实变函数中的特征函数是什么意思
就是定义在这个集合内的点上的函数值为1,其他为0。实变函数里面,一个可测集的特征函数是可测函数,其线性组合是简单函数,在可测函数里面稠密。ardim2023-05-20 08:57:421
实变函数与泛函数的区别
自变量是实数的,就是实变函数;是函数的,就是泛函数。黑桃花2023-05-20 08:57:421
实变函数的简单问题 求帮忙!
实变函数中,最基本的测度概念,测就是测量的意思,与长度面积体积相关,可合同的点集,应该是可以一一对应的点集,比如整数集和有理数集,就是可合同的点集,他们的程度都是零,无理数集与实数集,也是可合同的点集,所举的两个例子,可能你还没学到,铁血嘟嘟2023-05-20 08:57:421
实变函数极限问题
设F(s) = ∫{0,+∞} f(t)e^(-st) dt.由f(t)非负, e^(-st)关于s单调递减 (t ≥ 0), 可知F(s)单调递减.又F(s) > 0, 可知lim{s → +∞} F(s)存在.于是lim{s → +∞} F(s) = lim{n → ∞} F(n).只需考虑数列F(n)的极限.考虑函数列fn(x) = f(x)e^(-nx), 易见0 ≤ fn(x) ≤ f(x)对任意x ≥ 0成立.又f(x)在[0,+∞)可积, 即函数列fn(x)存在可积的控制函数.易见当n → ∞时, 函数列fn(x)在(0,+∞)上逐点收敛到0, 即极限函数几乎处处为0.由Lebesgue控制收敛定理, lim{n → ∞} F(n) = lim{n → ∞} ∫{0,+∞} f(t)e^(-nt) dt= lim{n → ∞} ∫{0,+∞} fn(t) dt= ∫{0,+∞} lim{n → ∞} fn(t) dt= 0.综上lim{s → +∞} F(s) = 0.注: 其实不预先证明lim{s → +∞} F(s)存在也是可以的.只需对任意趋于∞的数列a[n], 用Lebesgue控制收敛定理证明F(a[n])都收敛到0.u投在线2023-05-20 08:57:421
哪个app有实变函数答案
实变函数app。实分析在其他学科的中的应用是相当广泛的!仅举一例:实分析中的测度论问题和方法是数理经济学的重要组成部分,比如可以用测度论来描述竞争模型。再详细谈以下:测度的核心就是单个的点不起决定作用,起决定作用的是集合这个整体。因而在一个各个对象“平权”的经济体中,就会产生竞争,这时不会有哪个对象起主导作用。在这种情形下,引入测试模型就顺理成章了。另外,实变函数论对分形几何学的发展具有重要影响,而分形几何学在实际中的重要性则是不言而喻的。豆豆staR2023-05-20 08:57:421
实变函数高手进!! 求助!
设R为实数集,Z为无理数集,Q为有理数集。 由于有理数集为可数(无限)集,不妨设Q={q1,q2,q3,…} 虽然无理数集为不可数(无限)集,但其中必含有一个为可数(无限)集(其中元素可以有π,e,√2, √3,…),记为Z0。不妨设Z0={z1,z2,z3,…} 定义Z到R的映射f如下: f:x |-->x(当x不属于Z0时) f:z2n |-->zn(n=1,2,3,…) f:z2n-1 |-->qn(n=1,2,3,…) 直观来看,当x不属于Z0时,f(x)=x 当x属于Z0时, {z1,z2,z3,z4,z5,z6,…}对应为{q1,z1,q2,z2,q2,z3,…} 很容易证明,f就是无理数集到实数集的双射。wpBeta2023-05-20 08:57:421
什么是泛函、复变函数、实变函数?
