jm-R2023-06-11 08:22:471
电路分析里的VAR是什么意思
电路分析里的VAR的意思无功功率无功功率比较抽象,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外做功,才被称之为“无功”。无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。北营2023-06-11 08:22:478
spss19.0用因子分析法计算综合得分(用来比较业绩的),跪求大神教个详细做法
研究生专业数据分析找我这gitcloud2023-06-10 09:13:586
2022-06-03我的数据是用主成分分析还是冗余分析呢?2
上次冗余分析说了一点点,今天继续。 冗余分析是约束化的主成分分析,是响应变量与解释变量之间多元多重线性回归的拟合值矩阵的PCA分析,目的是----寻找能最大程度解释响应变量矩阵变差的一系列的解释变量的线性组合,因此 RDA是被解释变量X约束的排序 。从排序开始就直接加入解释变量进行运算,只提取和展示与解释变量有关的数据结构,并通过统计检验方法来表示解释变量X与响应变量y之间关系的显著性。 在群落分析中,响应变量Y一般是物种的多度数据,解释变量X就是环境变量(也是约束成分)。 另外,RDA还有许多升级版,比如tb-RDA(基于转化的RDA)、db-RDA(基于距离的RDA)、偏RDA、非线性关系RDA等等,各自有自己的拓展适用范围,这里只看看最基本的RDA是怎么回事儿。 进行RDA分析后,总方差被划分为约束和非约束两部分。约束部分表示响应变量Y矩阵的总方差能被解释变量X解释的部分,如果用比例表示,其值相当于多元回归的R^2。在RDA中,这个解释比例值也称作双多元冗余统计(bimultivariate redundancy statistic)。然而,类似多元回归未校正的R^2, RDA的也需要校正,注意校正后的R^2 总是小于R^2的。 比如下图是origin进行RDA分析后结果,就给出RDA分析产生的典范轴constrained axe(RDAx)和非约束轴unconstrained axe(PCx)的特征根,典范轴的特征根表示响应变量总方差能被RDA模型解释的部分(这张图中是9.26%,特别低,说明本研究中响应变量的变化大部分都不能用本研究中解释变量来解释),非约束轴的特征根表示响应变量总方差能被残差轴解释的部分,与RDA模型无关,严格说来不属于RDA范畴,但能够 帮助我们获取更多信息 。并给出累积方差解释率(约束轴)或承载率(非约束轴)。怎么说帮助我们获取更多信息呢?如果约束轴解释的变差>非约束轴解释的变差,表明响应数据Y的大部分变化量均可通过解释变量X作出解释,群落物种组成分布真实地由给定环境因子所影响(对于RDA结果,即二者呈现出较好的线性梯度),直接去解读RDA结果即可;但是,如果约束轴解释变差<非约束轴解释变差,或者约束轴解释变差仅占总变差的较小比例(比如下图),此时应谨慎对待,因为RDA模型并未显示出给定环境因子能够对群落物种的组成作出有效的解释,可能有重要的解释变量X没有被你测定/考虑等等原因。 在RDA的排序图中,约定俗成的会将响应变量用不带箭头的线表示,定量解释变量X用带箭头的线表示。 排序图可以只展示样方/样本和环境变量X,这叫双序图;也可以展示样方/样本、环境变量X和物种Y这三者,叫三序图,看自己的使用需求。但无论是双序图还是三序图, 首先需要明确的是,展示时有I、II型两种标尺scaling可以选择,这两种标尺关系到对图中数据解读的方式是不同的。 I型标尺(距离图):特征向量被标准化为单位长度,关注对象/样本之间的关系。 II型标尺(相关图):特征向量被标准化为特征根的平方根,关注变量之间的关系。 (1)样方点垂直投影到响应变量或定量解释变量的箭头或延长线上,I型标尺表示:投影点近似于该样方内该响应变量或解释变量的数值沿着变量的位置;II型标尺表示:投影点位置近似于该响应变量或解释变量在该样方内的数值;有人说 两个标尺的这个点没有区别 ,我暂且还不太理解。 对上图的解读:a图,存在排序样方(样本)i和ii,解释变量(环境变量)1,探究i、ii与1的关系时,将i或ii垂直投影在1的向量(箭头)上,根据交叉点的位置判断变量1在i或ii中的值。交叉点越靠近该变量向量的正方向,则表明所对应的样方中,该变量的数值越大。