分析

聚类分析可分为Q型聚类和R型聚类,请问Q和R这两个字母的含义是什么,为什么叫Q和R而不叫其他的字母

所以你们老师最后怎么说的,我查了一些外文网站,也没查到
康康map2023-06-12 07:15:523

python代码如何应用系统聚类和K-means聚类法进行聚类分析? 然后选择变量,建立适当的模型?

-Means聚类算法k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。随机选择k个点作为初始的聚类中心。对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。对每个簇,计算所有点的均值作为新的聚类中心。重复2,3直到聚类中心不再发生改变Figure 1K-means的应用数据介绍:现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。实验目的:通过聚类,了解1999年各个省份的消费水平在国内的情况。技术路线:sklearn.cluster.Kmeans数据实例:
无尘剑 2023-06-12 07:15:521

spss做聚类分析是不是不能只有一个变量啊

可以给我看看
左迁2023-06-12 07:15:522

回归分析中加入cluster,聚类对象是根据解释变量来确定吗

如下;1、与多元分析的其他方法相比,聚类分析是很粗糙的,理论尚不完善,但由于它成功地应用于心理、经济、社会、管理、医学、地质、生态、地震、气象、考古、企业决策等,因此成了多元分析的重要方法,统计包中都有丰富的软件,对数据进行聚类处理。2、聚类分析除了独立的统计功能外,还有一个辅助功能,就是和其他统计方法配合,对数据进行预处理。例如,当总体不清楚时,可对原始数据进行聚类,根据聚类后相似的数据,各自建立回归分析,分析的效果会更好。同时如果聚类不是根据个案,而是对变量先进行聚类,聚类的结果,可以在每一类推出一个最有代表性的变量,从而减少了进入回归方程的变量数。3、聚类分析是研究按一定特征,对研究对象进行分类的多元统计方法,它并不关心特征及变量间的因果关系。分类的结果,应使类别间个体差异大,而同类的个体差异相对要小。
九万里风9 2023-06-12 07:15:501

聚类分析可不可以定性和定量变量一块分析

可以的.spss 聚类分析 在大致有三类方法:一类是系统聚类法,可以是定性和定量变量都在一块,对变量类型无要求二是k-mean法,该方法只能针对定量变量类型进行聚类三是two-step二阶段聚类法,该方法对变量类型也无要求。
wpBeta2023-06-12 07:15:501

聚类分析时如果各变量之间有权重关系该怎么处理

本来想给你截图的,可是传不上来,我就简单说一下哈。首先你得进行一次预计算,选择菜单里分析——降维——因子分析,跳出主面板,把想分析的变量选到变量框里,然后点确定。这时候输出窗口里会只有一个或两个图表。其中有一个图表是主成分的方差贡献。这个图表里你要找到两个相邻的列(应该是第三列和第四列),其中前一个列指的是单个因子对方差的贡献率,后一个是因子累计贡献率。也就是说前一个列里边数值相加等于100,后一个列里边数值递增,最后一个等于100。假如前一个列里是60,30,10,那么后一列里就是60,90,100.两个列之间有一个和的关系。找到这两个列以后,你要找使得累计贡献率达到百分之八十的那个数。这个表的第一列是1,2,3,等等,它代表第几个因子,比如3指的那行就包括第三个因子的方差贡献率,累积到第三个因子的方差贡献率这两个数据。你要找到累计到达百分之八十的那个因子是第几个因子,然后就按提取几个因子进行计算。通过预计算知道了提取几个因子之后,就开始正式计算。再次打开因子分析的主面板,在最右边一共有五个选项,分别是描述,抽取,旋转,得分,选项。这五个在预计算里边没有用,但是现在要用了。点继续。点击描述,在对话框里选上初始变量分析,kmo统计量及bartlett球形检验这两个选项,(注意,kmo和bartlett是一个选项,选项名就是很长)这一步是用来判断变量是否适于进行因子分析的。点击抽取,对话框里最上边的方法就选主成分,分析里选上相关性矩阵,输出选上未旋转的因子解和碎石图两个选项,抽取里选择因子的固定数目,在要提取的因子后边填上你预计算里算出的因子数目。点继续。旋转里边选最大方差法,输出旋转解。继续。得分里边选保存为变量,方法为回归,显示因子得分系数矩阵也要打上勾。继续。确定。然后就可以分析结果了。先看kmo和bartlett的结果,kmo统计量越接近1,变量相关性越强,因子分析效果越好。通常0.7以上为一般,0.5以下不能接受,就是不适合做因子分析。bartlett检验从检验相关矩阵出发,如果p值,就是sig,比较小的话,一般认为小于0.05,当然越小越好,就适于因子分析。如果这两个检验都合格的话,才可以去写因子模型。为了便于描述,假设我们有两个因子f1,f2,旋转变换后的因子载荷矩阵会告诉你每个变量用因子表示的系数。比如变量x1=系数1*f1+系数2*f2,变量2以此类推。因子得分系数矩阵会告诉你每个因子里各变量占得权重,比如f1=系数1*x1+系数2*x2+。。。根据这个我们就能算出因子得分了。因为之前选择了将因子保存为新变量,所以spss会直接保存两个因子得分为两个新变量,然后我们不是有一个公式吗总得分=因子1的方差贡献率*因子1的得分+因子2的方差贡献率*因子2的得分+...根据这个公式计算一下就可以了。用spss或者Excel都可以。希望能对你有帮助哦。ppv课,大数据培训专家,最专业的大数据培训平台。为你提供最好的spss学习教程哦。-
北营2023-06-12 07:15:501

spss如何聚类分析

1、现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本,如果都纳入分析的话,岂不太麻烦太浪费?所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。2、4个分类变量量纲各自不同,这一次我们先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。3、只输出“树状图”就可以了,个人觉得冰柱图很复杂,看起来没有树状图清晰明了。从proximity matrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。
黑桃花2023-06-12 07:15:491

能不能用SPSS做0-1变量的聚类分析

  要求是最少二十个样本,十个变量。1、主成分分析在于对原始变量的线性变换,注意是转换、变换;而因子分析在于对原始变量的剖析,注意是剖析,是分解,分解为公共因子和特殊因子。  2、这两种分析法得出的新变量,也就是成分或者因子,并不是原始变量筛选或者提出后剩余的变量。  3、因子分析只能解释部分变异(指公共因子),主成分分析能解释所有变异(如果提取了所有成分)。  4、主成分分析,有几个变量就至少有几个成分,一般只提取能解释80%以上的成分;因子分析,有几个变量不一定有几个公共因子,因为这里的因子是公因子,潜在的存在与每一个变量中,需要从每一个变量中去分解,无法解释的部分是特殊因子。  5、spss因子分析过程对各变量间量纲和单位造成的影响,默认自动进行标准化处理,因此不必要在开始之前单独进行数据标准化处理,因为,标准化与否结果一致。  6、spss因子分析重要结果:KMO值,此值是否进行计算与变量个数、样本个数有关,不一定会在每次执行中都显示,如没有此结果,可通过调整变量和样本的比例实现。-
西柚不是西游2023-06-12 07:15:491

SPSS聚类分析过程解析

SPSS聚类分析过程解析 SPSS手把手的教程案例不错,数据小兵是一个专注SPSS研究的博客,里面涉及SPSS各种经典分析方法的实际操作过程解析。今天给大家推荐的是《利用SPSS进行聚类分析的过程》。 案例过程涉及到spss层次聚类中的Q型聚类和R型聚类,单因素方差分析,Means过程等,是一个很不错的多种分析方法联合使用的 聚类分析案例。 案例数据源:有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。数据来自《SPSS for Windows 统计分析》data11-03。 【一】问题一:选择那些变量进行聚类?——采用“R型聚类” 1、如何筛选聚类变量?现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本,如果都纳入分析的话,岂不太麻烦太浪费?所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。 2、4个分类变量量纲各自不同,这一次我们先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。 3、只输出“树状图”就可以了,个人觉得冰柱图很复杂,看起来没有树状图清晰明了。从proximity matrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。 【二】问题二:20中啤酒能分为几类?——采用“Q型聚类” 1、现在开始对20中啤酒进行聚类。开始不确定应该分为几类,暂时用一个3-5类范围来试探。Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。 2、主要通过树状图和冰柱图来理解类别。最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。我这里试着确定分为4类。选择“保存”,则在数据区域内会自动生成聚类结果。 【三】问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析” 1、聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。 2、这个过程一般用 单因素方差分析来判断。注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。方差分析结果显示,三个聚类变量sig值均极显著,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。 【四】问题四:聚类结果的解释?——采用”均值比较描述统计“ 1、聚类分析最后一步,也是最为困难的就是对分出的各类进行定义解释,描述各类的特征,即各类别特征描述。这需要专业知识作为基础并结合分析目的才能得出。 2、我们可以采用spss的means均值比较过程,或者excel的透视表功能对各类的各个指标进行描述。其中,report报表用于描述聚类结果。对各类指标的比较来初步定义类别,主要根据专业知识来判定。这里到此为止。
水元素sl2023-06-12 07:15:491

什么是系统聚类分析?系统聚类方法有几种

1.k-mean聚类分析 适用于样本聚类; 2.分层聚类 适用于对变量聚类; 3.两步聚类 适用于分类变量和连续变量聚类; 4.基于密度的聚类算法; 5.基于网络的聚类; 6.机器学习中的聚类算法; 前3种,可用spss简单操作实现;
善士六合2023-06-12 07:15:491

SPSS 的K-MEANS 聚类分析,进行分析的变量一定要是 1 2 3 4 5 打分这种的原始变量吗

K-mean聚类方法 对聚类变量的要求 必须是连续型数据变量,就是你说的必须是12345这样的打分,或者是比如距离 重量 这种实际数据你如果你有其他的分类变量数据 可以尝试用系统聚类方法,或者 2阶段聚类
阿啵呲嘚2023-06-12 07:15:491