分类: 教育/科学 >> 科学技术 问题描述: 什么是泛函、复变函数、实变函数? 这三种函数有什么特征啊?能不能各举个例子?万分感谢了! 解析: 简单的说,自变量是实数的,就是实变函数;是复数的,就是复变函数;是函数的,就是泛函。 例子实变:y=x+1,x属于R 复变:w=2*z,z属于C 泛函:L(y)=y"+y, y=y(x) [y"代表y的导数]墨然殇2023-05-20 08:57:411
实变函数的内容简介
本书在n维欧氏空间中建立Lebesgue测度和积分的理论,突出体现实变函数的基本思想。全书包括:集合、点集、Lebesgue测度、可测函数、Lebesgue积分、微分与不定积分、Lp空间共七章。每一小节讲述概念、定理与例题后,均附有精心挑选的配套基本习题,每一章后均附有整整一节的例题选讲,介绍实变函数解题的各种典型方法与重要技巧,每一章后还列出大量的习题供读者去研究与探索。本书可作为高等院校数学专业的教材,也可供相关专业人员参考。u投在线2023-05-20 08:57:411
实变函数
7.必要性:由fn(x)=>f(x),对于∀σ>0,g(x)=f(x)a.e.于E:∃E0⊂E,在E0上g(x)=f(x),且设E‘=(E-E0),mE"=0,于是对于∀σ,故fn(x)=>g(x)8.逆命题成立,|f(x)|=f+(x)+f-(x),f(x)=f+(x)-f-(x)f+和f-分别为f(x)的正部和负部|f(x)|可积,则∫[f+(x)+f-(x)]dx<+∞,故∫f+(x)dx<+∞且∫f-(x)dx<+∞由于正部负部积分均有限,根据可积定义知f(x)可积9.使f(x)无限的x构成的集合为:设En=由于f(x)可积,有|f(x)|可积,故有对于∀n:因此对∀n:所以运用定理得:所以f(x)有限a.e.于E铁血嘟嘟2023-05-20 08:57:411
数学分析和实变函数的区别与联系
数学分析是基础课,讲极限,积分,微分,都是一些比较基础的理论证明,积分主要讲黎曼积分,涉及实数,复数等实分析讲的是实数域(包括更高维度)上的测度论与积分,此处的测度积分主要是勒贝格测度与积分,是一种更广泛的积分真颛2023-05-20 08:57:413
实变函数论与实变函数与泛函分析的区别
实变函数以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论.它是微积分学的进一步发展,它的基础是点集论.什么是点集论呢?点集论是专门研究点所成的集合的性质的理论.也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的.比如,点集函数、序列、极限、连续性、可微性、积分等.实变函数论还要研究实变函数的分类问题、结构问题.实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等.这里我们只对它的一些重要的基本概念作简要的介绍.实变函数论的积分理论研究各种积分的推广方法和它们的运算规则.由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集以一个数量的概念,这个概念叫做测度.什么实测度呢?简单地说,一条线段的长度就是它的测度.测度的概念对于实变函数论十分重要.集合的测度这个概念实由法国数学家勒贝格提出来的.为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分.1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度.波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念.勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题.勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来由推广到积分可以不是绝对收敛的.从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的老积分定义广大多了.也可以看出,实变函数论所研究的是更为广泛的函数类.自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近.这样,在实变函数论的领域里又出现了逼近论的理论.什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近.如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质.逼近论就是研究那一类函数可以用另一类函数来逼近、逼近的方法、逼近的程度和在逼近中出现的各种情况.