matlabe里面怎么实现合流超几何函数
同问,合流超几何函数该怎么写?请问您解决了吗?余辉2023-05-24 07:48:442
五次方程 超几何函数
您好。五次方程是一种最高次数为五次的多项式方程。专指只含一个未知数的五次方程。再也不做站长了2023-05-24 07:48:441
关于贝塞尔函数和超几何函数的问题
1人类地板流精华2023-05-24 07:48:441
为什么现在数学系普遍不学椭圆函数、超几何函数等特殊函数?
这么说吧,以前中国的教材难度大,把学生都当成可以成名成家的目标培养的!但难度大也有个缺点,学不会造成厌学… 现在一直在降难度,考题也适中,这适合中上水平的学生、适合女生…尖子生自己想办法加课! 所以,奥数等优秀的学生,大学很受欢迎! 其实大学招生,除了看你掌握的知识,更看重的是你学习能力(智商)! 老外查你的学习能力,用的最多的是:除了母语,会几门外语,会什么外语?英语母语国家要求会非印欧语系的外语才算优秀!第二是数学的微积分…!学会最难最废脑的课程才体现你优势 问题挺简单的,直观答案就是数学系也是分方向的。而所有数学系学生都要学的公共课又不会涉及这么深的知识点。 题主问的领域哪怕在数学系也是比较冷门的存在。一些研究代数几何(Algebraic Geometry)的人才会学这些知识。 通常数学系的学生会有3个大的方向:一,统计:包括分析,统计,金融数学。这个是最热门的。二,理论数学,也叫pure maths,包括代数(群论,数论等等),几何(传统几何,解析几何,拓扑学等等)。三,应用数学。这个是以微积分为基础的,常用来解决物理问题,比如流体动力学。 18-19世纪的时候,各种特殊函数是数学系的重要内容。 研究它们不仅是数学上的兴趣,也有物理等等领域的实际用途。 比如椭圆函数就和单摆的精确运动有关,一大类常微分方程的解都能写成超几何函数。20世纪以后,各种特殊函数的材料越积累越多,物理应用领域已经基本能满足需求。 实际上,对于物理应用领域而言,一个精巧的等式往往不如一个近似展开有用。在纯数学角度呢?精巧的等式越来越难找。于此同时,数学本身也不断扩充,更强调抽象化,概况化。 你花时间把椭圆函数、超几何函数的一大堆性质搞熟,能写出一堆别人没见过的等式,解决物理问题不见得比物理系的强,对别的领域也暂时用不上,写论文还很难创新,不如认认真真把抽象代数、泛函分析、拓扑学、微分几何等等理论啃一遍。 数学专业的课程设置也是与时俱进的,不可能一成不变。现在的数学系和几十年前的数学系在课程设置方面差异很大。总的来讲,有广泛应用的热门课程,社会需求强烈的课程,会逐步加进来。比较冷门的一些课程会逐步减弱乃至淘汰。此类课程需要用到的时候,再补起来为时不晚。从总的趋势来看,数学系的课程负担是在加重而不是减轻。这样一来,有些难度较大,而用途较窄的课程就很难保留下来。道理也很简单。因为数学专业也是为社会的发展和进步服务的。过份脱离社会实际,对数学专业的发展和建设是不利的。实际上,有很多研究成果数学系是根本不做任何介绍的。例如,勒让德多项式,它已经有几百年的历史。但始终没有找到它的应用,所以它始终热不起来,数学系的学生不学也很正常,只有少数数学家对它感兴趣。 中国的数学专业,课程设置在世界上不算难度最大。例如俄罗斯的数学专业的课程设置不仅内容比中国多,难度也要大一些。这反映出各国科学教育界对专业设置理解上的差异。 美国的情况也差不多。美国高校数学专业的学生学习的内容比不上俄罗斯。但美国的科学技术,特别是高 科技 却很发达。 数学有著广泛的应用性。每个国家所处的发展阶段不同,国情也不同。都是根据本国的具体情况设置课程的。这其实很正常。本科教育只有四年,面面俱到是不可能的。 我翻看过王竹溪先生的大作《特殊函数概论》,好像还有19世纪英国一本书更如。这本书有这些个东东,太难了,复变函数围道积分处理了很多内容,都极难理解。 大概搞数论和加密算法的人能搞懂吧 1.学时有限。其它非专业课,公修课程,职教实践课,校园文化活动等等,所占学时和课外时间太多,学生真正用到专业课上的时间反而占比很少。 2.本科大部分为数学与应数学专业而非基础数学专业,有更多应用更广的专业课要学。 那不就是复变函数嘛 这其实是最有用的数学,至少在理论物理中应用广泛。数学系真的不学吗? 反正我认为,现在中国主要是培养工科性质的人才,真正搞科研的太少了。像我们搞动力和通信的,应该来说和这些超越函数打交道比较多。但是,除极少数情况下写文章忽悠人以外,基本用处不大。大多数情况下,只需要引用结果就是了。可以说,百分之九十九的工程情况,都不涉及超越函数这些东西。我大学在西交学动力,数学算学得多的了,后来在重大学通信与电磁场打交道,后来工作科研确实很少用到椭圆函数等超越函数,只是别人说的时候,我大概懂。 推行所谓素质教育再也不做站长了2023-05-24 07:48:431
为什么现在数学系普遍不学椭圆函数、超几何函数等特殊函数?