案例详解SPSS聚类分析全过程

案例详解SPSS聚类分析全过程案例数据源:有20种12盎司啤酒成分和价格的数据,变量包括啤酒名称、热量、钠含量、酒精含量、价格。【一】问题一:选择那些变量进行聚类?——采用“R型聚类”1、现在我们有4个变量用来对啤酒分类,是否有必要将4个变量都纳入作为分类变量呢?热量、钠含量、酒精含量这3个指标是要通过化验员的辛苦努力来测定,而且还有花费不少成本,如果都纳入分析的话,岂不太麻烦太浪费?所以,有必要对4个变量进行降维处理,这里采用spss R型聚类(变量聚类),对4个变量进行降维处理。输出“相似性矩阵”有助于我们理解降维的过程。2、4个分类变量量纲各自不同,这一次我们先确定用相似性来测度,度量标准选用pearson系数,聚类方法选最远元素,此时,涉及到相关,4个变量可不用标准化处理,将来的相似性矩阵里的数字为相关系数。若果有某两个变量的相关系数接近1或-1,说明两个变量可互相替代。3、只输出“树状图”就可以了,个人觉得冰柱图很复杂,看起来没有树状图清晰明了。从proximitymatrix表中可以看出热量和酒精含量两个变量相关系数0.903,最大,二者选其一即可,没有必要都作为聚类变量,导致成本增加。至于热量和酒精含量选择哪一个作为典型指标来代替原来的两个变量,可以根据专业知识或测定的难易程度决定。(与因子分析不同,是完全踢掉其中一个变量以达到降维的目的。)这里选用酒精含量,至此,确定出用于聚类的变量为:酒精含量,钠含量,价格。【二】问题二:20中啤酒能分为几类?——采用“Q型聚类”1、现在开始对20中啤酒进行聚类。开始不确定应该分为几类,暂时用一个3-5类范围来试探。Q型聚类要求量纲相同,所以我们需要对数据标准化,这一回用欧式距离平方进行测度。2、主要通过树状图和冰柱图来理解类别。最终是分为4类还是3类,这是个复杂的过程,需要专业知识和最初的目的来识别。我这里试着确定分为4类。选择“保存”,则在数据区域内会自动生成聚类结果。【三】问题三:用于聚类的变量对聚类过程、结果又贡献么,有用么?——采用“单因素方差分析”1、聚类分析除了对类别的确定需讨论外,还有一个比较关键的问题就是分类变量到底对聚类有没有作用有没有贡献,如果有个别变量对分类没有作用的话,应该剔除。2、这个过程一般用单因素方差分析来判断。注意此时,因子变量选择聚为4类的结果,而将三个聚类变量作为因变量处理。方差分析结果显示,三个聚类变量sig值均极显著,我们用于分类的3个变量对分类有作用,可以使用,作为聚类变量是比较合理的。【四】问题四:聚类结果的解释?——采用”均值比较描述统计“1、聚类分析最后一步,也是最为困难的就是对分出的各类进行定义解释,描述各类的特征,即各类别特征描述。这需要专业知识作为基础并结合分析目的才能得出。2、我们可以采用spss的means均值比较过程,或者excel的透视表功能对各类的各个指标进行描述。其中,report报表用于描述聚类结果。对各类指标的比较来初步定义类别,主要根据专业知识来判定。这里到此为止。以上过程涉及到spss层次聚类中的Q型聚类和R型聚类,单因素方差分析,means过程等,是一个很不错的多种分析方法联合使用的案例。
hi投2023-06-12 07:15:491

聚类分析需要确定自变量和因变量吗

聚类分析根据数据拥有的特征对数据进行分组。聚类分析根据使对象相似的因素对对象进行分组。聚类分析也称为细分分析或分类法分析。聚类分析不能区分因变量和自变量。聚类分析广泛用于心理学,生物学,统计学,数据挖掘,模式识别和其他社会科学等领域。
人类地板流精华2023-06-12 07:15:481

能不能用SPSS做0-1变量的聚类分析

两分类变量的主成分分析
善士六合2023-06-12 07:15:482

二分类变量能够直接聚类分析吗?

能。在医学领域中,有一些随机事件是只具有两种互斥结果的离散型随机事件,称为二项分类变量(dichotomousvariable),能直接聚类分析。聚类分析指将物理或抽象对象的集合分组为由类似的对象组成的多个类的分析过程,它是一种重要的人类行为。
阿啵呲嘚2023-06-12 07:15:471

因子分析的目的是对变量进行聚类吗

对。因子分析的主要目的是降维对变量分类,而聚类分析主要目的是对变量或样本聚集而分类。
hi投2023-06-12 07:15:471

对个案的聚类分析和对变量的聚类分析中的个案和聚类分别是什么意思的

个案其实就是SPSS表格中的行,每行代表一个样本的数据。变量就是SPSS表格中的列,每列是一种变量,如年龄,性别等。
北境漫步2023-06-12 07:15:461

能不能用一个变量进行聚类分析

可以,采用twostep两阶段聚类这个聚类方法可以用于混合多种变量类型的聚类或者如果是全部都是0,1变量的还可以采用系统聚类,该种方法是用于一种类型的变量聚类,可以全是分类变量,可以全部是连续变量kmean法只能用于连续数据变量聚类
FinCloud2023-06-12 07:15:451

聚类分析(2)聚类技术

系列文章: 聚类分析(1)之市场细分 聚类分析方法分为快速聚类和系统聚类(层次聚类)。快速聚类spss使用的是K-means聚类算法。该聚类方法需要指定聚类数量,通常我们需要多次尝试并分析多少个类合适。聚类分析适合大样本量情况。样本个数超过500,变量数超过50(并不是强制的)。 聚类分析数据类型为数值型,非数值型变量需要做转换,二分类变量(0,1)可以参与聚类分析。聚类多数适用于连续变量,分类变量适用对应分析。 聚类分析对极端值敏感,同时变量数据的量纲也会影响到聚类结果,需要做标准化处理。 结果依赖于第一次初始分类,聚类中绝大多数重要变化均发生在第一次分配中。 聚类分析中,关于分类时,一种是利用相似系数,性质越接近的,相似系数就越接近1或者-1,通过此来确定归类。另一种是利用空间距离,将每一个点看做m维空间上的一个点,并在空间中定义距离。 在spss中可以设定迭代次数。 来自《Python数据科学:技术详解与商业实践》。聚类效果的评估基于结果的可解释性,通常需要多次聚类才能找到合适的分类。 数据包含6个变量(字段),除了客户编号为名义变量外,其他都是连续变量。 不论什么做什么数据分析,第一步就是查看原始数据的分布,这里应该查看一下各变量的数据分布状态:均值,极大极小值,方差,缺失情况。 通过spss分析-描述 可以看出1.量纲差异较大。2极大极小值组距很大。从这方面可以讲,我们需要做标准化处理。先尝试不做标准化处理。 通过业务知识等,决定先设定5个细分人群,后面可以再尝试4和6。 先做标准化处理:spss分析-描述。在左下角中有一个“将标准化值另存为变量”,标准化为Z分数。确定后会生成新的标准化后的变量。 对标准化后的变量聚类:分析-分类-K-means 选择迭代次数同时将分类结果存在表中。 默认迭代次数是10次,迭代次数过少,可能已经迭代完了仍无法收敛,所以需要增加迭代次数。将分类结果保存在表中,是指对每个样本标注被分到哪一类了。这一步的目的是为了后续通过其他方法(比如比较均值)来看5类人群之间的差异。停 输出4个表格,都是经过标准化处理的。主要查看是否已经迭代收敛。然后下一步就是做均值比较等,目的是查看5类人群是否有差异,分类是否合理。同时还可以在对4和6类人群试做分类。聚类分析无法检验标准, 通过比较均值,可以了解5类人群之间的差异 输出的结果 从结果中可以看出 第一类:高端商用客户,总通话时间长,工作日上班时间通话比例高 第二类:少使用低端客户,总通话时间短,各时段通话时间都短 第三类:中端商用客户,总通话时间居中,工作日上班时间通话比例高 第四类:中端日常用客户,总通话时间居中,工作日下班时间通话比例高 第五类:长聊客户,每次通话时间长
墨然殇2023-06-12 07:15:451

spss进行聚类分析时,对变量有什么要求

你在聚类分析界面里选择对分类组别进行方差分析,通过方差检验值来判断分几组比较好。
小菜G的建站之路2023-06-12 07:15:452

怎样用STATA完成对观察变量的聚类分析

运用聚类分析法主要做好分析表达数据:  1、通过一系列的检测将待测的一组基因的变异标准化,然后成对比较线性协方差。  2、通过把用最紧密关联的谱来放基因进行样本聚类,例如用简单的层级聚类(hierarchical clustering)方法。这种聚类亦可扩展到每个实验样本,利用一组基因总的线性相关进行聚类。  3、多维等级分析(multidimensional scaling analysis,MDS)是一种在二维Euclidean “距离”中显示实验样本相关的大约程度。  4、K-means方法聚类,通过重复再分配类成员来使“类”内分散度最小化的方法。  聚类分析法是理想的多变量统计技术,主要有分层聚类法和迭代聚类法。聚类通过把目标数据放入少数相对同源的组或“类”(cluster)里。
苏州马小云2023-06-12 07:15:452

有10个自变量,对一个因变量产生影响。现在对要知道这十个变量是否交互影响,用SPSS怎么分析?