和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数.和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论.总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支的应用是现代数学的特征.实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛涵分析两个重要分支有着极为重要的影响.泛函分析的产生十九世纪以来,数学的发展进入了一个新的阶段.这就是,由于对欧几里得第五公设的研究,引出了非欧几何这门新的学科;对于代数方程求解的一般思考,最后建立并发展了群论;对数学分析的研究又建立了集合论.这些新的理论都为用统一的观点把古典分析的基本概念和方法一般化准备了条件.本世纪初,瑞典数学家弗列特荷姆和法国数学家阿达玛发表的著作中,出现了把分析学一般化的萌芽.随后,希尔伯特和海令哲来创了“希尔伯特空间”的研究.到了二十年代,在数学界已经逐渐形成了一般分析学,也就是泛函分析的基本概念.由于分析学中许多新部门的形成,揭示出分析、代数、集合的许多概念和方法常常存在相似的地方.比如,代数方程求根和微分方程求解都可以应用逐次逼近法,并且解的存在和唯一性条件也极其相似.这种相似在积分方程论中表现得就更为突出了.泛函分析的产生正是和这种情况有关,有些乍看起来很不相干的东西,都存在着类似的地方.因此它启发人们从这些类似的东西中探寻一般的真正属于本质的东西.非欧几何的确立拓广了人们对空间的认知,n维空间几何的产生允许我们把多变函数用几何学的语言解释成多维空间的影响.这样,就显示出了分析和几何之间的相似的地方,同时存在着把分析几何化的一种可能性.这种可能性要求把几何概念进一步推广,以至最后把欧氏空间扩充成无穷维数的空间.这时候,函数概念被赋予了更为一般的意义,古典分析中的函数概念是指两个数集之间所建立的一种对应关系.现代数学的发展却是要求建立两个任意集合之间的某种对应关系.这里我们先介绍一下算子的概念.算子也叫算符,在数学上,把无限维空间到无限维空间的变换叫做算子.研究无限维线性空间上的泛函数和算子理论,就产生了一门新的分析数学,叫做泛函分析.在二十世纪三十年代,泛函分析就已经成为数学中一门独立的学科了.泛函分析的特点和内容泛函分析的特点是它不但把古典分析的基本概念和方法一般化了,而且还把这些概念和方法几何化了.比如,不同类型的函数可以看作是“函数空间”的点或矢量,这样最后得到了“抽象空间”这个一般的概念.它既包含了以前讨论过的几何对象,也包括了不同的函数空间.泛函分析对于研究现代物理学是一个有力的工具.n维空间可以用来描述具有n个自由度的力学系统的运动,实际上需要有新的数学工具来描述具有无穷多自由度的力学系统.比如梁的震动问题就是无穷多自由度力学系统的例子.一般来说,从质点力学过渡到连续介质力学,就要由有穷自由度系统过渡到无穷自由度系统.现代物理学中的量子场理论就属于无穷自由度系统.正如研究有穷自由度系统要求 n维空间的几何学和微积分学作为工具一样,研究无穷自由度的系统需要无穷维空间的几何学和分析学,这正是泛函分析的基本内容.因袭,泛函分析也可以通俗的叫做无穷维空间的几何学和微积分学.古典分析中的基本方法,也就是用线性的对象去逼近非线性的对象,完全可以运用到泛函分析这门学科中.泛函分析是分析数学中最“年轻”的分支,它是古典分析观点的推广,它综合函数论、几何和代数的观点研究无穷维向量空间上的函数、算子、和极限理论.他在二十世纪四十到五十年代就已经成为一门理论完备、内容丰富的数学学科了.半个多世纪来,泛函分析一方面以其他众多学科所提供的素材来提取自己研究的对象,和某些研究手段,并形成了自己的许多重要分支,例如算子谱理论、巴拿赫代数、拓扑线性空间理论、广义函数论等等;另一方面,它也强有力地推动着其他不少分析学科的发展.它在微分方程、概率论、函数论、连续介质力学、量子物理、计算数学、控制论、最优化理论等学科中都有重要的应用,还是建立群上调和分析理论的基本工具,也是研究无限个自由度物理系统的重要而自然的工具之一.今天,它的观点和方法已经渗入到不少工程技术性的学科之中,已成为近代分析的基础之一.泛函分析在数学物理方程、概率论、计算数学、连续介质力学、量子物理学等学科有着广泛的应用.近十几年来,泛函分析在工程技术方面有获得更为有效的应用.它还渗透到数学内部的各个分支中去,起着重要的作用.1年前4发大财了 幼苗共回答了20个问题 举报实变函数:测度空间,积分.泛函分析:抽象空间.北有云溪2023-05-20 08:57:411
“实变函数”的用途
工具,就像老虎钳,起子,以后用得着hi投2023-05-20 08:57:413
实变函数问题?
