特殊函数

急!伽马函数的一些特殊函数值?

Γ(x)称为伽玛函数,它是用一个积分式定义的,不是初等函数。伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。扩展资料:通过分部积分的方法,可以推导出这个函数有如下的递归性质:Γ(x+1)=xΓ(x)于是很容易证明,伽马函数可以当成是阶乘在实数集上的延拓。在概率统计和其他应用学科中会经常用到伽玛函数和贝塔函数,有的反常积分的计算最后也会归结为贝塔函数或伽玛函数。当P>0且Q>0时贝塔函数收敛。贝塔函数具有很好的性质,以及实用的递推公式,另外需要注意的是伽玛函数和贝塔函数之间的关系。参考资料来源:搜狗百科——伽玛函数
真颛2023-05-24 07:48:492

伽马函数的一些特殊函数值? 比如(0)、(1/2)等

Γ(x)称为伽马函数,它是用一个积分式定义的,不是初等函数. 伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!
肖振2023-05-24 07:48:472

为什么现在数学系普遍不学椭圆函数、超几何函数等特殊函数?

这么说吧,以前中国的教材难度大,把学生都当成可以成名成家的目标培养的!但难度大也有个缺点,学不会造成厌学… 现在一直在降难度,考题也适中,这适合中上水平的学生、适合女生…尖子生自己想办法加课! 所以,奥数等优秀的学生,大学很受欢迎! 其实大学招生,除了看你掌握的知识,更看重的是你学习能力(智商)! 老外查你的学习能力,用的最多的是:除了母语,会几门外语,会什么外语?英语母语国家要求会非印欧语系的外语才算优秀!第二是数学的微积分…!学会最难最废脑的课程才体现你优势 问题挺简单的,直观答案就是数学系也是分方向的。而所有数学系学生都要学的公共课又不会涉及这么深的知识点。 题主问的领域哪怕在数学系也是比较冷门的存在。一些研究代数几何(Algebraic Geometry)的人才会学这些知识。 通常数学系的学生会有3个大的方向:一,统计:包括分析,统计,金融数学。这个是最热门的。二,理论数学,也叫pure maths,包括代数(群论,数论等等),几何(传统几何,解析几何,拓扑学等等)。三,应用数学。这个是以微积分为基础的,常用来解决物理问题,比如流体动力学。 18-19世纪的时候,各种特殊函数是数学系的重要内容。 研究它们不仅是数学上的兴趣,也有物理等等领域的实际用途。 比如椭圆函数就和单摆的精确运动有关,一大类常微分方程的解都能写成超几何函数。20世纪以后,各种特殊函数的材料越积累越多,物理应用领域已经基本能满足需求。 实际上,对于物理应用领域而言,一个精巧的等式往往不如一个近似展开有用。在纯数学角度呢?精巧的等式越来越难找。于此同时,数学本身也不断扩充,更强调抽象化,概况化。 你花时间把椭圆函数、超几何函数的一大堆性质搞熟,能写出一堆别人没见过的等式,解决物理问题不见得比物理系的强,对别的领域也暂时用不上,写论文还很难创新,不如认认真真把抽象代数、泛函分析、拓扑学、微分几何等等理论啃一遍。 数学专业的课程设置也是与时俱进的,不可能一成不变。现在的数学系和几十年前的数学系在课程设置方面差异很大。总的来讲,有广泛应用的热门课程,社会需求强烈的课程,会逐步加进来。比较冷门的一些课程会逐步减弱乃至淘汰。此类课程需要用到的时候,再补起来为时不晚。从总的趋势来看,数学系的课程负担是在加重而不是减轻。这样一来,有些难度较大,而用途较窄的课程就很难保留下来。道理也很简单。因为数学专业也是为社会的发展和进步服务的。过份脱离社会实际,对数学专业的发展和建设是不利的。实际上,有很多研究成果数学系是根本不做任何介绍的。例如,勒让德多项式,它已经有几百年的历史。但始终没有找到它的应用,所以它始终热不起来,数学系的学生不学也很正常,只有少数数学家对它感兴趣。 中国的数学专业,课程设置在世界上不算难度最大。例如俄罗斯的数学专业的课程设置不仅内容比中国多,难度也要大一些。这反映出各国科学教育界对专业设置理解上的差异。 美国的情况也差不多。美国高校数学专业的学生学习的内容比不上俄罗斯。但美国的科学技术,特别是高 科技 却很发达。 数学有著广泛的应用性。每个国家所处的发展阶段不同,国情也不同。都是根据本国的具体情况设置课程的。这其实很正常。本科教育只有四年,面面俱到是不可能的。 我翻看过王竹溪先生的大作《特殊函数概论》,好像还有19世纪英国一本书更如。这本书有这些个东东,太难了,复变函数围道积分处理了很多内容,都极难理解。 大概搞数论和加密算法的人能搞懂吧 1.学时有限。其它非专业课,公修课程,职教实践课,校园文化活动等等,所占学时和课外时间太多,学生真正用到专业课上的时间反而占比很少。 2.本科大部分为数学与应数学专业而非基础数学专业,有更多应用更广的专业课要学。 那不就是复变函数嘛 这其实是最有用的数学,至少在理论物理中应用广泛。数学系真的不学吗? 反正我认为,现在中国主要是培养工科性质的人才,真正搞科研的太少了。像我们搞动力和通信的,应该来说和这些超越函数打交道比较多。但是,除极少数情况下写文章忽悠人以外,基本用处不大。大多数情况下,只需要引用结果就是了。可以说,百分之九十九的工程情况,都不涉及超越函数这些东西。我大学在西交学动力,数学算学得多的了,后来在重大学通信与电磁场打交道,后来工作科研确实很少用到椭圆函数等超越函数,只是别人说的时候,我大概懂。 推行所谓素质教育
再也不做站长了2023-05-24 07:48:431