它的意思是让你每两个自变量都相乘设置为一个新变量加入方程里。你可以通过vif检验来看自变量之间到底有没有相互影响。ppv课学习网站
可桃可挑2023-06-12 07:15:391

SPSS证明A/B两个变量有交互效应,帮忙看下简单效应的结果如何分析

应该在交互作用的不同水平下分别进行简单效应的估计我替别人做这类的数据分析蛮多的
小白2023-06-12 07:15:383

两变量列联分析可以分析变量间的交互效应吗

可以。双变量列联分析主要用于计数和汇总两个分类变量的数据,可以通过它可以使两个变量交叉分类的频数、比例等一目了然,从而为进一步分析做准备。
人类地板流精华2023-06-12 07:15:371

无交互作用的双因素方差分析涉及的变量有几个

无交互作用的双因素方差分析涉及的变量有几个:四个交互作用(interaction)是指一个因素各个水平之间反应量的差异随其他因素的不同水平而发生变化的现象。它的存在说明同时研究的若干因素的效应非独立。交互作用的效应可度量一个因素不同水平的效应变化依赖于另一个或几个因素的水平的程度。当交互作用存在时,单纯研究某个因素的作用没有意义,必须分别探讨另一个因素不同水平上该因素的作用模式。若所有实验设计的单元格内都只有一个影响因素时,则无法衡量自变量之间的交互作用。当存在交互作用时,单纯研究某个因素的作用是没有意义的,必须分另一个因素的不同水平研究该因素的作用大小。如果所有单元格内都至多有一个元素,则交互作用无法测量,只能不予考虑,最典型的例子就是配伍设计的方差分析。实验设计方法中交互作用表示当两种或几种因素水平同时作用时的效果较单一水平因素作用的效果加强或者减弱的作用。交互作用是研究中必须考虑的因素。正交试验设计中,有专门的列指标表达交互作用。
阿啵呲嘚2023-06-12 07:15:371

列联分析无法处理变量间的交互效应对吗?

列联分析无法处理变量间的交互效应是不对。列联分析通常用来分析两个分类变量之间或者一个分类变量与顺序变量之间是否存在关联,关联的紧密程度如何也是根据两个定类变量的取值进行交互分类形成二维表来分析变量间是否相关的一种方法。
此后故乡只2023-06-12 07:15:191

如何做性别和一个连续变量的交互作用分析

可以使用多元线性回归分析。只要把那个自变量当成一个属性变量来处理做回归分析即可。比如,当性别是一个需要考虑的因素的时候,可以设一个变量 s,s=1时代表男性,s=0时代表女性。又比如,当需要考虑样本个体的学历的时候,可以设一个变量 x,x=1时代表有本科文凭,x=0时没有。这种时候,x的回归拟合系数还是有实际意义的,表示学历的贡献度。
苏州马小云2023-06-12 07:15:132

生存分析(二)-- Cox比例风险模型(Cox proportional-hazards model)

Cox比例风险模型 (考克斯,1972年)是常用的统计在医学研究调查的患者和一个或多个预测变量的存活时间之间的关联回归模型。 在上一章 生存分析基础 中,我们描述了生存分析的基本概念以及生存数据的分析和汇总方法,包括: 上述方法-Kaplan-Meier曲线和logrank检验-是 单变量分析的 示例。他们根据调查中的一个因素描述了生存情况,但忽略了其他因素的影响。 此外,仅当预测变量为分类变量时(例如:治疗A与治疗B;男性与女性),Kaplan-Meier曲线和对数秩检验才有用。对于定量预测指标(例如基因表达,体重或年龄),它们并不容易工作。 一种替代方法是Cox比例风险回归分析,它既适用于定量预测变量也适用于类别变量。此外,Cox回归模型扩展了生存分析方法,可以同时评估几种风险因素对生存时间的影响。 在本文中,我们将描述Cox回归模型并提供使用R软件的实际示例。 内容 在临床研究中,有许多情况,其中几个已知量(称为 协变量covariates )可能会影响患者的预后。 例如,假设比较了两组患者:有和没有特定基因型的患者。如果其中一组还包含较年长的个体,则生存率的任何差异都可能归因于基因型或年龄,或两者都有。因此,在调查与任何一个因素相关的生存率时,通常需要针对其他因素的影响进行调整。 统计模型是一种常用工具,可以同时分析多个因素的生存率。此外,统计模型还提供了每个因素的影响大小。 考克斯比例风险模型是用于对生存分析数据进行建模的最重要方法之一。下一节介绍Cox回归模型的基础。 该模型的目的是同时评估几个因素对生存的影响。换句话说,它允许我们检查特定因素如何影响特定时间点特定事件(例如,感染,死亡)的发生率。该比率通常称为风险比率。预测变量(或因子)在生存分析文献中通常称为 协变量 covariates 。 Cox模型由 h(t) 表示的 风险函数 表示。简而言之,危险函数可以解释为在时间t死亡的风险。可以估计如下: 其中: Cox模型可以被写为变量 x(i)的 危险对数的多元线性回归,而基线危险是随时间变化的“截距”项。 系数 bi 称为危险比率(HR,hazard ratio)。 bi 值大于零,或相当于风险比率大于1,表明随着第 i 个协变量值的增加,事件风险增加,因此生存时间缩短。 换句话说,风险比大于1表示协变量与事件概率正相关,因此与存活时间负相关。 总之, HR=1:无影响 HR<1:危害降低 HR>1:危险增加 在癌症研究中: Cox模型的关键假设是观察组(或患者)的危险曲线应成比例,并且不能交叉。 假设两个x值不同的患者k和k"。相应的风险函数可以简单地写成如下: 因此,Cox 模型是一个比例风险模型:任何一组事件的风险都是其他任何一组事件风险的常数倍。这一假设意味着,如上所述,各组的危险曲线应成比例,不能交叉。 换言之,如果一个人在某个初始时间点的死亡风险是另一个人的两倍,那么在以后的任何时候,死亡风险仍然是另一个人的两倍。 这种比例风险的假设应该得到检验。我们将在本系列的下一篇文章中讨论评估比例性的方法: Cox模型假设 。 我们将使用两个R包: 函数 coxph ()[在 survival 包中]可用于计算R中的Cox比例风险回归模型。 简化格式如下: 我们将在生存R数据包中使用肺癌数据。 我们将使用以下协变量来拟合Cox回归:年龄,性别,ph.ecog和wt.loss。 我们首先为所有这些变量计算单变量Cox分析。然后我们将使用两个变量来拟合多元Cox分析,以描述这些因素如何共同影响生存。 单变量Cox分析的计算公式如下: Cox模型的功能 摘要 ()产生更完整的报告: Cox回归结果可以解释为: 要将单变量coxph函数一次应用于多个协变量,请输入以下命令: 上面的输出显示了每个变量相对于总生存率的回归beta系数,效应大小(以危险比给出)和统计显着性。通过单独的单变量Cox回归评估每个因素。 从上面的输出中, 现在,我们要描述这些因素如何共同影响生存。为了回答这个问题,我们将执行多元Cox回归分析。由于变量ph.karno在单变量Cox分析中不重要,因此在多变量分析中将其跳过。我们将3个因素(性别,年龄和ph.ecog)纳入多元模型。 时间常数协变量的死亡时间的Cox回归指定如下: 所有三个总体测试(似然性,Wald和得分)的p值均显着,表明该模型具有显著性。这些测试评估了所有beta的综合零假设为0。在上面的示例中,检验统计量非常一致,并且完全拒绝了综合零假设。 在多变量Cox分析中,协变量性别和ph.ecog保持显着性(p <0.05)。但是,协变量年龄不显着(p = 0.23,大于0.05)。 性别的p值为0.000986,危险比HR = exp(coef)= 0.58,表明患者的性别与死亡风险降低之间有很强的关系。协变量的危险比可解释为对危险的倍增效应。例如,保持其他协变量不变(女性(性别= 2))可将危险降低0.58或42%。我们得出结论,成为女性与良好的预后相关。 同样,ph.ecog的p值为4.45e-05,危险比HR = 1.59,表明ph.ecog值与死亡风险增加之间有很强的关系。保持其他协变量不变,ph.ecog的值越高,生存率越低。 相比之下,年龄的p值现在为p = 0.23。危险比HR = exp(coef)= 1.01,95%置信区间为0.99至1.03。由于HR的置信区间为1,因此这些结果表明,在调整phog值和患者的性别之后,年龄对HR差异的贡献较小,并且仅趋于显着。例如,在其他协变量保持不变的情况下,再增加一岁会引起每日死亡危险,其系数为expβ= 1.01或1%,这并不是一个重要的贡献。 将Cox模型拟合到数据后,就可以可视化特定风险组在任何给定时间点的预测生存率。函数 survfit ()估计生存比例,默认情况下为协变量的平均值。 我们不妨展示估计的生存率如何取决于目标协变量的值。 考虑到这一点,我们想评估性别对估计生存率的影响。在这种情况下,我们用两行构造一个新的数据帧,每一行代表性别。其他协变量固定为其平均值(如果是连续变量)或最低水平(如果它们是离散变量)。对于伪协变量,平均值为数据集中编码为1的比例。该数据帧通过 newdata 参数传递给 survfit (): 在本文中,我们描述了Cox回归模型,用于同时评估多种风险因素与患者生存时间之间的关系。我们演示了如何使用 生存 包计算Cox模型。此外,我们描述了如何使用 survminer 软件包来可视化分析结果。
水元素sl2023-06-12 07:15:111

回归分析法计算公式是什么?

回归分析法ab计算公式是y=a+bx+ε。y:因变量,即套期工具的公允价值变动;x:自变量,即被套期风险引起的被套期项目价值变动;a:y轴上的截距;b:回归直线的斜率,反映套期工具价值变动/被套期项目价值变动的比率;ε:均值为零的随机变量,服从正态分布。回归分析:研究变量之间相互关系的具体形式,对具有相关关系的变量之间的数量联系进行测定,确定一个相关的数学方程式,根据这个数学方程式可以从已知量来推测未知量,从而为估算和预测提供了一个重要方法。分类:1、根据因变量和自变量的个数来分类:一元回归分析和多元回归分析;2、根据因变量和自变量的函数表达式来分类:线性回归分析和非线性回归分析。
阿啵呲嘚2023-06-12 07:15:072

SPSS软件进行数据分析时,如何选择检验方法?