首先关于函数列处处收敛:对于一列函数列 {fn(x)},当给定一x时(也就是让x取一个定值),则函数列fn(x)},就变成了一个数列了。类如函数列 fn(x)=x^n(x的n次方),当给定x=2时,fn(x)=2^n(2的n次方),,这就是一个数列了,当这个数列{2^n}收敛,就说函数列{fn(x)}在x=2收敛;当这个数列{2^n}不收敛,就说函数列{fn(x)}在x=2发散的。对于函数列 fn(x)=x^n(x的n次方),当x=1时收敛;当x=2时发散。2. 弄清上面了,函数列几乎处处收敛就很容易了。函数列几乎处处收敛是指:使得函数列不收敛的所有点组成的集合的测度(Lebesgue测度)为0。通俗的说就是不收敛的点不多,测度为0,可以忽略。除去不收敛点,剩下的点都是使得函数列收敛,所以说函数列“几乎处处”收敛(因为测度为0)。3. 函数列的一致收敛:首先看一下处处收敛的定义:对于一列函数列 {fn(x)},当给定一x时(也就是让x取一个定值),则函数列fn(x)},就变成了一个数列,当这个数列收敛于f(x),即对任意的ε>0,存在N>0(注意这个N与ε和给定的x有关),使得当n>N时,有 |fn(x)-f(x)|<ε.再次强调:定义中的这个N,是与ε和给定的x有关。对不同的x,给定ε,就会有不同的N。一致收敛的定义是:对任意的ε>0,存在N>0(注意这个N只与ε有关),使得当n>N时,对一切的x(当然是fn(x)定义域上的x)有 |fn(x)-f(x)|<ε.定义中的这个N,只是与ε有关。对不同的x,给定ε,都能找到相同的N。可以看到,处处收敛研究的是函数列在一点处的收敛性,因为给定误差ε,要找的N与ε和给定的x有关而一致收敛研究的是函数列在定义域上的整体收敛性,因为给定误差ε,不管是什么样的x,函数列fn(x)都会随着n的增大而靠近f(x),可以这样想象,fn(x)代表的很多曲线,随着n的增大,趋近于曲线f(x).上面的例子:函数列 fn(x)=x^n(x的n次方)在区间[0,1]上处处收敛,在[0,1)上收敛到f(x)=0,在x=1处收敛到1.但不是一致收敛的,问题出在x=1处附近的点。因为x=1处附近的点,当n增大时总是要靠近1的,所以fn(x)无法整体趋向于f(x)=0这个函数。但是把x=1处附近的点去掉,只考虑区间[0,δ)(δ是小于1的任意正数),则函数列 fn(x)=x^n在区间[0,δ)一致收敛于f(x)=0。4、依测度收敛测度收敛与前面的几种收敛方式不一样,也叫概收敛,一般地可以这样定义:定义: 设E是可测集,f(x),f_1(x),f_2(x),f_3(x),…都是E上几乎处处有限的可测函数,如果对于任意ε>0,都有lim E{x||fn(x)-f(x)|>ε}=0则称f_n(x)在E上依测度收敛到f(x),记作 。指的是使得fn(x) 和 f(x)不相等的点x做成的集合,随着n 的增大而其测度趋向于零。总的来说,在区域有限和函数有限的情况下,收敛强度从弱到强依次是:依测度收敛,几乎处处收敛,处处收敛,一致收敛打了好多字韦斯特兰2023-05-20 08:57:411
什么是实变函数论
http://baike.baidu.com/view/44515.htm去这看看,很详细。wpBeta2023-05-20 08:57:414
实变函数论的产生
实变函数论的产生 微积分产生于十七世纪,到了十八世纪末十九世纪初,微积分学已经基本上成熟了。数学家广泛地研究并建立起它的许多分支,是它很快就形成了数学中的一大部门,也就是数学分析。也正是在那个时候,数学家逐渐发现分析基础本身还存在着很多问题。比如,什么是函数这个看上去简单而且十分重要的问题,数学界并没有形成一致的见解。以至长期争论者问题的这样和那样的解答,这样和那样的数学结果,弄不清究竟谁是正确的。又如,对于什么是连续性和连续函数的性质是什么,数学界也没有足够清晰的理解。十九世纪初,曾经有人试图证明任何连续函数除个别点外总是可微的。后来,德国数学家维尔斯特拉斯提出了一个由级数定义的函数,这个函数是连续函数,但是维尔斯特拉斯证明了这个函数在任何点上都不可导。这个发现使许多数学家大为吃惊。由于发现了某些函数的奇特性质,数学家对函数的研究更加深入了。人们又陆续发现了有些函数是连续的但处处不可微,有的函数的有限导数并不黎曼可积;还发现了连续但是不分段单调的函数等等。这些都促使数学家考虑,人们要处理的函数,仅仅依靠直观观察和猜测是不行的,必须深入研究各种函数的性质。比如,连续函数必定可积,但是具有什么性质的不连续函数也可积呢?如果改变积分的定义,可积分条件又是什么样的?连续函数不一定可导,那么可导的充分必要条件由是什么样的?……上面这些函数性质问题的研究,逐渐产生了新的理论,并形成了一门新的学科,这就是实变函数。韦斯特兰2023-05-20 08:57:411
实变函数论的介绍
实变函数论(real function theory)19世纪末20世纪初形成的数学分支。起源于古典分析,主要研究对象是自变量(包括多变量)取实数值的函数,研究的问题包括函数的连续性、可微性、可积性、收敛性等方面的基本理论,是微积分的深入和发展。因为它不仅研究微积分中的函数,而且还研究更为一般的函数,并且得到了较微积分中相应理论更为深刻、更为一般从而应用更为广泛的结论,所以实变函数论是现代分析数学各个分支的基础。铁血嘟嘟2023-05-20 08:57:411
实变函数在其他学科有哪些应用?