为什么现在数学系普遍不学椭圆函数、超几何函数等特殊函数?

主要是因为这些知识除了做高等数学研究以外,其他人根本用不到。
善士六合2023-05-24 07:48:433

现在数学系普遍不学椭圆函数、超几何函数等特殊函数,原因是什么?

这是因为学时有限,而且椭圆函数、超几何函数等特殊函数的应用性不强。
余辉2023-05-24 07:48:434

一个特殊函数-1, 1,0的函数叫什么?

符号函数!!
善士六合2023-05-24 07:48:381

帮我发一张函数的求导公式和特殊函数的求导公式,谢谢!

基本函数的导函数C"=0(C为常数)(x^n)"=nx^(n-1) (n∈R)(sinx)"=cosx(cosx)"=-sinx(e^x)"=e^x(a^x)"=(a^x)*lna(a>0且a≠1)[logax)]" = 1/(x·lna)(a>0且a≠1且x>0)[lnx]"= 1/x和差积商函数的导函数[f(x) + g(x)]" = f"(x) + g"(x)[f(x) - g(x)]" = f"(x) - g"(x)[f(x)g(x)]" = f"(x)g(x) + f(x)g"(x)[f(x)/g(x)]" = [f"(x)g(x) - f(x)g"(x)] / [g(x)^2]复合函数的导函数设 y=u(t) ,t=v(x),则 y"(x) = u"(t)v"(x) = u"[v(x)] v"(x)例 :y = t^2 ,t = sinx ,则y"(x) = 2t * cosx = 2sinx*cosx = sin2x
苏州马小云2023-05-24 07:48:372

特殊函数的导数

你要过程吗?不要过程的话结果在常用函数的导数表里就有,它的导数等于1/[1+x^2]
凡尘2023-05-24 07:48:361

高中数学 特殊函数 有哪些

您好。高中的比较特殊的函数有,绝对值函数,上取整函数 下取整函数,分段函数,分母带有平方的函数。
CarieVinne 2023-05-24 07:48:352

C语言中的一些特殊函数

c语言的没有fmax()和power()函数 fmax()求最大值函数自己程序实现c语言中有pow(a,b)这个函数 功能:求a的b次方。需包含头文件 math.h
黑桃花2023-05-24 07:48:354