什么意思 没有懂
ardim2023-06-12 07:15:033

用spss做的Duncand检验结果,怎么分析数据,该怎么标abcd

1c2bc3a4ab
人类地板流精华2023-06-12 07:15:034

如何使用spss比率分析

比率分析主要用于对两个变量间变量值的比率变化进行描述分析,适用于定距型变量(scale)。例如,可以对受处分的学生和没受处分的学生的上网时间与用计算机的时间进行比率分析。比率分析生成比率变量,并对该比率变量计算基本描述性统计量(如均值、中位数、标准差、全距等),进而刻画出比率变量的集中趋势和离散程度
左迁2023-06-12 07:15:032

如何进行spss软件中描述统计的数据分析呢?

1.数据管理专家 Foxtable将Excel、Access、Foxpro以及易表的优势融合在一起,普通用户不需要编写任何代码,即可高效完成日常数据管理工作,真正做到拿来即用。2.程序开发专家 Foxtable不仅是一个优秀的应用软件,同时又是一个高效率的开发工具,几乎人人都能掌握。普通人也能开发出让资深程序员目瞪口呆的软件,不再是天方夜谭。3.报表输出专家 Foxtable提供了四大报表设计工具,既有可视化的,也有使用模板和代码的,不仅能快速设计和输出各种复杂报表,还可轻松开发各种票据套打程序。4.数据统计专家 Foxtable提供了汇总模式、分组统计、交叉统计等多种统计工具,不仅性能卓越,而且使用简单,用户只需单击几次鼠标,即可得到任何想要的统计结果。5.融合B/S和C/S优势 Foxtable创造性地融合了B/S和C/S的优势,用户开发的项目不仅像B/S软件一样可以远程部署,同时又像C/S软件那样,具备良好的用户体验和交互性。6.海量数据管理 Foxtable不仅内建数据库,还支持SQL Server和Oracle,并提供了动态加载、分页加载、后台统计等功能,使得普通用户也能轻松开发海量数据管理系统。、 操作简便 界面非常友好,除了数据录入及部分命令程序等少数输入工作需要键盘键入外,大多数操作可通过鼠标拖曳、点击“菜单”、“按钮”和“对话框”来完成。 2、 编程方便 具有第四代语言的特点,告诉系统要做什么,无需告诉怎样做。只要了解统计分析的原理,无需通晓统计方法的各种算法,即可得到需要的统计分析结果。对于常见的统计方法,SPSS的命令语句、子命令及选择项的选择绝大部分由“对话框”的操作完成。因此,用户无需花大量时间记忆大量的命令、过程、选择项。 3、 功能强大 具有完整的数据输入、编辑、统计分析、报表、图形制作等功能。自带11种类型136个函数。SPSS提供了从简单的统计描述到复杂的多因素统计分析方法,比如数据的探索性分析、统计描述、列联表分析、二维相关、秩相关、偏相关、方差分析、非参数检验、多元回归、生存分析、协方差分析、判别分析、因子分析、聚类分析、非线性回归、Logistic回归等。 4、 全面的数据接口 能够读取及输出多种格式的文件。比如由dBASE、FoxBASE、FoxPRO产生的*.dbf文件,文本编辑器软件生成的ASCⅡ数据文件,Excel的*.xls文件等均可转换成可供分析的SPSS数据文件。能够把SPSS的图形转换为7种图形文件。结果可保存为*.txt, word, PPT及html格式的文件。 5、 灵活的功能模块组合 SPSS for Windows软件分为若干功能模块。用户可以根据自己的分析需要和计算机的实际配置情况灵活选择。 6、针对性强SPSS针对初学者、熟练者及精通者都比较适用。并且现在很多群体只需要掌握简单的操作分析,大多青睐于SPSS,像薛薇的《基于SPSS的数据分析》一书也较适用于初学者。而那些熟练或精通者也较喜欢SPSS,因为他们可以通过编程来实现更强大的功能。VB.NET应用范围广泛,而且使用其进行编程会给开发人员带来一种不一样的感觉。可以为程序员们打造一个安全稳定的开发环境。水晶报表可以由很多的方法得到,其中一个就是使用VB.NET来创建,VB.NET水晶报表提供了非常丰富模型以使我们能够在运行时操作属性和方法。如果你正在使用VB.NET开发.Net程序,那么你就不需要再安装其它软件了,因为他已经内嵌在VB.NET中了。 VB.NET水晶报表有下面一些主要的优点:◆快速的报表开发◆能够导出成为复杂的交互性图表◆可以与其它控件一起在WebForm中使用◆能够动态地将报表导出成为.pdf,.doc,xls,html,rtf等多种格式
苏州马小云2023-06-12 07:15:024

如何进行spss软件中描述统计的数据分析呢?

spss描述统计分析有很多方法,你是需要做哪些描述分析,统计百分比,还是平均数,标准差等等
FinCloud2023-06-12 07:15:013

spss中duncan结果怎么分析

  方法/步骤  1、首先,打开或者是新建一组数据,这里是打开一组案例分析中的数据进行分析。  2、在浏览窗口中找到需要分析的数据。  3、选择分析,描述统计中的比率,单击打开。  4、弹出一个设置窗口,我们再这里设置比率的分子和分母还有分组变量。  分子和分母分别表示比率变量中的分子和分母变量。  分组变量一般是叙事变量,使用数值代码或者是字符串对分组变量进行编码。  5、这是根据数据中的变量设置的三个分值。  6、下面是对统计量进行设置分析。  打开统计量窗口,里面有四大块,根据数据统计分析自定义设置,设置完成之后确定即可。  7、下面是根据数据分析设置的显示结果,如下图所示:
水元素sl2023-06-12 07:15:011

多变量统计分析中,现有一组顺序变量X,一组比率变量Y,想要研究两组变量的相关关系

你是有2个变量,还是很多变量?你的概念是模糊的我替别人做这类的数据分析蛮多的
CarieVinne 2023-06-12 07:14:591

怎样用做Eviews主成分分析和因子分析

主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差-协方差结构。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益。二、基本思想的异同(一)共同点主成分分析法和因子分析法都是用少数的几个变量(因子)来综合反映原始变量(因子)的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85%以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。并且新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,...,x3,经过坐标变换,将原有的p个相关变量xi作线性变换,每个主成分都是由原有p个变量线性组合得到。在诸多主成分Zi中,Z1在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度。聚类分析的基本思想是:采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系[3]。聚类分析是通过一个大的对称矩阵来探索相关关系的一种数学分析方法,是多元统计分析方法,分析的结果为群集。对向量聚类后,我们对数据的处理难度也自然降低,所以从某种意义上说,聚类分析也起到了降维的作用。(二)不同之处主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量),使它们尽可能多地保留原始变量的信息,且彼此不相关。它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0,或样本向量彼此相互垂直的随机变量),在这种变换中,保持变量的总方差(方差之和)不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分。依次类推。若共有p个变量,实际应用中一般不是找p个主成分,而是找出m(m
再也不做站长了2023-06-12 07:13:541

主成分分析,聚类分析,因子分析的基本思想以及他们各自的优缺点。

主成分分析就是将多项指标转化为少数几项综合指标,用综合指标来解释多变量的方差- 协方差结构。综合指标即为主成分。所得出的少数几个主成分,要尽可能多地保留原始变量的信息,且彼此不相关。因子分析是研究如何以最少的信息丢失,将众多原始变量浓缩成少数几个因子变量,以及如何使因子变量具有较强的可解释性的一种多元统计分析方法。聚类分析是依据实验数据本身所具有的定性或定量的特征来对大量的数据进行分组归类以了解数据集的内在结构,并且对每一个数据集进行描述的过程。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。三种分析方法既有区别也有联系,本文力图将三者的异同进行比较,并举例说明三者在实际应用中的联系,以期为更好地利用这些高级统计方法为研究所用有所裨益。二、基本思想的异同(一) 共同点主成分分析法和因子分析法都是用少数的几个变量(因子) 来综合反映原始变量(因子) 的主要信息,变量虽然较原始变量少,但所包含的信息量却占原始信息的85 %以上,所以即使用少数的几个新变量,可信度也很高,也可以有效地解释问题。并且新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1 ,x2 ,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。对新产生的主成分变量及因子变量计算其得分,就可以将主成分得分或因子得分代替原始变量进行进一步的分析,因为主成分变量及因子变量比原始变量少了许多,所以起到了降维的作用,为我们处理数据降低了难度。聚类分析的基本思想是: 采用多变量的统计值,定量地确定相互之间的亲疏关系,考虑对象多因素的联系和主导作用,按它们亲疏差异程度,归入不同的分类中一元,使分类更具客观实际并能反映事物的内在必然联系。也就是说,聚类分析是把研究对象视作多维空间中的许多点,并合理地分成若干类,因此它是一种根据变量域之间的相似性而逐步归群成类的方法,它能客观地反映这些变量或区域之间的内在组合关系[3 ]。聚类分析是通过一个大的对称矩阵来探索相关关系的一种数学分析方法,是多元统计分析方法,分析的结果为群集。对向量聚类后,我们对数据的处理难度也自然降低,所以从某种意义上说,聚类分析也起到了降维的作用。(二) 不同之处主成分分析是研究如何通过少数几个主成分来解释多变量的方差一协方差结构的分析方法,也就是求出少数几个主成分(变量) ,使它们尽可能多地保留原始变量的信息,且彼此不相关。它是一种数学变换方法,即把给定的一组变量通过线性变换,转换为一组不相关的变量(两两相关系数为0 ,或样本向量彼此相互垂直的随机变量) ,在这种变换中,保持变量的总方差(方差之和) 不变,同时具有最大方差,称为第一主成分;具有次大方差,称为第二主成分。依次类推。若共有p 个变量,实际应用中一般不是找p 个主成分,而是找出m (m < p) 个主成分就够了,只要这m 个主成分能反映原来所有变量的绝大部分的方差。主成分分析可以作为因子分析的一种方法出现。因子分析是寻找潜在的起支配作用的因子模型的方法。因子分析是根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同的组的变量相关性较低,每组变量代表一个基本结构,这个基本结构称为公共因子。对于所研究的问题就可试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。通过因子分析得来的新变量是对每个原始变量进行内部剖析。因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子和特殊因子两部分。具体地说,就是要找出某个问题中可直接测量的具有一定相关性的诸指标,如何受少数几个在专业中有意义、又不可直接测量到、且相对独立的因子支配的规律,从而可用各指标的测定来间接确定各因子的状态。因子分析只能解释部分变异,主成分分析能解释所有变异。 聚类分析算法是给定m 维空间R 中的n 个向量,把每个向量归属到k 个聚类中的某一个,使得每一个向量与其聚类中心的距离最小。聚类可以理解为: 类内的相关性尽量大,类间相关性尽量小。聚类问题作为一种无指导的学习问题,目的在于通过把原来的对象集合分成相似的组或簇,来获得某种内在的数据规律。从三类分析的基本思想可以看出,聚类分析中并没于产生新变量,但是主成分分析和因子分析都产生了新变量。三、数据标准化的比较主成分分析中为了消除量纲和数量级,通常需要将原始数据进行标准化,将其转化为均值为0方差为1 的无量纲数据。而因子分析在这方面要求不是太高,因为在因子分析中可以通过主因子法、加权最小二乘法、不加权最小二乘法、重心法等很多解法来求因子变量,并且因子变量是每一个变量的内部影响变量,它的求解与原始变量是否同量纲关系并不太大,当然在采用主成分法求因子变量时,仍需标准化。不过在实际应用的过程中,为了尽量避免量纲或数量级的影响,建议在使用因子分析前还是要进行数据标准化。在构造因子变量时采用的是主成分分析方法,主要将指标值先进行标准化处理得到协方差矩阵,即相关矩阵和对应的特征值与特征向量,然后构造综合评价函数进行评价。聚类分析中如果参与聚类的变量的量纲不同会导致错误的聚类结果。因此在聚类过程进行之前必须对变量值进行标准化,即消除量纲的影响。不同方法进行标准化,会导致不同的聚类结果要注意变量的分布。如果是正态分布应该采用z 分数法。四、应用中的优缺点比较(一) 主成分分析1、优点首先它利用降维技术用少数几个综合变量来代替原始多个变量,这些综合变量集中了原始变量的大部分信息。其次它通过计算综合主成分函数得分,对客观经济现象进行科学评价。再次它在应用上侧重于信息贡献影响力综合评价。2、缺点当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。命名清晰性低。(二) 因子分析1、优点第一它不是对原有变量的取舍,而是根据原始变量的信息进行重新组合,找出影响变量的共同因子,化简数据;第二,它通过旋转使得因子变量更具有可解释性,命名清晰性高。2、缺点在计算因子得分时,采用的是最小二乘法,此法有时可能会失效。(三) 聚类分析1、优点聚类分析模型的优点就是直观,结论形式简明。2、缺点在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映被试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。
小菜G的建站之路2023-06-12 07:13:542