首先实变函数为泛函分析奠定了理论基础.泛函分析你应该比较了解,对近代的常微分方程,偏微分方程,差分方程,解的性质有很重要的意义 实变函数本身主要用于高等概率论,以及随机过程中很多定理的证明.对于普通的积分勒贝格还是不常用,但是对不少特殊函数(概率分布)用勒贝格积分算还是很有用的.余辉2023-05-20 08:57:411
实变函数闭集充要条件
实变函数闭集充要条件包含所有聚点的集合是闭集。由于收敛点列{xn}收敛域x0,那么x0是闭集F的聚点,当然属于F。这个是点集拓扑的内容,用到泛函这而已。连续映射的定义是,开集的原像是开集,取个补稍微推一下即可。单点集是闭集,证明如下:设集合S={a},它没有聚点,所以导集为空集,从而导集包含于S,按定义,它是闭集。有限个闭集的并集还是闭集,从而命题得证。性质A是闭集当且仅当它的补集是开集。设A是闭集,用Ac表示其在度量空间内的补集,根据开集的定义,只需要证明Ac中的点都是内点即可。任取一点x∈Ac,若假设x不是Ac的内点,则根据内点的定义,在x的任意一个邻域内,都至少有一点不属于Ac,即在x的任意一个邻域内,都至少有一点属于A。并且很明显,这一点不可能是x自身(因为x∈Ac)。tt白2023-05-20 08:57:411
实变函数
fn(x)=1/n(当x=a/n(0<=a<=n,a为整数))fn(x)=0(除开上面情况)所以fn不收敛于0的测度是0,考虑[1/n,2/n],有结论2bikbok2023-05-20 08:57:411
实变函数是人学的吗?
实变函数是人学的。实变函数论是以实变函数作为研究对象的数学分支,是数学分析的深入与推广,研究函数的表示与逼近问题以及它们的局部与整体性质。在经典分析中主要研究具有一定阶光滑性的函数。但在 19 世纪下半叶,一些问题被明确提出,期望能解答并涉及更宽泛的函数类。问题在这些问题中必须提到的有集合的测度,曲线长度与曲面面积,原函数与积分,积分与微分的关系,级数的逐项积分与微分,由极限过程得到的函数的性质等。这些问题的解决对数学发展至关重要,但又非经典分析所能。直至 19 世纪末 20 世纪初,在集合论的基础上,这些问题才得以解决,同时也完成了现代实变函数论基础的建立。拌三丝2023-05-20 08:57:411
实变函数
这里有证明http://wenku.baidu.com/view/778be0c75fbfc77da269b160.html墨然殇2023-05-20 08:57:412
有关实变函数论的问题:证明〔0,1〕上的全体无理数作成的集合其基数为C.谢谢了。
首先[0,1]的基数为C,其次[0,1]上的有理数是可数的。所以[0,1]/Q[0,1]的基数=[0,1]的基数,所以就是C了苏萦2023-05-20 08:57:412
实变函数与复变函数相比,哪个难?
