如何求法向量?求法向量的公式是什么?
法向量的求法如下:1、建立恰当的直角坐标系;2、设平面法向量n=(x,y,z);3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3);4、根据法向量的定义建立方程组①n·a=0 ②n·b=0;5、解方程组,取其中一组解即可。关于法向量微分几何的计算方式,这涉及到曲面的表示方式。通常曲面的表示方式为:(1)隐函数:F(x,y,z)=0, 如平面x+y+z=0;(2)(参数化的)向量形式:r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k. 因为曲面的维度为2,所以一般是两个参数u,v。比如:x+y+z=0 可表示为:r(u,v)=ui+vj+(-u-v)k.对应的,计算法向量的方式分别为:(1)grad(F). 即隐函数F(x,y,z)的梯度grad(F) 即为曲面在点(x,y,z)处的法向量,也即,法向量为F(x,y,z)=C变化率最大的方向。人类地板流精华2023-07-14 07:14:431
如何求法向量?
法向量 法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量.由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但是这些法向量之间相互平行.从理论上述,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息.一般不选择零向量为平面的法向量. 如果已知直线与平面垂直,可以取已知直线的两点构成的向量作为法向量;如果不存在这样的直线,可用设元法求一个平面的法向量;步骤如下:首先设平面的法向量m(x,y,z),然后寻找平面内任意两个不共线的向量AB(x1,y1,z1)和CD(x2,y2,z2).由于平面法向量垂直于平面内所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0.由于上面解法存在三个未知数两个方程(不能通过增加新的向量和方程求解,因为其它方程和上述两个方程是等价的),无法得到唯一的法向量(因为法向量不是唯一的).为了得到确定法向量,可采用固定z=1(也可以固定x=1或y=1)或者模等于1的方法(单位法向量),但是这步并不是必须的.因为确定法向量和不确定法向量的作用是一样的. 法向量的主要应用如下: 1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余.利用这个原理也可以证明线面平行; 2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补; 3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量).利用这个原理也可以求异面直线的距离 法向量方法是高考数学可以采用的方法之一,他的优点在于思路简单,容易操作.只要能够建立出直角坐标系,都可以写出最后答案.缺点在于同一般立体几何方法相比,其计算量巨大,特别是在计算二面角的时候.阿啵呲嘚2023-07-14 07:14:411
如何求法向量?
法向量求法如下:1、建立恰当的直角坐标系。2、设平面法向量n=(x,y,z)。3、在平面内找出两个不共线的向量,记为a=(a1,a2, a3) b=(b1,b2,b3)。4、根据法向量的定义建立方程组①n·a=0 ②n·b=0。5、解方程组,取其中一组解即可。关于法向量微分几何的计算方式,这涉及到曲面的表示方式。通常曲面的表示方式为:(1)隐函数:F(x,y,z)=0, 如平面x+y+z=0。(2)(参数化的)向量形式:r(u,v)=x(u,v)i+y(u,v)j+z(u,v)k. 因为曲面的维度为2,所以一般是两个参数u,v。比如:x+y+z=0 可表示为:r(u,v)=ui+vj+(-u-v)k。对应的,计算法向量的方式分别为:(1)grad(F)。即隐函数F(x,y,z)的梯度。(2)grad(F)。 即为曲面在点(x,y,z)处的法向量,也即,法向量为F(x,y,z)=C变化率最大的方向。无尘剑 2023-07-14 07:14:351
怎么求法向量高中,知道方向向量怎么求法向量
1.建立恰当的直角坐标系。 2. 设平面法向量n=(x,y,z)。 3. 在平面内找出两个不共线的向量,记为a=(a1,a2,a3)b=(b1,b2,b3)。 4. 根据法向量的定义建立方程组:n·a=0;n·b=0。 5. 解方程组,取其中一组解即可。 6.如果曲面在某点没有切平面,那么在该点就没有法线。九万里风9 2023-07-14 07:14:291
在平面内如何求法向量?
两个不共线向量叉乘豆豆staR2023-05-25 07:25:094
空间向量中怎么求法向量?