冗余分析和主成分分析的区别

一、基本思想的异同共同点从二者表达的含义上看,主成分分析法和因子分析法都寻求少数的几个变量(或因子)来综合反映全部变量(或因子)的大部分信息,变量虽然较原始变量少,但所包含的信息量却占原始信息量的 85%以上,用这些新变量来分析问题,其可信程度仍然很高,而且这些新的变量彼此间互不相关,消除了多重共线性。这两种分析法得出的新变量,并不是原始变量筛选后剩余的变量。不同点在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,……,x3,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。因子分析是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。公共因子是由所有变量共同具有的少数几个因子;特殊因子是每个原始变量独自具有的因子。二、操作软件中的异同主成分分析与因子分析都可利用 SPSS 软件中的 FACTOR 过程来实现,在此过程中应该注意以下几点:1.指标的选定指标最好具有同趋势化,一般为了评价分析的方便,需要将逆指标转化为正指标。2.假设条件主成分分析:不需要有假设(assumptions)因子分析:需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specificfactor)之间也不相关,共同因子和特殊因子之间也不相关。3.因子变量个数的确定在利用 FACTOR 实现主成分分析时,在确定公共因子个数时,一般直接选择与原变量数目相等的个数,这样可以避免由于采用默认形式后累积方差贡献率达不到 85%而造成的二次操作。在利用FACTOR实现因子分析时,可以选择的选项较多,除了主成分分析法之外,还有未加权最小平方法、广义最小平方法、最大似然法、主轴因式分解法、Alpha式分解法、映像因式分解法。这七种方法中只有用主成分分析法求解因子载荷时可以选择与变量个数相等的因子变量个数,其它方法都必须因子变量个数小于原始变量个数。4.模型的生成经过 FACTOR 过程都产生因子载荷阵,但主成分分析模型需要的不是因子载荷量而是特征向量,所以还需要将因子载荷量输入到数据的编辑窗口,利用“主成分相应特征根的平方根与特征向量乘积为因子载荷量”性质来计算特征向量,从而得到主成分的线性表达式。
康康map2023-06-12 07:13:531

因子分析中因子载荷aij的统计意义是( )。

D利用标准化的数据计算的相关阵R的特征值对应的单位特征向量这既是因子载荷的统计学意义,实际上也简要说明了因子载荷的计算方式
康康map2023-06-12 07:13:515

样本,年份和变量在一起怎么做因子分析

  要求是最少二十个样本,十个变量。1、主成分分析在于对原始变量的线性变换,注意是转换、变换;而因子分析在于对原始变量的剖析,注意是剖析,是分解,分解为公共因子和特殊因子。  2、这两种分析法得出的新变量,也就是成分或者因子,并不是原始变量筛选或者提出后剩余的变量。  3、因子分析只能解释部分变异(指公共因子),主成分分析能解释所有变异(如果提取了所有成分)。  4、主成分分析,有几个变量就至少有几个成分,一般只提取能解释80%以上的成分;因子分析,有几个变量不一定有几个公共因子,因为这里的因子是公因子,潜在的存在与每一个变量中,需要从每一个变量中去分解,无法解释的部分是特殊因子。  5、spss因子分析过程对各变量间量纲和单位造成的影响,默认自动进行标准化处理,因此不必要在开始之前单独进行数据标准化处理,因为,标准化与否结果一致。  6、spss因子分析重要结果:KMO值,此值是否进行计算与变量个数、样本个数有关,不一定会在每次执行中都显示,如没有此结果,可通过调整变量和样本的比例实现。
铁血嘟嘟2023-06-12 07:13:501

spss如何对4个样本10个变量做聚类分析,分成几类变量,和几个样本?或者应该用因子分析,主成分分析?

  要求是最少二十个样本,十个变量。 1、主成分分析在于对原始变量的线性变换,注意是转换、变换;而因子分析在于对原始变量的剖析,注意是剖析,是分解,分解为公共因子和特殊因子。  2、这两种分析法得出的新变量,也就是成分或者因子,并不是原始变量筛选或者提出后剩余的变量。  3、因子分析只能解释部分变异(指公共因子),主成分分析能解释所有变异(如果提取了所有成分)。  4、主成分分析,有几个变量就至少有几个成分,一般只提取能解释80%以上的成分;因子分析,有几个变量不一定有几个公共因子,因为这里的因子是公因子,潜在的存在与每一个变量中,需要从每一个变量中去分解,无法解释的部分是特殊因子。  5、spss因子分析过程对各变量间量纲和单位造成的影响,默认自动进行标准化处理,因此不必要在开始之前单独进行数据标准化处理,因为,标准化与否结果一致。  6、spss因子分析重要结果:KMO值,此值是否进行计算与变量个数、样本个数有关,不一定会在每次执行中都显示,如没有此结果,可通过调整变量和样本的比例实现。
墨然殇2023-06-12 07:13:501

主成分分析法 10个变量抽几个

要求是最少二十个样本,十个变量。1、主成分分析在于对原始变量的线性变换,注意是转换、变换;而因子分析在于对原始变量的剖析,注意是剖析,是分解,分解为公共因子和特殊因子。2、这两种分析法得出的新变量,也就是成分或者因子,并不是原始变量筛选或者提出后剩余的变量。3、因子分析只能解释部分变异(指公共因子),主成分分析能解释所有变异(如果提取了所有成分)。4、主成分分析,有几个变量就至少有几个成分,一般只提取能解释8%以上的成分;因子分析,有几个变量不一定有几个公共因子,因为这里的因子是公因子,潜在的存在与每一个变量中,需要从每一个变量中去分解,无法解释的部分是特殊因子。5、spss因子分析过程对各变量间量纲和单位造成的影响,默认自动进行标准化处理,因此不必要在开始之前单独进行数据标准化处理,因为,标准化与否结果一致。6、spss因子分析重要结果:KMO值,此值是否进行计算与变量个数、样本个数有关,不一定会在每次执行中都显示,如没有此结果,可通过调整变量和样本的比例实现。
余辉2023-06-12 07:13:491

因子分析最少要求多少个数据?