例如,假设变量1为土壤碳含量,样方i投影在1的正方向,样方ii投影在1的负方向上(图中红色虚线反向延长线部分),两个交叉点相比较,i与1的交叉点更位于1延伸方向,因此可知i中的土壤碳含量要比ii中的土壤碳含量要高。 (2)响应变量与解释变量箭头之间的夹角反映了它们之间的相关性, 但I型标尺中响应变量内部之间、解释变量内部之间的夹角都无此含义;II型标尺中则响应变量内部之间、解释变量内部之间的夹角也反映了它们之间的相关性 。角度反映的相关性等于 矢量之间角度的余弦 (例如,描述90°角度的矢量对与cos(90)= 0不相关),描述20°角度的矢量对与cos具有强正相关性(20 )= 0.94。 对上图解读:b图,根据向量(箭头)夹角判断变量间的相关性。∠a接近90°,即接近正交,表明变量1和2之间的相关性很小,二者相互之间几乎不存在影响。∠b小于90°,夹角为锐角,表明变量2和3之间存在正相关;锐角角度越小,则正相关性越大。∠c大于90°,夹角为钝角,表明变量3和4之间存在负相关;钝角角度越大,则负相关性越大。 (3) 定性解释变量 的形心与响应变量(物种)箭头之间的解读如同样方点与响应变量之间的解读(因为定性解释变量的形心也是一组样方的形心);对于I型标尺,仅能据此观测定性解释变量与响应变量间的相关性;对于II型标尺,既可以据此观测定性解释变量与响应变量间的相关性,也可以观测其与定量解释变量之间的相关性。 对上图解读:对于因子类型的解释变量5(定性变量,非数值型变量),在图中以点表示而非以向量表示, 探究因子类型变量5与其它变量间的相关性时需要根据投影判断 。例如,变量5垂直投影在变量4的正方向,表明与变量4存在正相关;投影在变量2的负方向,表明与变量2存在负相关;相关性的大小,可以通过垂线交叉点与原点(0,0)的距离来表示。 进行显著性检验是对各个RDA轴或解释变量进行 置换检验 来进行的。不显著的结果不能被解读,要丢弃。 1、 https://www.jianshu.com/p/00f69e8bd5ef 2、群落分析的冗余分析(RDA)概述 (微信号:小白鱼的生统笔记) 3、 https://www.bilibili.com/video/BV1jY4y1C7i9/?spm_id_from=333.788.recommend_more_video.18&vd_source=721b2cd4a7c048a6485aefbb175915fcNerveM 2023-06-10 09:13:571
数理统计SPSS。同一组数据怎么进行统计学差异分析?用卡方和Fisher确切检验
卡方检验你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,还有一个变量3是权重,例数数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,后面是自由度,然后是P值。gitcloud2023-06-10 09:13:431
分析成分与性能关系中不显著怎么办
粗糙一点的话相关分析就可以啦.分析——相关——双变量,把变量选进去,看相关性,是正还是副.复杂点的就要用因子分析把每个层面降维成一个变量,在进行相关分析. 下边是因子分析的步骤本来想给你截图的,可是传不上来,我就简单说一下哈. 首先你得进行一次预计算,选择菜单里分析——降维——因子分析,跳出主面板,把想分析的变量选到变量框里,然后点确定.这时候输出窗口里会只有一个或两个图表.其中有一个图表是主成分的方差贡献.这个图表里你要找到两个相邻的列(应该是第三列和第四列),其中前一个列指的是单个因子对方差的贡献率,后一个是因子累计贡献率.也就是说前一个列里边数值相加等于100,后一个列里边数值递增,最后一个等于100.假如前一个列里是60,30,10,那么后一列里就是60,90,100.两个列之间有一个和的关系.找到这两个列以后,你要找使得累计贡献率达到百分之八十的那个数.这个表的第一列是1,2,3,等等,它代表第几个因子,比如3指的那行就包括第三个因子的方差贡献率,累积到第三个因子的方差贡献率这两个数据.你要找到累计到达百分之八十的那个因子是第几个因子,然后就按提取几个因子进行计算. 通过预计算知道了提取几个因子之后,就开始正式计算.再次打开因子分析的主面板,在最右边一共有五个选项,分别是描述,抽取,旋转,得分,选项.这五个在预计算里边没有用,但是现在要用了.点继续. 