下面我用几何法和向量法两种方法解几何法:过e点作ef⊥ad交ad于f,再作fg⊥ac交ab于g,然后过g作gh平行且等于ef,连接eh,则四边形efgh是矩形。。。因为fg⊥pa,fg⊥ac。所以eh⊥ac。eh⊥ap。所以eh⊥面pac,则h就是要求的那个点(即n)。因为ap=2,所以ef=1,所以hg=1。所以h到ab的距离是1。因为∠bac=30°,所以∠afg=30°。因为af=1/2所以ag=√3/6。所以h到ap的距离是√3/6向量法:以a为坐标原点(下面的矩形abcd哦用的顺时针)。ab为x轴,ad为y轴,ap为z轴建系。因为n在面pab内,所以设其坐标为(x,0,z)p(0,0,2)a(0,0,0,)c(√3,1,0)e(0,1/2,1)向量ap=(0,0,2)向量ac=(√3,1,0)向量eh=(x,-1/2,z-1)..因为向量eh*ap=0eh*ac=0。。能够得到x=√3/6,z=1..所以。。。跟上面一样CarieVinne 2023-05-24 18:37:322
空间向量中怎么求法向量
是高中的平面几何吗?? 是的话你还是多看看定义, 没实例不好解释》NerveM 2023-05-24 18:37:322
空间向量中怎么求法向量?
高中数学空间向量之--平面法向量的求法及其应用 一、 平面的法向量 1、定义:如果a,那么向量a叫做平面的法向量。平面的法向量共有两大类(从方向上分),无数条。 2、平面法向量的求法 方法一(内积法):在给定的空间直角坐标系中,设平面的法向量(,,1)nxy[或(,1,)nxz,或(1,,)nyz],在平面内任找两个不共线的向量,ab。由n,得0na且0nb,由此得到关于,xy的方程组,解此方程组即可得到n。第一种是最常规的做法,列两个方程,然后取值求解。第二种是建立空间直角坐标系,然后再求需要求法向量的平面的平面方程,然后可以直接看出。第三种是利用叉乘法,知道平面内相交的两条边的空间向量,就可以利用公式直接套。法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。hi投2023-05-24 18:37:291
如何求法向量
在平面几何中,如果一个向量垂直于一条直线,那么它就叫做直线的法向量,在立体几何中,如果一个向量垂直于一个平面,那么它就叫做平面的法向量,三维平面的法线是垂直于该平面的三维向量,曲面在某点p处的法线为垂直于该点切平面的向量。在立体几何中,如果一个向量同时垂直于两条或多条异面直线,那么该向量叫做这些异面直线的公共法向量。比方说,1在平面上有直线y=x,那么向量(1,-1)就是这条直线的(一个)法向量(注意法向量是无穷多的)。在立体空间中有由x轴和y轴确定的平面,那么这个平面就有一个法向量(0,0,1)。meira2023-05-15 13:53:271
怎样求法向量?
下面我用几何法和向量法两种方法解几何法:过E点作EF⊥AD交AD于F,再作FG⊥AC交AB于G,然后过G作GH平行且等于EF,连接EH,则四边形EFGH是矩形。。。因为FG⊥PA,FG⊥AC。所以EH⊥AC。EH⊥AP。所以EH⊥面PAC,则H就是要求的那个点(即N)。因为AP=2,所以EF=1,所以HG=1。所以H到AB的距离是1。因为∠BAC=30°,所以∠AFG=30°。因为AF=1/2所以AG=√3/6。所以H到AP的距离是√3/6向量法:以A为坐标原点(下面的矩形ABCD哦用的顺时针)。AB为X轴,AD为Y轴,AP为Z轴建系。因为N在面PAB内,所以设其坐标为(X,0,Z)P(0,0,2)A(0,0,0,)C(√3,1,0)E(0,1/2,1)向量AP=(0,0,2)向量AC=(√3,1,0)向量EH=(X,-1/2,Z-1)..因为向量EH*AP=0EH*AC=0。。能够得到X=√3/6,Z=1..所以。。。跟上面一样左迁2023-05-15 13:53:272
如何求法向量?