为了保证因子的稳定以及分析的顺利进行,经验上每个因子不少于3个题项,最好更多一些。
此后故乡只2023-06-12 07:13:443

逐步回归分析中,引入因子时所作检验和剔除因子时所作检验的区别(计量地理学)

你说的是backward和forward吗?我感觉基本上没差别。一般它们跟stepwise的结果是一样的。检验该自变量对y影响贡献大小用的都是t检验。不同选入变量方法的区别只是对于进入方程的变量不再检验其显著性,则为forward法,而backward是按照贡献从小到大依次剔除的。stepwise是每剔除出去一个,就又重新计算方程中剩余变量的贡献是否还显著。
CarieVinne 2023-06-12 07:13:431

多元线性回归分析要求自变量正态分布吗,自变量为连续性资料但是非正态分布可以吗

多元线性回归分析要求自变量正态分布吗? 不要求;自变量为连续性资料但是非正态分布可以吗?可以。
gitcloud2023-06-12 07:13:422

主成分分析与因子分析及SPSS实现

主成分分析与因子分析及SPSS实现一、主成分分析(1)问题提出在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性?这时,主成分分析隆重登场。(2)主成分分析的原理主成分分析的本质是坐标的旋转变换,将原始的n个变量进行重新的线性组合,生成n个新的变量,他们之间互不相关,称为n个“成分”。同时按照方差最大化的原则,保证第一个成分的方差最大,然后依次递减。这n个成分是按照方差从大到小排列的,其中前m个成分可能就包含了原始变量的大部分方差(及变异信息)。那么这m个成分就成为原始变量的“主成分”,他们包含了原始变量的大部分信息。注意得到的主成分不是原始变量筛选后的剩余变量,而是原始变量经过重新组合后的“综合变量”。我们以最简单的二维数据来直观的解释主成分分析的原理。假设现在有两个变量X1、X2,在坐标上画出散点图如下:可见,他们之间存在相关关系,如果我们将坐标轴整体逆时针旋转45°,变成新的坐标系Y1、Y2,如下图:根据坐标变化的原理,我们可以算出:Y1 = sqrt(2)/2 * X1 + sqrt(2)/2 * X2Y2 = sqrt(2)/2 * X1 – sqrt(2)/2 * X2其中sqrt(x)为x的平方根。通过对X1、X2的重新进行线性组合,得到了两个新的变量Y1、Y2。此时,Y1、Y2变得不再相关,而且Y1方向变异(方差)较大,Y2方向的变异(方差)较小,这时我们可以提取Y1作为X1、X2的主成分,参与后续的统计分析,因为它携带了原始变量的大部分信息。至此我们解决了两个问题:降维和消除共线性。对于二维以上的数据,就不能用上面的几何图形直观的表示了,只能通过矩阵变换求解,但是本质思想是一样的。二、因子分析(一)原理和方法:因子分析是主成分分析的扩展。在主成分分析过程中,新变量是原始变量的线性组合,即将多个原始变量经过线性(坐标)变换得到新的变量。因子分析中,是对原始变量间的内在相关结构进行分组,相关性强的分在一组,组间相关性较弱,这样各组变量代表一个基本要素(公共因子)。通过原始变量之间的复杂关系对原始变量进行分解,得到公共因子和特殊因子。将原始变量表示成公共因子的线性组合。其中公共因子是所有原始变量中所共同具有的特征,而特殊因子则是原始变量所特有的部分。因子分析强调对新变量(因子)的实际意义的解释。举个例子:比如在市场调查中我们收集了食品的五项指标(x1-x5):味道、价格、风味、是否快餐、能量,经过因子分析,我们发现了:x1 = 0.02 * z1 + 0.99 * z2 + e1x2 = 0.94 * z1 – 0.01 * z2 + e2x3 = 0.13* z1 + 0.98 * z2 + e3x4 = 0.84 * z1 + 0.42 * z2 + e4x5 = 0.97 * z1 – 0.02 * z2 + e1(以上的数字代表实际为变量间的相关系数,值越大,相关性越大)第一个公因子z1主要与价格、是否快餐、能量有关,代表“价格与营养”第二个公因子z2主要与味道、风味有关,代表“口味”e1-5是特殊因子,是公因子中无法解释的,在分析中一般略去。同时,我们也可以将公因子z1、z2表示成原始变量的线性组合,用于后续分析。(二)使用条件:(1)样本量足够大。通常要求样本量是变量数目的5倍以上,且大于100例。(2)原始变量之间具有相关性。如果变量之间彼此独立,无法使用因子分析。在SPSS中可用KMO检验和Bartlett球形检验来判断。(3)生成的公因子要有实际的意义,必要时可通过因子旋转(坐标变化)来达到。三、主成分分析和因子分析的联系与区别联系:两者都是降维和信息浓缩的方法。生成的新变量均代表了原始变量的大部分信息且互相独立,都可以用于后续的回归分析、判别分析、聚类分析等等。区别:(1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。(2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。SPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主成分分析与因子分析的实现方法及相关问题。 一、问题提出 男子十项全能比赛包含100米跑、跳远、跳高、撑杆跳、铅球、铁饼、标枪、400米跑、1500米跑、110米跨栏十个项目,总分为各个项目得分之和。为了分析十项全能主要考察哪些方面的能力,以便有针对性的进行训练,研究者收集了134个顶级运动员的十项全能成绩单,将通过因子分析来达到分析目的。 二、分析过程 变量视图: 数据视图(部分): 菜单选择(分析->降维->因子分析):打开因子分析的主界面,将十项成绩选入”变量“框中(不要包含总分),如下: 点击”描述“按钮,打开对话框,选中”系数“和”KMO和Bartlett球形度检验“:上图相关解释:”系数“:为变量之间的相关系数阵列,可以直观的分析相关性。”KMO和Bartlett球形度检验“:用于定量的检验变量之间是否具有相关性。点击”继续“,回到主界面,点击”抽取“,打开对话框。”方法“ =>”主成分“,”输出“=>”未旋转的因子解“和”碎石图“,”抽取“=>”基于特征值“,其余选择默认。解释:①因子抽取的方法:选取默认的主成分法即可,其余方法的计算结果可能有所差异。②输出:”未旋转的因子解”极为主成分分析结果。碎石图有助于我们判断因子的重要性(详细介绍见后面)。③抽取:为抽取主成分(因子)的方法,一般是基于特征值大于1,默认即可。点击”继续“,回到主界面,点击”确定“,进入分析。输出的主要表格如下:(1)相关性检验因子分析要求变量之间有相关性,所以首先要进行相关性检验。首先输出的是变量之间的相关系数矩阵:可以直观的看到,变量之间有相关性。但需要检验,接着输出的是相关性检验: 上图有两个指标:第一个是KMO值,一般大于0.7就说明不了之间有相关性了。第二个是Bartlett球形度检验,P值<0.001。综合两个指标,说明变量之间存在相关性,可以进行因子分析。否则,不能进行因子分析。(2)提取主成分和公因子接下来输出主成分结果:这就是主成分分析的结果,表中第一列为10个成分;第二列为对应的”特征值“,表示所解释的方差的大小;第三列为对应的成分所包含的方差占总方差的百分比;第四列为累计的百分比。一般来说,选择”特征值“大于1的成分作为主成分,这也是SPSS默认的选择。在本例中,成分1和2的特征值大于1,他们合计能解释71.034%的方差,还算不错。所以我们可以提取1和2作为主成分,抓住了主要矛盾,其余成分包含的信息较少,故弃去。下面,输出碎石图,如下: 碎石图来源于地质学的概念。在岩层斜坡下方往往有很多小的碎石,其地质学意义不大。碎石图以特征值为纵轴,成分为横轴。前面陡峭的部分特征值大,包含的信息多,后面平坦的部分特征值小,包含的信息也小。由图直观的看出,成分1和2包含了大部分信息,从3开始就进入平台了。接下来,输出提取的成分矩阵:上表中的数值为公因子与原始变量之间的相关系数,绝对值越大,说明关系越密切。公因子1和9个运动项目都正相关(注意跑步运动运动的计分方式,时间越短,分数越高),看来只能称为“综合运动”因子了。公因子2与铁饼、铅球正相关,与1500米跑、400米跑负相关,这究竟代表什么意思呢?看来只能成为“不知所云”因子了。(三)因子旋转前面提取的两个公因子一个是大而全的“综合因子”,一个不知所云,得到这样的结果,无疑是分析的失败。不过,不要灰心,我们可以通过因子的旋转来获得更好的解释。在主界面中点击“旋转”按钮,打开对话框,“方法”=>“最大方差法”,“输出”=>“旋转解”。点击“继续”,回到主界面点击“确认”进行分析。输出结果如下: 这是选择后的成分矩阵。经过旋转,可以看出:公因子1得分越高,所有的跑步和跨栏成绩越差,而跳远、撑杆跳等需要助跑类项目的成绩也越差,所以公因子1代表的是奔跑能力的反向指标,可称为“奔跑能力”。公因子2与铁饼和铅球的正相关性很高,与标枪、撑杆跳等需要上肢力量的项目也正相关,所以该因子可以成为“上肢力量”。经过旋转,可以看出公因子有了更合理的解释。(四)结果的保存在最后,我们还要将公因子储存下来供后续使用。点击“得分”按钮,打开对话框,选中“保存为变量”,方法采用默认的“回归”方法,同时选中“显示因子得分系数矩阵”。SPSS会自动生成2个新变量,分别为公因子的取值,放在数据的最后。同时会输出一个因子系数表格:由上图,我们可以写出公因子的表达式(用F1、F2代表两个公因子,Z1~Z10分别代表原始变量):F1 = -0.16*Z1+0.161*Z2+0.145*Z3+0.199*Z4-0.131*Z5-0.167*Z6+0.137*Z7+0.174*Z8+0.131*Z9-0.037*Z10F2同理,略去。注意,这里的变量Z1~Z10,F1、F2不再是原始变量,而是标准正态变换后的变量。
再也不做站长了2023-06-12 07:13:411

多维标度分析可以揭示变量间相似性吗

可以。多维标度法是利用客体间的相似性数据去揭示它们之间的空间关系的统计分析方法,若模型所需要的相似性数据是用距离尺度或比率尺度测得的,模型需要顺序量表水平的相似数据,就称为非度量化模型。
kikcik2023-06-12 07:11:341

聚类分析聚类算法中包含哪些数据类型

聚类分析聚类算法中包含哪些数据类型许多基于内存的聚类算法采用以下两种数据结构:(1)数据矩阵(Data Matrix,或称对象一变盘结构):用p个变量来表示n个对象,例如使用年龄、身高、性别、体重等属性变量来表示对象人,也叫二模矩阵,行与列代表不同实体: (2)相异度矩阵(Dissimilarity Matrix,又称为对象一对象结构):存储所有成对的n个对象两两之间的近似性(邻近度),也叫单模矩阵,行和列代表相同的实体。其中d(ij)是对象i和对象j之间的测量差或相异度。d(i,f)是一个非负的数值,d(ij)越大,两个对象越不同;d (i,j)越接近于0,则两者之间越相似(相近)。 许多聚类算法都是以相异度矩阵为基础的,如果数据是用数据矩阵形式表示,则往往要将其先转化为相异度矩阵。相异度d(i,j)的具体计算会因所使用的数据类型不同而不同,常用的数据类型包括:区间标度变量,二元变量,标称型、序数型和比例标度型变量,混合类型的变量。
Ntou1232023-06-12 07:11:321

同一组对象干预前后(如体重)用spss中的什么(如相关分析、t检验)分析?