点击描述,在对话框里选上初始变量分析,kmo统计量及bartlett球形检验这两个选项,(注意,kmo和bartlett是一个选项,选项名就是很长)这一步是用来判断变量是否适于进行因子分析的. 点击抽取,对话框里最上边的方法就选主成分,分析里选上相关性矩阵,输出选上未旋转的因子解和碎石图两个选项,抽取里选择因子的固定数目,在要提取的因子后边填上你预计算里算出的因子数目.点继续. 旋转里边选最大方差法,输出旋转解.继续. 得分里边选保存为变量,方法为回归,显示因子得分系数矩阵也要打上勾.继续. 确定. 然后就可以分析结果了. 先看kmo和bartlett的结果,kmo统计量越接近1,变量相关性越强,因子分析效果越好.通常0.7以上为一般,0.5以下不能接受,就是不适合做因子分析.bartlett检验从检验相关矩阵出发,如果p值,就是sig,比较小的话,一般认为小于0.05,当然越小越好,就适于因子分析. 如果这两个检验都合格的话,才可以去写因子模型. 为了便于描述,假设我们有两个因子f1,f2, 旋转变换后的因子载荷矩阵会告诉你每个变量用因子表示的系数.比如变量x1=系数1*f1+系数2*f2,变量2以此类推. 因子得分系数矩阵会告诉你每个因子里各变量占得权重,比如f1=系数1*x1+系数2*x2+. 根据这个我们就能算出因子得分了. 因为之前选择了将因子保存为新变量,所以spss会直接保存两个因子得分为两个新变量, 然后我们不是有一个公式吗总得分=因子1的方差贡献率*因子1的得分+因子2的方差贡献率*因子2的得分+... 根据这个公式计算一下就可以了. 用spss或者Excel都可以. 希望能对你有帮助哦. ppv课,大数据培训专家,最专业的大数据培训平台.为你提供最好的spss学习教程哦.左迁2023-06-10 09:13:411
方差分析结果怎么看
问题一:单因素方差分析结果分析 方差分析表中的SS表示平方和,MS表示均方,F是组间均方与组内均方的比例,P-value表示在相应F值下的概率值,F crit是在相应显著水平下的F临界值,在统计分析上可以通过P-value的大小来判断组间的差异显著性,通常情况下,当0.05时没有显著差异,介于二者之间时有显著差异。也可通过F值来判断差异显著性,当F>=F crit时,有显著(或极显著)差异。顺便说一下,F检验只能在总体上来检验差异显著性,不能判别这些显著差异具体来自哪些处理间,若要分析,需要进行多重比较。 问题二:学术论文中的方差分析结果怎么看 如果是被试间,看各主效应、交互作用的F值和Sig值,Sig小于0.05就是存在效应 问题三:用SPSS 进行的方差分析应当如何看结果? 10分 主要看sig那里的,数值大于0.05,则差异不显著,相反,就是显著的 问题四:结果中的方差分析怎么看 显著性水平>0.05说明在现有样本中,自变量对因变量的影响不显著。有时不显著也是一个很重要的结论,说明原来的假设不成立。如果认为不显著的结论有悖相关原理,则可能是数据有问题,建议增加样本数量,或检查数据值是否有异常存在。 另外,同类子集,是将几个变量分成N个亚组,看看变量在亚组中的分布情况判断变量的独立性。比如,变量1只在第一个亚组有数据,其他的亚组没数据,说明变量1相对于其他变量有较大的独立性。变量2在第二亚组和第三亚组都有数据,说明变量2可以分在第二亚组,也可以分在第三亚组,变量2就显得不确定,可能于其他变量有较大关联。 问题五:重复测量数据的方差分析怎么看结果 dxy/bbs/topic/28077464 看这个就明白了 问题六:单因素方差分析结果怎么看 小木虫 看F和p值啊 问题七:单因素方差分析结果怎么看 你是两两间比较吗? 统计学专业硕士为你解答! 问题八:用spss 单因素方差分析结果怎么看 用的tukey 20分 第一列和第二列就是你的水平,1和2比,1和3比较,然后看sig显著性,是否小于0.05,小于0.05组间有差异 问题九:单因素方差分析结果分析 方差分析表中的SS表示平方和,MS表示均方,F是组间均方与组内均方的比例,P-value表示在相应F值下的概率值,F crit是在相应显著水平下的F临界值,在统计分析上可以通过P-value的大小来判断组间的差异显著性,通常情况下,当0.05时没有显著差异,介于二者之间时有显著差异。也可通过F值来判断差异显著性,当F>=F crit时,有显著(或极显著)差异。顺便说一下,F检验只能在总体上来检验差异显著性,不能判别这些显著差异具体来自哪些处理间,若要分析,需要进行多重比较。 问题十:用SPSS 进行的方差分析应当如何看结果? 10分 主要看sig那里的,数值大于0.05,则差异不显著,相反,就是显著的豆豆staR2023-06-10 09:13:161