法向量 法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,而且每条直线可以存在不同的法向量;因此一个平面都存在无数个法向量,但是这些法向量之间相互平行。从理论上述,空间零向量是任何平面的法向量,但是由于零向量不能表示平面的信息。一般不选择零向量为平面的法向量。 如果已知直线与平面垂直,可以取已知直线的两点构成的向量作为法向量;如果不存在这样的直线,可用设元法求一个平面的法向量;步骤如下:首先设平面的法向量m(x,y,z),然后寻找平面内任意两个不共线的向量AB(x1,y1,z1)和CD(x2,y2,z2)。由于平面法向量垂直于平面内所有的向量,因此得到x*x1+y*y1+z*z1=0和x*x2+y*y2+z*z2=0。由于上面解法存在三个未知数两个方程(不能通过增加新的向量和方程求解,因为其它方程和上述两个方程是等价的),无法得到唯一的法向量(因为法向量不是唯一的)。为了得到确定法向量,可采用固定z=1(也可以固定x=1或y=1)或者模等于1的方法(单位法向量),但是这步并不是必须的。因为确定法向量和不确定法向量的作用是一样的。 法向量的主要应用如下: 1、求斜线与平面所成的角:求出平面法向量和斜线的夹角,这个角和斜线与平面所成的角互余。利用这个原理也可以证明线面平行; 2、求二面角:求出两个平面的法向量所成的角,这个角与二面角相等或互补; 3、点到面的距离: 任一斜线(平面为一点与平面内的连线)在法向量方向的射影;如点B到平面α的距离d=|BD·n|/|n|(等式右边全为向量,D为平面内任意一点,向量n为平面α的法向量)。利用这个原理也可以求异面直线的距离 法向量方法是高考数学可以采用的方法之一,他的优点在于思路简单,容易操作。只要能够建立出直角坐标系,都可以写出最后答案。缺点在于同一般立体几何方法相比,其计算量巨大,特别是在计算二面角的时候。肖振2023-05-15 13:53:261
怎么求法向量
求法向量的方法是建立恰当的直角坐标系,设平面法向量n=(x,y,z),在平面内找出两个不共线的向量,根据法向量的定义建立方程组,解方程组,取其中一组解即可。法向量,是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。法向量适用于解析几何。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量。法向量的定义,1,在平面几何中,如果一个向量垂直于一条直线,那么它就叫做直线的法向量。2,在立体几何中,如果一个向量垂直于一个平面,那么它就叫做平面的法向量.三维平面的法线是垂直于该平面的三维向量。曲面在某点p处的法线为垂直于该点切平面的向量。3,在立体几何中,如果一个向量同时垂直于两条或多条异面直线,那么该向量叫做这些异面直线的公共法向量。mlhxueli 2023-05-15 13:53:261
根据直线求法向量的方法及其证明
规定了方向和大小的量称为向量.向量又称为矢量,最初被应用于物理学.很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前350年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到.“向量”一词来自力学、解析几何中的有向线段.最先使用有向线段表示向量的是英国大科学家牛顿.西柚不是西游2023-05-15 13:53:242
高数。已知曲面和曲面上一点,怎么求法向量?
曲面方程为z=f(x,y),则法向量n=(fx,fy,-1)本题中,(1,-2,5)处fx=2x=2fy=2y=-4∴法向量n=(2,-4,-1)豆豆staR2023-05-15 13:52:592
高等数学里为什么用向量积求法向量?
向量积的定义中有,c=a×b则c垂直于a,b所在的平面,(即c平行于平面的法向量)所以,我们常用向量积来求与两个向量同时垂直的向量(主要是法向量和直线的方向向量)左迁2023-05-15 13:52:562
求法向量。
法向量是空间解析几何的一个概念,垂直于平面的直线所表示的向量为该平面的法向量。由于空间内有无数个直线垂直于已知平面,因此一个平面都存在无数个法向量(包括两个单位法向量)。平面的法线是垂直于该平面的空间向量。曲面在某点P处的法线为垂直于该点切平面(tangent plane)的向量。法线是与多边形(polygon)的曲面垂直的理论线,一个平面(plane)存在无限个法向量(normal vector)。在电脑图学(computer graphics)的领域里,法线决定着曲面与光源(light source)的浓淡处理(Flat Shading),对于每个点光源位置,其亮度取决于曲面法线的方向。如果一个非零向量n与平面a垂直,则称向量n为平面a的法向量。垂直于平面的直线所表示的向量为该平面的法向量。每一个平面存在无数个法向量。点法向式就是由直线上一点的坐标和与这条直线的法向向量确定的------((x0,y0)为直线上一点,{u,v}为直线的法向向量)。高中数学中直线方程之一。u(x-x0)+v(y-y0)=0且u,v不全为零的方程,称为点向式方程。可以表示所有直线。希望我能帮助你解疑释惑。u投在线2023-05-15 13:52:551
高等数学里为什么用向量积求法向量?
操作简单啊苏萦2023-05-15 13:52:553
行列式求法向量,向量A=(a,b,c) B=(d,f,g) 法向量是多少??怎么求??谢谢
设c(h,i,j)先取h=0时计算CA,CB是否可能等于0,可能的话直接得出法向量(h,i,j)否则使h=1计算得出i,j这样法向量就是(1,i,j)左迁2023-05-15 13:52:551