个 3254354354634563543
黑桃花2023-06-12 07:11:144

同一组对象干预前后(如体重)用spss中的什么(如相关分析、t检验)分析?

你再怎么特殊方法构造的还是回归方程是回归方程就需要做联合分布f检验和单独tj检验
Jm-R2023-06-12 07:11:113

用R语言作因子分析,样本比变量数少,求问程序怎么写

网上找找《Exploratory Multivariate Analysis》这本书,用R编的
瑞瑞爱吃桃2023-06-12 07:09:521

在r语言中,识别回归分析异常点的r函数有哪些

在r语言中,识别回归分析异常点的r函数有[m,n]=size(x);输入的变量x只是个二维的。数据读取的方法,这里用的file.choose( ),这样做的好处是,会弹出窗口让你选择你要加载进来的文件,免去了输入路径的苦恼。R语言只学习了数据输入,及一些简单的处理,图形可视化部分尚未学习。R是一种可编程的语言作为一个开放的统计编程环境,语法通俗易懂,很容易学会和掌握语言的语法。而且学会之后,我们可以编制自己的函数来扩展现有的语言。这也就是为什么它的更新速度比一般统计软件,如SPSS、SAS等快得多。大多数最新的统计方法和技术都可以在R中直接得到。
康康map2023-06-12 07:09:461

r语言对类别变量进行相关性分析

R语言中有 arules 包,看看这包的使用方法;作关联规则分析即可。
人类地板流精华2023-06-12 07:09:381

r语言对类别变量进行相关性分析

R语言中有 arules 包,看看这包的使用方法;作关联规则分析即可。
九万里风9 2023-06-12 07:09:351

如何用r语言分析两个变量是否有影响

对于用r语言分析两个变量是否有影响,就是用r语言来分析两个变量之间的关系,这个问题相对专业,很难解释,就大概说一下分析过程以供参考。1、想要分析数据,首先要读取数据;2、把数据做成直观图示,再进行两者之间的统计量分析;3、用r语言计算两个变量的相关系数函数;4、进行假设、验证,最终得出两个变量之间的关系,看两者是否有影响。
韦斯特兰2023-06-12 07:09:051

R语言分析时间序列时如何用矩阵录入十年月度数据成为虚拟变量,并去除季节性,分析趋势

二重积分∫∫f(x,y)dxdy的几何意义是以积分区域D为底,以曲面z=f(x,y)为顶的曲顶柱体的体积。本题中被积函数f(x,y)=z=(4-x^2-y^2)^(1/2),整理得x^2+y^2+z^2=4(z>0),也就是球心在原点,半径为2的上半球面,而积分区域D为xoy平面上圆心在原点,半径为2的圆。因此由z=f(x,y)和D确定的曲顶柱体就是上半球,其体积=(1/2)(4π/3)(2^3)=16π/3,也就是此积分的结果。
kikcik2023-06-12 07:09:051

如何用R语言进行相关系数与多变量的meta分析

本文第一大部分将介绍用R软件的meta分析数据包实现相关系数的Meta分析,第二大部分如何用R语言进行多变量的meta分析。 想获取R语言相关系数meta分析的程序模板的同学请在公众号(全哥的学习生涯)内回复“相关系数”即可。 meta数据包提供实现相关系数的Meta分析命令是:metacor(),这个命令通过加权的倒方差法运用相关系数和纳入的样本数来实现相关系数的随机效用模型和固定效用模型的合并,得到合并的相关系数及95%可信区间。具体的命令如下: metacor(cor, n,studlab, data= NULL, subset=NULL, sm=.settings$smcor) cor为每一个纳入研究的相关系数, n为样本量, studlab纳入研究的标签向量, data为相应的的数据集,sm选项为合并的方法,包括ZCOR和COR,其中ZCOR是合并之前先做Fisher Z变换,COR是直接合并。具体的步骤如下: library(meta) data<-read.csv(“C:/Users/86187/Desktop/data.csv”)录入的数据见图1。 data<-metacor(r,n,data=m1,sm="ZCOR") 在这里合并的方法用的是Fisher Z变换。对样本的相关系数做Fisher Z变换是因为Fisher Z变换可以使样本的相关系数的分布正态分布,尤其是在样本量较小的时候,这样便于进一步估计。一般来说,不管是随机还是固定效应都会先对相关系数做Fisher Z变换。只有很少的情况下才直接用相关系数直接来做分析,比如样本量很大的时候,如果直接合并相关系数,当相关系数值接近1的时候,小样本量研究得到的权重会非常大。因此在这里推荐合并的方法都用(ZCOR)Fisher Z变换。Meta分析的结果见图2。 结果显示,异质性检验Q=6.16, P=0.0461, I2=67.5,可以认为有统计学意义上的异质性。选用随机效用模型,COR=0.8427, 95%CI: 0.6264-0.9385, z=4.8724, P<0.0001, 有统计学差异。 具体的命令如下: forest(a) 从森林图中,非常简单和直观地看到Meta分析的统计结果,见图3关于这两个方法的介绍请看我之前公众号(全哥的学习生涯)的推送文章(如何用R语言进行meta分析,详细教程一)的内容。敏感性分析和剪补法的结果图分别见图4和图5。通常Meta分析假定效应量来自于独立的研究,因此统计结果也是独立的。然而,许多研究不能满足独立性的假设,比如多个治疗组与一个共同的对照组比较的研究和多个结局变量的研究就可能产生效应量之间的相关。多变量meta 分析(multivariate metau2043analysis)作为单变量meta分析的一个拓展,可合并估计多个研究的多个相关参数,这些参数可以是多个结局或多组间的比较。当同一总体中的测量结局相关时,分别对每个结局进行Meta 分析,测量结局之间的相关结构就可能被忽略。多变量Meta分析在随机对照研究中有多种应用,最简单的是在临床试验中把每个组的结局分别处理,其他的应用还有同时探索两个临床结局的治疗效应,或同时探索成本效益的治疗效应,比较多个治疗的联合试验,以及在观察性研究中评估暴露量与疾病之间的相关性,还有在诊断试验和网络干预中的应用。 本次数据来源请见文末的参考文献,主要研究肝硬化的非手术治疗方式预防其出血的危险性,以初次出血的例数为指标,其中三个组分别是:βu2043受体阻滞剂(A),硬化疗法(B),对照组(C),目的是评价这三种非手术治疗方式预防肝硬化出血的效果。,Bled表示初次出血的例数,Total表示干预组的总例数。YAC和YBC分别表示A、B两组相对于C组估计的ln(OR),即干预组的肝硬化初次出血的危险性是对照组的倍数的自然对数;SAA、SBB和SAB则表示其对应方差及两者之间的协方差。对于包含0的研究(研究10和研究20),在每个组增加0.5个初次出血的例数。整理后见表1。随后安装调用程序包,并进行加载: install.packages(‘mvmeta") library(mvmeta)。 随后将肝硬化初次出血整理后的数据集data(至少包含YAC、YBC、SAA、SAB、SBB变量)保存为csv格式,然后利用下面命令将其导入R语言。 mvmeta 的语句:mvmeta(formula,S,data,subset,method=“reml”,bscov=“unstr”,model=TRUE,contrasts=NULL,offset,na.action,control=list()) 其中formula 表示结局变量名称(即YAC、YBC);S 表示研究内(协)方差(即SAA、SAB、SBB);data 表示数据集名称;method 表示所用的估计方法:固定效应模型时选择FIXED;随机效应模型时则选择 限制性最大似然估计(REML)、最大似然估计(ML)、矩估计(MM)、方差成分法(VC)的其中之一,默认为REML。由输出结果中Q 检验的P 值和I2 统计量来判断异质性以及选择何种效应模型。 mvmeta包中主要提供了多变量Meta分析与多变量的Meta 回归,另外也提供了单变量的Meta 分析和Meta 回归。但对于后两者,在R 语言中的metafor、meta、rmeta 及metalik 等包提供了更多、更详尽和有效的功能。多变量Meta 程序为library(mvmeta),调用mvmeta软件包。 model<-mvmeta(cbind(Ya,Yb),S=S,data=cirrhosis) model <- mvmeta(cbind(Ya,Yb)~X,S=S,data=cirrhosis),此处X代表协变量。 model<-mvmeta(Y,S=S,data=cirrhosis),此处Y为单变量的效应量,S为效应量方差。 model<-mvmeta(Y~X,S=S,data=cirrhosis),此处X代表协变量。 运行以上程序后,最后将结果输出。 单变量和多变量Meta分析都是采用ln(OR)值做分析。单变量Meta分析时YAC和YBC的Q检验P 值均小于0.05,I2统计量分别为57.7%和77.8%。多变量Meta分析Q检验P<0.05,I2统计量为73.9%。可知两种Meta 分析均存在异质性,都用随机效应模型。估计方法选择默认的REML法。 表2 是单变量Meta 分析结果,可得:AC 与BC的OR 值及95%可信区间分别为0.5281(0.2802,0.9955)、0.5406(0.3095,0.9443),表明初次出血的危险性由于干预而降低,即βu2043受体阻滞剂、硬化疗法可以预防肝硬化出血,两者为保护因素。多变量Meta 分析的结果:YAC 为-0.6755(-1.3073,-0.0438),YBC 为-0.5938(-1.1444,-0.043 2),研究间相关系数为0.436 5(见表3),A组与B组的治疗效果呈正相关。OR 值及95%可信区间分别为0.508 9(0.2705,0.9571)、0.5522(0.318 4,0.957 7),多变量Meta 分析的结果说明βu2043受体阻滞剂预防肝硬化出血的效果是最好,其次是硬化疗法。OR 值的95%可信区间不包含1,上下限均小于1,说明两种疗法与对照组比较的初次出血危险性均小于1,差异有统计学意义。 最后,如果屏幕前的你对R语言学习还有什么问题或者看法,可以在我的公众号(全哥的学习生涯)给我留言,公众号里也有我的个人联系方式,我也希望可以结合更多志同道合的伙伴。 感谢你的阅读。
瑞瑞爱吃桃2023-06-12 07:09:041

spss分析 没有因变量 自变量是离散型变量 用什么分析方法呢?