因子分析怎么做
问题一:用SPSS已经做出了因子分析,那么具体的分析结果应该怎么看呢? KMO检验统计量在0.7以上,说明变量之间的偏相关性较强,适合做因子分析,球形检验p小于0.001,说明变量之间存在相关性。第二格表格为共同性,表示各变量中所含原始信息能被提取的共同因子所表示的程度,根据你的数据,你提取的公因子是两个,第三个表格是指提取的俩个主成分能解福差异的比列,第四个表格是主成分表达式,第五表格是因子得分公式。 问题二:因子分析到底有什么用处? 问题:大家觉得因子分析到底有什幺用处呢?把原来很多个影响因素归纳成几个影响因子,如果不继续做回归或者聚类的话,光做因子分析有价值吗?答复:因子分析是将多个实测变量转换为少数几个综合指标(或称潜变量),它反映一种降维的思想。通过降维将相关性高的变量聚在一起,从而减少需要分析的变量的数量,而减少问题分析的复杂性。在你对问题系统结构不了解时候,因子分析可以根据数据内在逻辑性,把它归并成几个公因子,每个公因子分别代表空间的一个维度,如果经过正交或斜 交旋转的话,各个维度之间可以认为是不相关的,这些公因子能够相对完整地刻画对象的体系维度,最起码累计方差贡献率大于85%的话,就基本能够保证重要信 息不丢失了。一句话,你如果对研究对象到底应该分为几个维度不清楚的话,用因子分析可以通过数据内在逻辑告诉你。但如果你对研究对象体系比较清楚的话,那你直接确定维度,通过AHP计算出权重,就能够把系统表述清楚了。但这里面有巨大问题,单纯通过数据内 在逻辑来判断维度,常常是错误的,而主观判断其实更加科学,并非象统计学宣称的,数据说话才有发言权。真正有发言权的,是你对问题的经验认识程度。人们为 了避免被人嘲笑主观判断的失误,而越来越选择了统计分析,实际上,他们并不清楚,单纯用统计分析来做判断,才是最愚蠢的。只有主客观结合起来,才是相对科 学的,两者矛盾的时候,应该深入研究矛盾的根源,搞不清楚的话,我认为指标体系评价法要远比统计分析准确的多。而变量之所以能分布在不同的因子内,则是由 于其方差波动性大小和变量之间的相关性决定的,波动性越大,越排在前面的公因子中,各个公因子之间的变量是不相关的,而每个公因子之间的变量是相关的。因 子分析认为那些数据波动大的变量对对象影响作用更大,它们排在公因子的前列,这样单纯从数据逻辑来判断的准则你认为对吗?我想,如果管理和社会科学都这幺 认为的话,那错误将大大增加了。上面想法是我这两年做课题的体会,没有在任何一本书上看过相关说法,也许说的不对,这是我个人看法。如果让我选择的话,我 宁愿用指标体系评价法,体系几个维度事先就清楚,最多先用因子分析算算,看看数据波动性如何,到底能确定几个维度,只起辅助作用。研究者就是专家,指标体 系的维度由主观来做判断,这主要来自经验判断,而不是由数据判断,我认为其实更科学。当然,如果你对问题一无所知,那指标体系评价法用AHP来做的话,错 误很可能更多。我以前就强烈批判过AHP。说到底,没有一种评价方法是好的,说明问题就好。问题:那能对LISREL进行类似于因子分析的探索性因素分析了解吗?能给点评价么?3x答复:下面是探索性分析的原理:传统上所谈的因素分析)factor *** ysis)指的是探索性因素分析)exploratory factor *** ysis),它的目的是在承认有测量误差的情形下,尝试用少数的因素)factors)以解释许多变项间的相关关系。随着统计理论及电脑计算上的进展,目前因素分析的方法可分成探索性因素分析)exploratory factor *** ysis,EFA)及验证性因素分析)confirmatory factor *** ysis,CFA),这两类分析之间的差别在于研究者对研究变项间因素结构的了解程度不同。如果研究者对资料内所含的因素性质,结构及个数不是很 清楚,则可使用探索性因素分析试图找出能解释资料变项间相关关系的少数几个重要因素。若研究者从过去文献中的理论及自己的研究经验,而对资料间因素之数 目,结构有一定程度的了解及假设,则可使用验证性因素分析来验证该假设是否能解......>> 问题三:进行因子分析的前提条件是各变量之间应该怎么做 本来想给你截图的,可是传不上来,我就简单说一下哈。 首先你得进行一次预计算,选择菜单里分析――降维――因子分析,跳出主面板,把想分析的变量选到变量框里,然后点确定。