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。但随着数学的发展,这类数的重要性就日益显现出来。复数的一般形式是:a+bi,其中i是虚数单位。 以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。以实数作为自变量的函数就做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。 整体来说,实变比复变难一点,实变及其抽象,理论性太强,复变比较好理解点,但是还是不好学wpBeta2023-05-20 08:57:412
实变函数的内容
以实数作为自变量的函数叫做实变函数,以实变函数作为研究对象的数学分支就叫做实变函数论。它是微积分学的进一步发展,它的基础是点集论。什么是点集论呢?点集论是专门研究点所成的集合的性质的理论。也可以说实变函数论是在点集论的基础上研究分析数学中的一些最基本的概念和性质的。比如,点集函数、序列、极限、连续性、可微性、积分等。实变函数论还要研究实变函数的分类问题、结构问题。实变函数论的内容包括实值函数的连续性质、微分理论、积分理论和测度论等。这里我们只对它的一些重要的基本概念作简要的介绍。实变函数论的积分理论研究各种积分的推广方法和它们的运算规则。由于积分归根到底是数的运算,所以在进行积分的时候,必须给各种点集一个数量上的概念,这个概念叫做测度。什么是测度呢?简单地说,一条线段的长度就是它的测度。测度概念对于实变函数论十分重要。集合的测度这个概念实由法国数学家勒贝格提出来的。为了推广积分概念,1893年,约当在他所写的《分析教程》中,提出了“约当容度”的概念并用来讨论积分。1898年,法国数学家波莱尔把容度的概念作了改进,并把它叫做测度。波莱尔的学生勒贝格后来发表《积分、长度、面积》的论文,提出了“勒贝格测度”、“勒贝格积分”的概念。勒贝格还在他的论文《积分和圆函数的研究》中,证明了有界函数黎曼可积的充分必要条件是不连续点构成一个零测度集,这就完全解决了黎曼可积性的问题。勒贝格积分可以推广到无界函数的情形,这个时候所得积分是绝对收敛的,后来又推广到积分可以不是绝对收敛的。从这些就可以看出,勒贝格积分比起由柯西给出后来又由黎曼发扬的积分定义广大多了。也可以看出,实变函数论所研究的是更为广泛的函数类。自从维尔斯特拉斯证明连续函数必定可以表示成一致收敛的多项式级数,人们就认清连续函数必定可以解析地表达出来,连续函数也必定可以用多项式来逼近。这样,在实变函数论的领域里又出现了逼近论的理论。什么是逼近理论呢?举例来说,如果能把 A类函数表示成 B类函数的极限,就说 A类函数能以 B类函数来逼近。如果已经掌握了 B类函数的某些性质,那么往往可以由此推出 A类函数的相应性质。逼近论就是研究一类函数用另一类函数来逼近、逼近的方法、逼近的程度、在逼近中出现的各种情况。和逼近理论密切相关的有正交级数理论,三角级数就是一种正交级数。和逼近理论相关的还有一种理论,就是从某一类已知函数出发构造出新的函数类型的理论,这种理论叫做函数构造论。总之,实变函数论和古典数学分析不同,它是一种比较高深精细的理论,是数学的一个重要分支,它的应用广泛,它在数学各个分支中的应用是现代数学的特征。实变函数论不仅应用广泛,是某些数学分支的基本工具,而且它的观念和方法以及它在各个数学分支的应用,对形成近代数学的一般拓扑学和泛函分析两个重要分支有着极为重要的影响。无尘剑 2023-05-20 08:57:401
学实变函数需要什么基础
最重要的就是数学分析,尤其是黎曼积分以及分析学的思路。1、 实变函数就是黎曼积分的拓展,介绍一种新的积分——勒贝格积分,将可积函数类的范围扩大了。 2、值得注意的是勒贝格积分当中,牛顿莱布尼兹公式不一定成立(仅有一个小于等于号),除非是绝对连续或者有界变差等某些情形。 3、在引入勒贝格积分的过程中,测度论是不可少的,有很多引进测度的方法。4、要掌握这些基本上逻辑没有问题就行了,并不需要什么准备知识,通常的实变书都应该有一些集合论的知识。5、 高等代数、解析几何、微分方程、复变都完全用不到的,基本就是数学分析。人类地板流精华2023-05-20 08:57:401
这是有关实变函数的问题:为什么在[0,1]上的狄利克雷函数是简单函数?
根据定义啊。 简单函数的定义是:定义域是可测集,值域是有限个非负数组成的函数。苏萦2023-05-20 08:55:303
这是有关实变函数的问题:为什么在[0,1]上的狄利克雷函数是简单函数?
在[0,1]上勒贝格可积 在很多时候,只是为了来说明某些问题的. 这个函数挺特殊,作为很多事情的反例,这个函数在任意一点都不存在极限且是以任意有理数为周期的周期函数(有理数相加得有理数,无理数加有理数还是无理数),同时这个函数在积分上也有应用,该函数黎曼不可积,而在其它一些积分中是可积的.水元素sl2023-05-20 08:55:291
实变函数符号意义
mE是指E的测度,m*E是指E的外侧度。对于任意集合E,外侧度m*E总是存在且有意义的。但是mE仅仅当E是可测集的时候才有意义。苏州马小云2023-05-19 11:00:461