没有因变量,那自然也就不能叫做 还有自变量了,自变量和因变量一定是同时出现的当然还有一种可能是需要用sem 结构方程建模,有潜变量可以这个要看你的数据到底是什么,要做什么分析用
铁血嘟嘟2023-06-12 07:06:492

完全随机设计的方差分析计算公式

完全随机设计资料的方差分析,其组内自由度的计算公式是:N-k。方差分析公式怎么求的?方程D(X)=E{[X-E(X)]^2}=E(X^2) - [ E(X)]^2,其中 E(X)表示数学期望。对于连续型随机变量X,若其定义域为(a,b),概率密度函数为f(x),连续型随机变量X方差计算公式:D(X)=(x-μ)^2 f(x) dx。在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)为试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。扩展资料:设C为常数,则D(C) = 0(常数无波动);D(CX )=C2D(X ) (常数平方提取,C为常数,X为随机变量);证:特别地 D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)若X 、Y 相互独立,则证:记则前面两项恰为 D(X)和D(Y),第三项展开后为当X、Y 相互独立时,故第三项为零。
阿啵呲嘚2023-06-12 06:59:341

研究变量的相关性分析结果怎么分析

相关性是指两个变量之间的变化趋势的一致性,如果两个变量变化趋势一致,那么就可以认为这两个变量之间存在着一定的关系(但必须是有实际经济意义的两个变量才能说有一定的关系)。相关性分析也是常用的统计方法,用SPSS统计软件操作起来也很简单
Chen2023-06-12 06:55:041

在分析影响实验结果的主要因素时,对所研究的问题中的各种变量,包括什么什么什么什么

有我们关心的结果变量 叫做因变量有我们关心的引发结果的变量,叫做自变量有影响结果变量,但不是我们关心的 叫做控制变量
u投在线2023-06-12 06:55:041

回归分析是研究变量之间的什么关系

归分析与相关分析的联系:研究在专业上有一定联系的两个变量之间是否存在直线关系以及如何求得直线回归方程等问题,需进行直线相关和回归分析。从研究的目的来说,若仅仅为了了解两变量之间呈直线关系的密切程度和方向,宜选用线性相关分析;若仅仅为了建立由自变量推算因变量的直线回归方程,宜选用直线回归分析。从资料所具备的条件来说,作相关分析时要求两变量都是随机变量(如:人的身长与体重、血硒与发硒);作回归分析时要求因变量是随机变量,自变量可以是随机的,也可以是一般变量(即可以事先指定变量的取值,如:用药的剂量)。展开剩余31% 0
水元素sl2023-06-12 06:54:421

spss分析中调节变量和因变量没有显著相关性,是不是一定没有调节作用?

不代表没调节作用,还是要看回归结果
Chen2023-06-12 06:54:381

自变量为分类变量,调节变量和结果变量均为连续型变量,如何用spss进行分析呢?

无需处理可以直接进行回归分析
wpBeta2023-06-12 06:54:382

spss调节效应分析

你说的是多选题吗我经常帮别人做这类的数据分析的
西柚不是西游2023-06-12 06:54:371

毕业论文要做SPSS分析,有一个具体模型,要研究调节变量对因变量有显著性影响,应该用哪一种显著性检验?

首先来回答你的问题:1. 非标准化系数就是回归方程的斜率,表示每个自变量变化1个单位,因变量相应变化多少个单位,该系数与自变量所取的单位有关,一般不用来衡量自变量的影响力大小。2. 标准化系数消除了自变量单位的影响,其大小可以衡量每个自变量对因变量的影响力之大小,一般来说,标准化系数的绝对值越大,该自变量对因变量的影响力就越大。其次,大致给你提出点分析和建议(2-4条的前提是样本量够大):1. 样本太小,只有5组数据,得到的结果往往不可靠,强烈建议增大样本量,否则统计分析可能毫无意义,甚至造成错误。2. 从自变量t检验结果来看,逗其来石含量地与逗颈部密度地对应的sig值均超过了0.05,用统计专业的话来说,这意味着逗在0.05的显著性水平下,这两个自变量与因变量不显著相关地,通俗的说,在自变量平均孔径存在的前提下,这两个变量基本可以排除出方程了。3. 从偏相关性来看,3个自变量之间有极强的相关性(或共线性),因为强相关的自变量往往会导致不合理的统计分析结果,因此理论上他们不可以一起放入方程。4. 建议你在做多元线性回归分析的时候采用多元逐步回归,这样可以按自变量影响力的大小自动排除强相关的变量,也可以自动排除对因变量无显著影响的自变量,从而得到更可靠的分析结果。
肖振2023-06-12 06:54:361

数值型变量与分组变量如何做调节分析,怎么用spss操作?

相乘项的分析
苏萦2023-06-12 06:54:352

调节变量和进一步分析的区别

1、研究目的不同:中介变量主要考察自变量如何影响因变量,是一种机制和原因研究。调节变量主要考察自变量何时(或者在什么条件下)影响因变量,是一种边界条件研究2、适用情况不同:当自变量与因变量的关系较强且比较稳定的时候,适合做中介变量分析。当自变量与因变量的关系时强时弱、不稳定的时候,适合做调节变量分析3、前提条件不同:中介变量与自变量、因变量的相关关系必须显著,调节变量和自变量、因变量的相关可以显著也可以不显著,不显著更好。
凡尘2023-06-12 06:54:341

如何用stata 来做面板数据的调节变量分析

调节效应一般不做面板数据的
苏州马小云2023-06-12 06:54:341

调节效应显著,接下来该怎么分析

分开不同调节变量水平下的X—Y差异,做调节效应图。
拌三丝2023-06-12 06:54:331

关于调节变量。写报告时用到 A对,B和C之间关系的影响,怎样用excel或spss分析?? 在线等 谢谢

基本来说,是用到两个方程:第一个,检测B对C的主效应,C=a1+b1B;第二个,检测A对B、C关系的调节效应,C=a2+b2B+c2A+d2A*B 。在实际应用中,一般只需要第二个方程就够了。在spss中,做一个线性回归分析,因变量为C,自变量为A、B和A*B,然后看系数d2是否显著。如果显著,则有显著的调节效应;如不显著,则调节效应不明显。
kikcik2023-06-12 06:54:321

求助 如何用stata 来做面板数据的调节变量分析

innodb_flush_log_at_trx_commit = 1 #每次commit 日志缓存中的数据刷到磁盘中 innodb_log_buffer_size = 8M #事物日志缓存 innodb_log_file_size = 500M #事物日志大小
mlhxueli 2023-06-12 06:54:311

调节效应分析 为什么调节变量值取正负标准差

调节效应需要在各种水平下分析才有实际意义,因此一般分两个或三个水平进行分析。均值、均值下一个标准差,均值上一个标准差,然后看自变量对因变量的影响方向和强弱差异。(南心网 调节效应分析)
韦斯特兰2023-06-12 06:54:301

spss怎么做调节变量的回归分析

可以做多个模型,然后比较r2
苏萦2023-06-12 06:54:291

用SPSS做调节效应分析。交互项显著,但是调节变量不显著。这样可否判断是否具有调节效应?

主要看交互项,交互项显著即有调节效应,反之则没有。网页版SPSSAU上也有这个功能,可以参考下:调节作用-SPSSAU
北境漫步2023-06-12 06:54:282

关于调节变量。写报告时用到 A对,B和C之间关系的影响,怎样用excel或spss分析?? 在线等 谢谢

基本来说,是用到两个方程:第一个,检测B对C的主效应,C=a1+b1B;第二个,检测A对B、C关系的调节效应,C=a2+b2B+c2A+d2A*B 。在实际应用中,一般只需要第二个方程就够了。在spss中,做一个线性回归分析,因变量为C,自变量为A、B和A*B,然后看系数d2是否显著。如果显著,则有显著的调节效应;如不显著,则调节效应不明显。
CarieVinne 2023-06-12 06:54:271

调节效应分析结果解释

调节效应是交互效应的一种,是有因果指向的交互效应,而单纯的交互效应可以互为因果关系;调节变量一般不受自变量和因变量影响,但是可以影响自变量和因变量;调节变量一般不能作为中介变量,在特殊情况下,调节变量也可以作为中介变量,例如认知归因方式既可以作为挫折性应激(X)和应对方式(Y)的调节变量也可以作为中介变量。常见的调节变量有性别、年龄、收入水平、文化程度、社会地位等。在统计回归分析中,检验变量的调节效应意味着检验调节变量和自变量的交互效应是否显著。
Jm-R2023-06-12 06:54:271

把吉米多维奇《数学分析习题集》做完是怎样一种体验

吉米多维奇数学分析习题集是一部著名的、很有代表性的习题集。共有四千多道习题,数量多,内容丰富,由浅入深,部分题目难度大。涉及内容有函数与极限,单变量函数的微分学,不定积分,定积分、级数,多变量函数的微分学,带参变量积分以及重积分与曲线积分、曲面积分等等,概括了数学分析的全部主题。
Chen2023-06-12 06:53:441

数学分析 关于连续映射 多变量函数的问题 急 谢谢! 图中第二题

前两小题不用教了吧第三小题,对任何x∈E,取序列x_n->x,那么{(x_n,f(x_n))}有收敛子列,且它的任何一个聚点都具有(x,y)的形式(因为x_n的子列只能收敛到x)。注意(x,y)∈G,所以y=f(x),这说明f(x_n)->f(x)
再也不做站长了2023-06-12 06:53:151
 首页 上一页  17 18 19 20 21 22 23 24 25 26 27  下一页  尾页