究竟什么是特殊函数

特殊的函数   反函数 一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y). 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是自变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f^-1(y). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.   说明:⑴在函数x=f^-1(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f^-1(y)中的字母x,y,把它改写成y=f^-1(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式.   ⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f^-1(x),那么函数y=f^-1(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f^-1(x)互为反函数.   ⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f^-1(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f^-1(x)的值域;函数y=f(x)的值域正好是它的反函数y=f^-1(x)的定义域(如下表):   函数y=f(x) 反函数y=f^-1(x)   定义域 A C  值 域 C A  ⑷上述定义用“逆”映射概念可叙述为:   若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f^-1(x)就叫做函数y=f(x)的反函数. 反函数x=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域.   开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f^-1(t)=t/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f^-1(x)=x/2-3.  有时是反函数需要进行分类讨论,如:f(x)=X+1/X,需将X进行分类讨论:在X大于0时的情况,X小于0的情况,多是要注意的。一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a  反函数的应用:  直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域,求反函数的步骤是这样的  1.先求出原函数的值域,因为原函数的值域就是反函数的定义域  (我们知道函数的三要素是定义域,值域,对应法则,所以先求反函数的定义域是求反函数的第一步)  2.反解x,也就是用y来表示x  3.改写,交换位置,也就是把x改成y,把y改成x  4.写出反函数及其定义域   就关系而言,一般是双向的 ,函数也如此 ,设y=f(x)为已知的函数,若对每个y∈Y,有唯一的x∈X,使f(x)=y,这是一个由y找x的过程 ,即x成了y的函数 ,记为x=f -1(y)。则f -1为f的反函数。习惯上用x表示自变量 ,故这个函数仍记为y=f -1(x) ,例如 y=sinx与y=arcsinx 互为反函数。在同一坐标系中,y=f(x)与y=f -1(x)的图形关于直线y=x对称。    隐函数若能由方程 F(x,y)=0 确定y为x的函数y=f(x),即F(x,f(x))≡0,就称y是x的隐函数。  注意:此处为方程F(x,y )= 0 并非函数。  思考:隐函数是否为函数?  不是,因为在其变化的过程中并不满足“一对一”和“多对一” 。   多元函数设点(x1,x2,…,xn) ∈GÍRn,UÍR1 ,若对每一点(x1,x2,…,xn)∈G,由某规则f有唯一的 u∈U与之对应:f:G→U,u=f(x1,x2,…,xn),则称f为一个n元函数,G为定义域,U为值域。   基本初等函数及其图像 幂函数、指数函数、对数函数、三角函数、反三角函数称为基本初等函数。   ①幂函数:y=xμ(μ≠0,μ为任意实数)定义域:μ为正整数时为(-∞,+∞),μ为负整数时是 (-∞,0)∪(0,+∞);μ=α(为整数),当α是奇数时为( -∞,+∞),当α是偶数时为(0,+∞);μ=p/q,p,q互素,作为的复合函数进行讨论。略图如图2、图3。   ②指数函数:y=ax(a>0 ,a≠1),定义成为( -∞,+∞),值域为(0 ,+∞),a>0 时是严格单调增加的函数( 即当x2>x1时,) ,0<a<1 时是严格单减函数。对任何a,图像均过点(0,1),注意y=ax和y=()x的图形关于y轴对称。如图4。   ③对数函数:y=logax(a>0), 称a为底 , 定义域为(0,+∞),值域为(-∞,+∞) 。a>1 时是严格单调增加的,0<a<1时是严格单减的。不论a为何值,对数函数的图形均过点(1,0),对数函数与指数函数互为反函数 。如图5。   以10为底的对数称为常用对数 ,简记为lgx 。在科学技术中普遍使用的是以e为底的对数,即自然对数,记作lnx。   ④三角函数:见表2。   正弦函数、余弦函数如图6,图7所示。   ⑤反三角函数:见表3。双曲正、余弦如图8。   ⑥双曲函数:双曲正弦(ex-e-x),双曲余弦?(ex+e-x),双曲正切(ex-e-x)/(ex+e-x) ,双曲余切( ex+e-x)/(ex-e-x)。
mlhxueli 2023-05-24 07:48:341

特殊函数有什么用

比如:1、作为一些重要的方程的解,比如Bessel函数。2、作为一些有趣的函数的延拓:比如Gamma函数。3、自然出现的或者技术上需要的:比如各种Zeta函数,各种L函数,各种椭圆函数。4、工程里或其他应用需要的:比如sinc函数。
meira2023-05-24 07:48:341

究竟什么是特殊函数

特殊函数理论处理一些类似三角函数及伽玛函数、贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。而这些理论的研究并不在一般数学分析或实函数分析范畴之内。传统上对特殊函数的分析主要基于对其的数值展开基础上。 比如:rect[(x-x0)/a]。当x≤x0+a/2时,函数值为1,x取其他值时,函数值为0
kikcik2023-05-24 07:48:342