这时候输出窗口里会只有一个或两个图表。其中有一个图表是主成分的方差贡献。这个图表里你要找到两个相邻的列(应该是第三列和第四列),其中前一个列指的是单个因子对方差的贡献率,后一个是因子累计贡献率。也就是说前一个列里边数值相加等于100,后一个列里边数值递增,最后一个等于100。假如前一个列里是60,30,10,那么后一列里就是60,90,100.两个列之间有一个和的关系。找到这两个列以后,你要找使得累计贡献率达到百分之八十的那个数。这个表的第一列是1,2,3,等等,它代表第几个因子,比如3指的那行就包括第三个因子的方差贡献率,累积到第三个因子的方差贡献率这两个数据。你要找到累计到达百分之八十的那个因子是第几个因子,然后就按提取几个因子进行计算。 通过预计算知道了提取几个因子之后,就开始正式计算。再次打开因子分析的主面板,在最右边一共有五个选项,分别是描述,抽取,旋转,得分,选项。这五个在预计算里边没有用,但是现在要用了。点继续。 点击描述,在对话框里选上初始变量分析,kmo统计量及bartlett球形检验这两个选项,(注意,kmo和bartlett是一个选项,选项名就是很长)这一步是用来判断变量是否适于进行因子分析的。 点击抽取,对话框里最上边的方法就选主成分,分析里选上相关性矩阵,输出选上未旋转的因子解和碎石图两个选项,抽取里选择因子的固定数目,在要提取的因子后边填上你预计算里算出的因子数目。点继续。 旋转里边选最大方差法,输出旋转解。继续。 得分里边选保存为变量,方法为回归,显示因子得分系数矩阵也要打上勾。继续。 确定。 然后就可以分析结果了。 先看kmo和bartlett的结果,kmo统计量越接近1,变量相关性越强,因子分析效果越好。通常0.7以上为一般,0.5以下不能接受,就是不适合做因子分析。bartlett检验从检验相关矩阵出发,如果p值,就是sig,比较小的话,一般认为小于0.05,当然越小越好,就适于因子分析。 如果这两个检验都合格的话,才可以去写因子模型。 为了便于描述,假设我们有两个因子f1,f2, 旋转变换后的因子载荷矩阵会告诉你每个变量用因子表示的系数。比如变量x1=系数1*f1+系数2*f2,变量2以此类推。 因子得分系数矩阵会告诉你每个因子里各变量占得权重,比如f1=系数1*x1+系数2*x2+。。。 根据这个我们就能算出因子得分了。 因为之前选择了将因子保存为新变量,所以spss会直接保存两个因子得分为两个新变量, 然后我们不是有一个公式吗 总得分=因子1的方差贡献率*因子1的得分+因子2的方差贡献率*因子2的得分+... 根据这个公式计算一下就可以了。 用spss或者Excel都可以。 希望能对你有帮助哦。 ppv课,大数据培训专家,最专业的大数据培训平台。为你提供最好的spss学习教程哦。 问题四:excel2003如何做因子分析 都不知道你所说的因子是指的那个因子,数据管理因子还是什么的,提问清楚些。别人也比较容易理解! 问题五:怎样用SPSS做因子分析 在表因子变量解释贡献率(Total Variance Explained)中,看各个主因子的方差贡献率(Initial Eigenvalues栏下的% of Variance),例如图中三个主因子对应的权重为52.132、21.017、11.405,测将三个权重进行归一化处理,52.132/(52.132+21.017+11.405)、21.017/(52.132+21.017+11.405)、11.405/(52.132+21.017+11.405),所得三个数即为主因子权重 问题六:怎样用spss做因子分析? SPSS→分析→数据缩减→因子分析→选择自变量和因变量→描述里面选择KMO检验和球型检验;海转选择最大方差旋转法→确定→结果 问题七:如何利用因子分析的排名进行分析 你通过因子分析 中一个选项 保存因子得分,之后会在原数据最后保存生成3列因子得分,假设为a1 a2 a3 代表3个因子然后根据因子分析得出三个因子的特征根值,分别计算粗3个因子的权重,分别为各自的特征根值/三个因子特征根值之和. 然后综合因子得分=a1*对应权重+a2*对应权重+a3*对应权重之后就根据综合因子得分进行大小排名 就这样出来了 问题八:因子分析法需要哪些数据,用什么软件做 因子分析是用因子概括变量信息,所以首先自变量是什么?三年数据当然是一起录入,通过三年的变化来反映因变量的变化。苏萦2023-06-10 09:13:061