主要是因为这些知识除了做高等数学研究以外,其他人根本用不到。善士六合2023-05-24 07:48:433
现在数学系普遍不学椭圆函数、超几何函数等特殊函数,原因是什么?
这是因为学时有限,而且椭圆函数、超几何函数等特殊函数的应用性不强。余辉2023-05-24 07:48:434
现在数学系都不学椭圆函数、超几何函数了,为什么?
没有实用价值水元素sl2023-05-24 07:48:4310
椭圆函数,超几何函数,贝塞尔函数在物理和工程方面有怎样的应用
简单举几个例子。可以说,只要出现二阶偏微分方程,就容易出现(各种几何下)自伴算子的本征值问题,也就容易出现这些货色。贝塞尔函数是柱面波的常用基。比如,盘状星系的引力势常用贝塞尔函数展开。进一步地,盘状星系乃至很多盘状结构的讨论中,都要深度使用它们。二维圆孔的傅立叶变换是艾里函数,它其实是三分之一阶贝塞尔函数。特殊地,球贝塞尔函数是平面波按球面波展开的系数,所以量子力学里按分波法处理散射时会用上它。椭圆函数及其反函数相关的,我知道的是这个:克尔黑洞附近的光子轨迹。顺便一说,引入椭圆函数/积分后,这个问题是有解析解的,相关的工作人员包括了 Kip Throne。超几何函数是个流氓,可以变身为许多许多特殊函数… 两个奇点合流之后的合流超几何函数,解过氢原子的懂。问题来了。题主不像个对此完全无知的人;能说出这些名词的人,一般是学过的。难道老师讲它们的时候完全不讲应用?不过,若是想借此消遣,推荐题主想一下勒让德函数递推关系与角动量之间的联系。大鱼炖火锅2023-05-24 07:48:431
哪位大神知道这个超几何函数用MATLAB怎么实现,急急急!!!非常感谢
NOLuckySXyd2023-05-24 07:48:432
广义超几何函数是怎么定义的?
在数学中,高斯超几何函数或普通超几何函数2F1(a,b;c;z)是一个用超几何级数定义的函数,很多特殊函数都是它的特例或极限。所有具有三个正则奇点的二阶线性常微分方程的解都可以用超几何函数表示。康康map2023-05-24 07:48:431
哪位大神知道这个超几何函数用MATLAB怎么实现
HYPERGEOM([a,b],c,z) is the Gauss hypergeometric function 2F1(a,b;c;z).凡尘2023-05-24 07:48:432
超几何函数的积分表达式怎么来的
在数学中,高斯超几何函数或普通超几何函数2F1(a,b;c;z)是一个用超几何级数定义的函数,很多特殊函数都是它的特例或极限。所有具有三个正则奇点的二阶线性常微分方程的解都可以用超几何函数表示。北境漫步2023-05-24 07:48:431
什么是超几何方程?超几何函数?合流超几何函数?它们的历史和应用?谢谢!
合流超几何方程是热力学与统计物理中研究低温下液氦相变的一类方程,属于特殊函数,参见《特殊函数论》---北京大学出版社。肖振2023-05-24 07:48:421
matlab求高斯超几何函数
题主是否想询问“gitlab.com直链不了的原因是什么”使用hypergeom函数来求解高斯超几何函数。语法为F=hypergeom(a,b,c,z),其中,a、b和c是超几何函数的系数,z是自变量。函数将返回对应自变量z的高斯超几何函数值F。wpBeta2023-05-24 07:48:421
超几何函数的介绍
在数学中,高斯超几何函数或普通超几何函数2F1(a,b;c;z)是一个用超几何级数定义的函数,很多特殊函数都是它的特例或极限。所有具有三个正则奇点的二阶线性常微分方程的解都可以用超几何函数表示。无尘剑 2023-05-24 07:48:411
请帮我稍微简单一点介绍超几何函数的概念~~谢谢啦
超几何函数 hypergeometric functions 作为超几何方程的解,通过无限项的多项式(即幂级数)定义的函数,其系数按特定的规则确定。这种函数大都与物理学的微分方程问题中的其他函数结合在一起,很少作为某个特殊问题的解本身而出现。一般定义为任意一个这样的幂级数,其一次幂项x的系数为(a×b)/(c×1),a、b、c为任意常数,尔后,xn+1的系数等于前一项xn的系数乘(a+n)(b+n)/(c+n)(1+n)还有更一般的也称为超几何函数的级数,其中的一个是第一项包含了更多的常数(a×b×c×d×…)/(m×n×p×q×…)以后逐项的系数用类似于上面的方法构成。wpBeta2023-05-24 07:48:411
不定积分 超几何函数
定积分公式为:在微积分中,一个函数f 的不定积分,F ′= f。不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。扩展资料:积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长×宽×高求出。但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。FinCloud2023-05-24 07:48:411